1
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025:10.1007/s12264-025-01348-w. [PMID: 39992353 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
2
|
Chen L, Yang Z, Ji S, Song T, Li H, Tang Y, Chen Y, Li Y. Comparing the Risk of Epilepsy in Patients With Simple Congenital Heart Diseases: A Prospective Cohort Study. CNS Neurosci Ther 2025; 31:e70230. [PMID: 39918096 PMCID: PMC11803515 DOI: 10.1111/cns.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS Simple congenital heart diseases (CHD) are associated with various central nervous system diseases, including epilepsy. This study aimed to compare the risk of epilepsy in patients with different types of simple CHD. METHODS In this prospective cohort study, from January 2008 to June 2022, patients with atrial septal defect (ASD), patent foramen ovale (PFO), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) were recruited at the Registration Center of CHD in West China Hospital. Follow-up was conducted yearly until the diagnosis of epilepsy, loss to follow-up, or end of study. The outcomes included a comparison of epilepsy incidence according to different simple CHD types and a risk assessment of developing epilepsy. Multivariable Poisson regression was performed to adjusted factors of demographics and disease history. RESULTS Of 10,914 patients who met the inclusion criteria, 108 were diagnosed with epilepsy at an average follow-up of 2.19 years. Epilepsy incidence in patients with PFO, VSD, PDA, and ASD was 8.58/1000, 4.85/1000, 3.98/1000, and 2.63/1000 person-years, respectively. Compared with ASD patients (reference group), the risk ratios (95% confidence intervals) in patients with PFO, VSD, and PDA were 3.28 (2.00-5.43), 1.47 (0.79-2.68), and 1.46 (0.70-2.82), respectively. Subgroup analyses determined that patients with simple CHD who underwent CHD surgery demonstrated a lower risk of epilepsy than those who did not. CONCLUSION Among the major types of simple CHD, PFO was associated with a significantly higher risk of epilepsy, while the risk was reduced in those who underwent PFO closure procedures.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Brain‐Machine InterfaceChengduChina
- Sichuan Provincial Engineering Research Center of NeuromodulationChengduChina
| | - Zuyao Yang
- JC School of Public Health and Primary CareThe Chinese University of Hong KongHong KongChina
| | - Shuming Ji
- Department of Clinical Research Management, West China HospitalSichuan UniversityChengduChina
| | - Tingting Song
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Hua Li
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Yusha Tang
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Yucheng Chen
- Department of Cardiology, West China HospitalSichuan UniversityChengduChina
| | - Yajiao Li
- Department of Cardiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Zhang L, Zhang N, Su M, Wang L, Liu S, Fu Q, Su Q. Concentration of IL-1β, IL-7, IL-12, IL-17, CX3CL1, ITAC and relation with the seizure severity and sudden unexpected death in epilepsy patient. Seizure 2024; 121:70-77. [PMID: 39096615 DOI: 10.1016/j.seizure.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
OBJECTIVE Inflammation plays an important role in epilepsy. There is evidence for the relationship between proinflammatory cytokines and epilepsy. We aimed to detect the serum levels of multiple cytokines in epilepsy patients, looking for biological indicators, and providing a theoretical basis for the clinical diagnosis, treatment, and prognosis of epilepsy. MATERIALS AND METHODS In this study, 30 patients with drug-resistant epilepsy (DRE), 30 patients with well-controlled epilepsy (WCE), and 29 healthy controls (HC) were enrolled. Multi-proinflammatory cytokines were measured by LUMINX multi-factor detection. RESULTS The levels of IL-1β, IL-7, IL-12, and IL-17 were significantly elevated, and the levels of CX3CL1 and ITAC were significantly decreased in epilepsy patients compared with healthy controls. Furthermore, the level of IL-17 was significantly higher in the DRE group compared to WCE. We also found the ratio of IL-7/CX3CL discriminates accurately between patients and controls, with a ROC Area Under the Curve (AUC) of 0.963 (P<0.001). The levels of IL-1β, IL-7, IL-12, and IL-17 in the DRE group were positively correlated with the National Hospital Seizure Severity Scale (NHS3) scores (IL-1β, P = 0.029; IL-12, P = 0.039; IL-17, P = 0.004). IL-17 was positively correlated with seizure frequency (P = 0.050), while ITAC was negatively correlated with seizure frequency (P = 0.012) and Sudden Unexpected Death in Epilepsy-3 (SUDEP-3) scores (P = 0.023). CONCLUSIONS IL-1β, IL-12, and IL-17 may be used to predict seizure severity and the IL-7/CX3CL1 ratio may be a candidate biomarker for predicting epileptic seizures. While CX3CL1 and ITAC play anti-epileptic effects, ITAC may be used to assess the risk of SUDEP.
Collapse
Affiliation(s)
- Li Zhang
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning Province, PR China; Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, PR China
| | - Ning Zhang
- Department of Anesthesia, Linyi People's Hospital, Linyi, Shandong Province, PR China
| | - Mingzhao Su
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, PR China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, PR China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, PR China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China
| | - Lifen Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, PR China
| | - Shu Liu
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, PR China
| | - Qingxi Fu
- Department of Epilepsy and Sleep, Linyi People's Hospital, Linyi, Shandong Province, PR China.
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, PR China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, PR China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, PR China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Ji S, Dong B, Tang Y, Li H, Lai W, Li Y, Chen Y, Peng A, Chen L. Therapeutic value of patent foramen ovale closure for drug-resistant epilepsy: A case series report. Epilepsia Open 2024; 9:1357-1371. [PMID: 38742825 PMCID: PMC11296092 DOI: 10.1002/epi4.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE Closure surgery of patent foramen ovale (PFO) has been found to effectively control cryptogenic stroke and migraine, but it is uncertain whether PFO closure could also alleviate epileptic seizures. This study aims to observe the therapeutic effect of PFO closure on epileptic seizures. METHODS Since July 11th, 2017, in the neurology department of West China Hospital, Sichuan University, Chengdu, we have been regularly monitoring patients with epilepsy who have undergone PFO closure. The patient's clinical information, such as frequency, duration, and severity of seizures, before and after surgery was recorded in detail as well as postoperative safety events. RESULTS Of the 31 epilepsy patients who confirmed PFO observed (27 cases were drug-resistant epilepsy, 87.10%), average age of surgery was 23.74 years, and 12 cases were female (38.71%). After one-year follow-up, 26 patients (83.87%) achieved remission of seizure frequency, and 22 of whom (70.97%) experienced a remission of more than 50%. Additionally, compared to before surgery, 22 cases (70.97%) reported a decrease in the average seizure duration, and 20 cases (64.52%) reported a reduction in seizure severity. In the seizure indicators of frequency, average duration and severity, significant differences were identified between preoperative and postoperative comparisons with all test p values were <0.05. Furthermore, no serious safety events were reported except for one patient who briefly reported chest pain, and all patients expressed effective PFO closure. SIGNIFICANCE The PFO closure has been shown for the first time to result in a significant reduction in the frequency, duration, and severity of seizures. Patients with drug-resistant epilepsy and PFO with a large shunt are ideal candidates for undergoing PFO closure. PLAIN LANGUAGE SUMMARY Since PFO closure was found to have a good therapeutic effect on cryptogenic stroke and migraine, it has become a credible complementary therapy for the treatment of neurological diseases, and drug-resistant epilepsy with PFO is expected to become the next target disease that PFO closure could significantly improve.
Collapse
Affiliation(s)
- Shuming Ji
- Department of Clinical Research ManagementWest China Hospital of Sichuan UniversityChengduChina
| | - Bosi Dong
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| | - Yusha Tang
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| | - Hua Li
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| | - Wanlin Lai
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| | - Yajiao Li
- Department of CardiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Yucheng Chen
- Department of CardiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Anjiao Peng
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| | - Lei Chen
- Department of Neurology, West China Hospital, Joint Research Institution of Altitude HealthSichuan UniversityChengduChina
| |
Collapse
|
6
|
Chen Z, Sun H, Zhang W, Hou S, Yang X, Lin J, Ma X, Meng H. Exploring correlations between immune cell phenotypes and the risk of epilepsy: A bidirectional Mendelian randomization study. Epilepsy Behav 2024; 157:109896. [PMID: 38905914 DOI: 10.1016/j.yebeh.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Neuroinflammation plays an important pathophysiological role in epilepsy; however, the precise connection between immune cells and epilepsy remains unclear. This study used Mendelian randomization (MR) to analyze the causal relationship between 731 immune cell traits and epilepsy. METHODS Based on data from a genome-wide association study (GWAS), a bidirectional two-sample MR analysis was conducted to investigate the potential influence of immune cell phenotypes on epilepsy. Five MR methods were used to analyze the results, with the inverse variance weighted (IVW) method as the primary method, and the results were corrected using the false discovery rate (FDR) method. Sensitivity analyses were performed to test for heterogeneity and horizontal pleiotropy. RESULTS After correction for FDR, four immune traits remained significantly associated with epilepsy risk: CD25 expression on memory (OR = 1.04, 95 % CI = 1.02 ∼ 1.06,P = 2.55 × 10-4), IgD+CD38dim (OR = 1.05, 95 % CI = 1.02 ∼ 1.08, P = 4.73 × 10-4), CD24+CD27+ (OR = 1.04, 95 % CI = 1.02 ∼ 1.06, P = 4.82 × 10-4), and IgD-CD38dim (OR = 1.04, 95 % CI = 1.02 ∼ 1.06, P = 1.04 × 10-3) B cells. The risk of generalized epilepsy was significantly associated with two immune cell traits, whereas that of focal epilepsy was significantly associated with seven immune cell traits. Furthermore, immune cell phenotypes are not affected by genetically predicted epilepsy. CONCLUSION This MR study affirms the causal connection between circulating immune cells and epilepsy, offering guidance for further understanding of the immune mechanisms that underlie epilepsy and the discovery of novel targets for therapy.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xi Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingqi Lin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Spagnoli G, Parrella E, Ghazanfar Tehrani S, Mengoni F, Salari V, Nistreanu C, Scambi I, Sbarbati A, Bertini G, Fabene PF. Glial Response and Neuronal Modulation Induced by Epidural Electrode Implant in the Pilocarpine Mouse Model of Epilepsy. Biomolecules 2024; 14:834. [PMID: 39062548 PMCID: PMC11274793 DOI: 10.3390/biom14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
Collapse
Affiliation(s)
- Giulia Spagnoli
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Edoardo Parrella
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Sara Ghazanfar Tehrani
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Valentina Salari
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Cristina Nistreanu
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
8
|
Yu Y, Sun FJ. Research progress on the role of inflammatory mediators in the pathogenesis of epilepsy. IBRAIN 2024; 11:44-58. [PMID: 40103702 PMCID: PMC11911113 DOI: 10.1002/ibra.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 03/20/2025]
Abstract
Epilepsy is an abnormal neurologic disorder distinguished by the recurrent manifestation of seizures, and the precise underlying mechanisms for its development and progression remain uncertain. In recent years, the hypothesis that inflammatory mediators and corresponding pathways contribute to seizures has been supported by experimental results. The potential involvement of neuroinflammation in the development of epilepsy has garnered growing interest. This review centers attention on the involvement of inflammatory mediators in the emergence and progression of epilepsy within recent years, focusing on both clinical research and animal models, to enhance comprehension of the intricate interplay between brain inflammation and epileptogenesis.
Collapse
Affiliation(s)
- Yue Yu
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Fei-Ji Sun
- Department of Neurosurgery Affiliated Hospital of Zunyi Medical University Zunyi China
- Department of Neurosurgery The First Affiliated Hospital of Chongqing Medical and pharmaceutical college Chongqing China
| |
Collapse
|
9
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
熊 一, 梁 小, 梁 晓, 李 伟, 钱 益, 谢 炜. [Saikosaponin a alleviates pentylenetetrazol-induced acute epileptic seizures in mouse models of depression by suppressing microglia activation-mediated inflammation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:515-522. [PMID: 38597443 PMCID: PMC11006703 DOI: 10.12122/j.issn.1673-4254.2024.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1β, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1β, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.
Collapse
Affiliation(s)
- 一凡 熊
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 小珊 梁
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学南方医院中医科,广东 广州 510515Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - 晓涛 梁
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 伟鹏 李
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 益啸 钱
- 广州市荔湾固生堂中医门诊部,广东 广州 510250Guangzhou Liwan Gushengtang Traditional Chinese Medicine Clinic, Guangzhou 510250, China
| | - 炜 谢
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学南方医院中医科,广东 广州 510515Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Li Q, Qu Z, Jia L, Wang W. Expression and correlation of the NOD-like receptor family, pyrin domain-containing 3 inflammasome and the silent information regulator 1 in patients with drug-resistant epilepsy. Epilepsy Res 2024; 201:107338. [PMID: 38447234 DOI: 10.1016/j.eplepsyres.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1β (IL-1β), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1β and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS The expression of NLRP3, caspase-1 and IL-1β in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1β in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1β in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS The current results indicate that the expression of the NLRP3/caspase-1/IL-1β pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.
Collapse
Affiliation(s)
- Qing Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Lijing Jia
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
12
|
Liang XS, Qian TL, Xiong YF, Liang XT, Ding YW, Zhu XY, Li YL, Zhou JL, Tan LY, Li WP, Xie W. IRAK-M Ablation Promotes Status Epilepticus-Induced Neuroinflammation via Activating M1 Microglia and Impairing Excitatory Synaptic Function. Mol Neurobiol 2023; 60:5199-5213. [PMID: 37277682 DOI: 10.1007/s12035-023-03407-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Epilepsy is one of the most common neurological disorders. The pro-epileptic and antiepileptic roles of microglia have recently garnered significant attention. Interleukin-1 receptor-associated kinase (IRAK)-M, an important kinase in the innate immune response, is mainly expressed in microglia and acts as a negative regulator of the TLR4 signaling pathway that mediates the anti-inflammatory effect. However, whether IRAK-M exerts a protective role in epileptogenesis as well as the molecular and cellular mechanisms underlying these processes are yet to be elucidated. An epilepsy mouse model induced by pilocarpine was used in this study. Real-time quantitative polymerase chain reaction and western blot analysis were used to analyze mRNA and protein expression levels, respectively. Whole-cell voltage-clamp recordings were employed to evaluate the glutamatergic synaptic transmission in hippocampal neurons. Immunofluorescence was utilized to show the glial cell activation and neuronal loss. Furthermore, the proportion of microglia was analyzed using flow cytometry. Seizure dynamics influenced the expression of IRAK-M. Its knockout dramatically exacerbated the seizures and the pathology in epilepsy and increased the N-methyl-d-aspartate receptor (NMDAR) expression, thereby enhancing glutamatergic synaptic transmission in hippocampal CA1 pyramidal neurons in mice. Furthermore, IRAK-M deficiency augmented hippocampal neuronal loss via a possible mechanism of NMDAR-mediated excitotoxicity. IRAK-M deletion promotes microglia toward the M1 phenotype, which resulted in high levels of proinflammatory cytokines and was accompanied by a visible increase in the expressions of key microglial polarization-related proteins, including p-STAT1, TRAF6, and SOCS1. The findings demonstrate that IRAK-M dysfunction contributes to the progression of epilepsy by increasing M1 microglial polarization and glutamatergic synaptic transmission. This is possibly related to NMDARs, particularly Grin2A and Grin2B, which suggests that IRAK-M could serve as a novel therapeutic target for the direct alleviation of epilepsy.
Collapse
Affiliation(s)
- Xiao-Shan Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ting-Lin Qian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue-Wen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yu Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Lv Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jie-Li Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Le-Yi Tan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
14
|
Vezzani A, Di Sapia R, Kebede V, Balosso S, Ravizza T. Neuroimmunology of status epilepticus. Epilepsy Behav 2023; 140:109095. [PMID: 36753859 DOI: 10.1016/j.yebeh.2023.109095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Status epilepticus (SE) is a very heterogeneous clinical condition often refractory to available treatment options. Evidence in animal models shows that neuroinflammation arises in the brain during SE due to the activation of innate immune mechanisms in brain parenchyma cells. Intervention studies in animal models support the involvement of neuroinflammation in SE onset, duration, and severity, refractoriness to treatments, and long-term neurological consequences. Clinical evidence shows that neuroinflammation occurs in patients with SE of diverse etiologies likely representing a common phenomenon, thus broadening the involvement of the immune system beyond the infective and autoimmune etiologies. There is urgent need for novel therapies for refractory SE that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Preclinical and clinical evidence encourage consideration of specific anti-inflammatory treatments for controlling SE and its consequences in patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Rossella Di Sapia
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Valentina Kebede
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
15
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells 2023; 12:cells12030368. [PMID: 36766708 PMCID: PMC9913812 DOI: 10.3390/cells12030368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction emerges as one of the mechanisms underlying the induction of seizures and epileptogenesis. There is growing evidence that seizures also affect BBB, yet only scarce data is available regarding serum levels of BBB-associated proteins in chronic epilepsy. In this study, we aimed to assess serum levels of molecules associated with BBB in patients with epilepsy in the interictal period. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 100 patients who were seizure-free for a minimum of seven days and analyzed by ELISA. The results were compared with an age- and sex-matched control group. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B were higher in patients with epilepsy in comparison to control group (p < 0.0001; <0.0001; 0.001; <0.0001; <0.0001, respectively). Levels of CCL-2, ICAM-1, P-selectin and TSP-2 did not differ between the two groups. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B are elevated in patients with epilepsy in the interictal period, which suggests chronic processes of BBB disruption and restoration. The pathological process initiating epilepsy, in addition to seizures, is probably the factor contributing to the elevation of serum levels of the examined molecules.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
16
|
Feyissa AM, Rosenfeld SS, Quiñones-Hinojosa A. Altered glutamatergic and inflammatory pathways promote glioblastoma growth, invasion, and seizures: An overview. J Neurol Sci 2022; 443:120488. [PMID: 36368135 DOI: 10.1016/j.jns.2022.120488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain cancer. Drug-resistant seizures and cognitive impairments often accompany the invasion of the neocortex by the GBM cells. Recent studies suggest that seizures and glioma share common pathogenic mechanisms and may influence each other. One explanation for the close link between the two conditions is elevated glutamate in the tumor microenvironment (TME) due to an increased expression of the cystine-glutamate transporter with ensuing overactivity of glutamatergic signaling. Excess glutamate in the TME also encourages the polarization of pro-inflammatory tumor-associated macrophages to an anti-inflammatory state causing TME immunosuppression and facilitating tumor invasion. Besides, the recently discovered glutamatergic neurogliomal synapses, partially via their influence on calcium communication in microtube-connected tumor cell networks, drive the progression of GBM by stimulating glioma invasion and growth. Moreover, neuroinflammatory pathways have been shown to have several points of intersection with glutamatergic signaling in the TME, further promoting both epileptogenesis and oncogenesis. Future studies identifying pharmacotherapeutics targeting these elements is an extremely attractive therapeutic strategy for GBM, for which very little therapeutic progress has been made in the past two decades.
Collapse
Affiliation(s)
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
17
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
18
|
Zhang Y, Wang Z, Wang R, Xia L, Cai Y, Tong F, Gao Y, Ding J, Wang X. Conditional knockout of ASK1 in microglia/macrophages attenuates epileptic seizures and long-term neurobehavioural comorbidities by modulating the inflammatory responses of microglia/macrophages. J Neuroinflammation 2022; 19:202. [PMID: 35941644 PMCID: PMC9361603 DOI: 10.1186/s12974-022-02560-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/Mϕ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. Methods Mi/Mϕ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/Mϕ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/Mϕ in contact with apoptotic neurons, as well as neuronal damage. Results ASK1 was highly expressed in Mi/Mϕ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/Mϕ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/Mϕ. Conditional knockout of ASK1 increased Mi/Mϕ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. Conclusion Conditional knockout of ASK1 in Mi/Mϕ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02560-5.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhangyang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongrong Wang
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wickström R, Ygberg S, Lindefeldt M, Dahlin M. Altered cytokine levels in cerebrospinal fluid following ketogenic diet of children with refractory epilepsy. Epilepsy Res 2021; 177:106775. [PMID: 34597959 DOI: 10.1016/j.eplepsyres.2021.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Ketogenic diet is an effective treatment which has the potential to achieve a significant seizure reduction in drug-resistant epilepsy. The mechanism behind this effect is unclear, but one hypothesis is that the mechanism is anti-inflammatory. In this prospective study on pediatric patients we compared levels of cytokines and chemokines in the cerebrospinal fluid before and after three months on treatment to evaluate a possible anti-inflammatory effect. We analyzed 34 cytokines and chemokines in the cerebrospinal fluid of pediatric patients (n = 21) with refractory epilepsy by a multiplex assay. Beta-hydroxybutyric acid was measured in blood and cerebrospinal fluid. Seizure frequency in relation to diet treatment was assessed. For 9 different cytokines (CCL 7, CCL 21, CCL 22, CCL 25, CCL 27, IL-2, IL-10, CX3CL1 and MIF), a significant decrease ranging from 7 to 27% was seen after three months as compared to levels before the diet. In contrast, no cytokine displayed a significant increase during diet. A seizure reduction ≥ 50 % was seen in 15/21 patients (71 %) but no significant differences in cytokine decreases were found between responders and non-responders during treatment. A non-significant trend towards higher initial pre-treatment levels of cytokines was seen in responders, which were reduced following treatment. The levels of betahydroxybutyric acid were not related to seizure response. We conclude that while it is not possible to state a primary anti-inflammatory effect by dietary treatment from these data, an unequivocal immunological effect is seen and may be a part of the mechanism of ketogenic dietary treatment.
Collapse
Affiliation(s)
- Ronny Wickström
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Ygberg
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropaediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Fu M, Zhu Y, Zhang J, Wu W, Sun Y, Zhang X, Tao J, Li Z. MicroRNA-221-3p Suppresses the Microglia Activation and Seizures by Inhibiting of HIF-1α in Valproic Acid-Resistant Epilepsy. Front Pharmacol 2021; 12:714556. [PMID: 34497517 PMCID: PMC8419275 DOI: 10.3389/fphar.2021.714556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
One-third of patients with epilepsy suffer from drug-resistant epilepsy (DRE). Valproic acid (VPA) is a classic anticonvulsant drug, and its resistance is a crucial predictor of DRE, but the pathogenesis remain unknown. Most patients with VPA-resistant epilepsy appear distinct inflammatory response and local hypoxia. Hypoxia-inducible factor (HIF)-1α is an essential effector molecule of hypoxia and inflammation, and may exert therefore a significant effect on the development of VPA-resistant epilepsy. We systematically assess the significance of HIF-1α on children and mice with VPA-resistant epilepsy, and investigated the micro (mi) RNAs that regulate HIF-1α expression. We established models of VPA-sensitive epilepsy and VPA-resistant epilepsy in mice, and confirmed that they had significant differences in epileptic behavior and electroencephalography data. Through proteomics analysis, we identified that HIF-1α was overexpressed in mice with VPA-resistant epilepsy, and regulated the expression of interleukin-1β and tumor necrosis factor-α. Increased expression of HIF-1α led to the increase of microglia and induced their polarization from the M2 phenotype to M1 phenotype, which triggered the release of proinflammatory mediators. Bioinformatics analysis of public databases demonstrated that miR-221-3p was reduced in VPA-resistant epilepsy, and negatively regulated HIF-1α expression. Intervention using miR-221-3p mimics reduced HIF-1α expression markedly and suppressed the activation of microglia and the release of inflammatory mediators, which relieved epileptic seizures of VPA-resistant epilepsy. These observations reveal miR-221-3p/HIF-1α as essential component in pathogenesis of VPA-resistant epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Meng Fu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yiqing Zhu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Junqi Zhang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wei Wu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yunxia Sun
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jie Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
22
|
Castañeda-Cabral JL, Ureña-Guerrero ME, Beas-Zárate C, Colunga-Durán A, Nuñez-Lumbreras MDLA, Orozco-Suárez S, Alonso-Vanegas M, Guevara-Guzmán R, Deli MA, Rocha L. Increased expression of proinflammatory cytokines and iNOS in the neocortical microvasculature of patients with temporal lobe epilepsy. Immunol Res 2021; 68:169-176. [PMID: 32542572 DOI: 10.1007/s12026-020-09139-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Calz. de los Tenorios 235, Granjas Coapa, 14330, Ciudad de México, Mexico.
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Adacrid Colunga-Durán
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Calz. de los Tenorios 235, Granjas Coapa, 14330, Ciudad de México, Mexico
| | - Maria de Los Angeles Nuñez-Lumbreras
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Calz. de los Tenorios 235, Granjas Coapa, 14330, Ciudad de México, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Mario Alonso-Vanegas
- Servicio de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez" (INNNMVS), Ciudad de México, Mexico
- Centro Internacional de Cirugía de Epilepsia, Hospital HMG-Coyoacán, Ciudad de Mexico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Calz. de los Tenorios 235, Granjas Coapa, 14330, Ciudad de México, Mexico
| |
Collapse
|
23
|
Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, Castillo MAM, Porcu L, Cattani F, Ruocco A, Aronica E, Allegretti M, Brandolini L, Vezzani A. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021; 158:105468. [PMID: 34358616 DOI: 10.1016/j.nbd.2021.105468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
CXCL1, a functional murine orthologue of the human chemokine CXCL8 (IL-8), and its CXCR1 and CXCR2 receptors were investigated in a murine model of acquired epilepsy developing following status epilepticus (SE) induced by intra-amygdala kainate. CXCL8 and its receptors were also studied in human temporal lobe epilepsy (TLE). The functional involvement of the chemokine in seizure generation and neuronal cell loss was assessed in mice using reparixin (formerly referred to as repertaxin), a non-competitive allosteric inhibitor of CXCR1/2 receptors. We found a significant increase in hippocampal CXCL1 level within 24 h of SE onset that lasted for at least 1 week. No changes were measured in blood. In analogy with human TLE, immunohistochemistry in epileptic mice showed that CXCL1 and its two receptors were increased in hippocampal neuronal cells. Additional expression of these molecules was found in glia in human TLE. Mice were treated with reparixin or vehicle during SE and for additional 6 days thereafter, using subcutaneous osmotic minipumps. Drug-treated mice showed a faster SE decay, a reduced incidence of acute symptomatic seizures during 48 h post-SE, and a delayed time to spontaneous seizures onset compared to vehicle controls. Upon reparixin discontinuation, mice developed spontaneous seizures similar to vehicle mice, as shown by EEG monitoring at 14 days and 2.5 months post-SE. In the same epileptic mice, reparixin reduced neuronal cell loss in the hippocampus vs vehicle-injected mice, as assessed by Nissl staining at completion of EEG monitoring. Reparixin administration for 2 weeks in mice with established chronic seizures, reduced by 2-fold on average seizure number vs pre-treatment baseline, and this effect was reversible upon drug discontinuation. No significant changes in seizure number were measured in vehicle-injected epileptic mice that were EEG monitored in parallel. Data show that CXCL1-IL-8 signaling is activated in experimental and human epilepsy and contributes to acute and chronic seizures in mice, therefore representing a potential new target to attain anti-ictogenic effects.
Collapse
Affiliation(s)
- Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Valentina Kebede
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Diletta Sorrentino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | | | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Franca Cattani
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Anna Ruocco
- R&D Department, Dompé farmaceutici S.p.A., L'Aquila, Italy
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | | | | | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| |
Collapse
|
24
|
Alvim MKM, Morita-Sherman ME, Yasuda CL, Rocha NP, Vieira ÉL, Pimentel-Silva LR, Henrique Nogueira M, Barbosa R, Watanabe N, Coan AC, Lopes-Cendes I, Teixeira AL, Cendes F. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021; 62:2385-2394. [PMID: 34331458 DOI: 10.1111/epi.17023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Inflammation plays an essential role in epilepsy. Studies indicate that cytokines and neurotrophic factors can act in neuroexcitability and epileptogenesis. We aimed to investigate the association between plasma inflammatory and neurotrophic markers, seizure frequency, and chronic epilepsy subtypes. METHODS We studied 446 patients with epilepsy and 166 healthy controls. We classified patients according to etiology and seizure frequency. We measured plasma levels of interleukin-1 (IL-1), IL-2, IL-4, IL-6, IL-10, IL-17, interferon-γ (IFNγ), tumor necrosis factor α (TNFα), soluble TNF receptor 1 (sTNFr1), sTNFr2, brain-derived neurotrophic factor (BDNF), neurotrophic factor 3 (NT3), NT4/5, ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) by enzyme-linked immunosorbent assay or cytometric bead array. RESULTS The plasma levels of BDNF, NT3, NGF, and sTNFr2 were higher, whereas IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, TNFα, CNTF, and sTNFr1 were lower in patients than controls. IL1, GDNF, and NT4/5 were similar between groups. These markers did not correlate with age, sex, and epilepsy duration. The molecule sTNFr2 was the best marker to discriminate patients from controls (area under the curve = .857), also differing between patients with frequent and infrequent seizures. SIGNIFICANCE This large cohort confirmed that patients with epilepsy have abnormal levels of plasma inflammatory and neurotrophic markers independent of the underlying etiology. Plasma level of sTNFr2 was related to seizure frequency and discriminated people with or without epilepsy with good accuracy, making it a potential biomarker for epilepsy and seizure burden.
Collapse
Affiliation(s)
| | | | | | - Natália P Rocha
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Érica L Vieira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | - Antonio L Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
25
|
Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, Xu S, Cui S, Ruan Y, Wang S, Wang Y, Chen Z. Subicular Caspase-1 Contributes to Pharmacoresistance in Temporal Lobe Epilepsy. Ann Neurol 2021; 90:377-390. [PMID: 34288031 DOI: 10.1002/ana.26173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Unidentified mechanisms largely restrict the viability of effective therapies in pharmacoresistant epilepsy. Our previous study revealed that hyperactivity of the subiculum is crucial for the genesis of pharmacoresistance in temporal lobe epilepsy (TLE), but the underlying molecular mechanism is not clear. METHODS Here, we examined the role of subicular caspase-1, a key neural pro-inflammatory enzyme, in pharmacoresistant TLE. RESULTS We found that the expression of activated caspase-1 in the subiculum, but not the CA1, was upregulated in pharmacoresistant amygdaloid-kindled rats. Early overexpression of caspase-1 in the subiculum was sufficient to induce pharmacoresistant TLE in rats, whereas genetic ablation of caspase-1 interfered with the genesis of pharmacoresistant TLE in both kindled rats and kainic acid-treated mice. The pro-pharmacoresistance effect of subicular caspase-1 was mediated by its downstream inflammasome-dependent interleukin-1β. Further electrophysiological results showed that inhibiting caspase-1 decreased the excitability of subicular pyramidal neurons through influencing the excitation/inhibition balance of presynaptic input. Importantly, a small molecular caspase-1 inhibitor CZL80 attenuated seizures in pharmacoresistant TLE models, and decreased the neuronal excitability in the brain slices obtained from patients with pharmacoresistant TLE. INTERPRETATION These results support the subicular caspase-1-interleukin-1β inflammatory pathway as a novel alternative mechanism hypothesis for pharmacoresistant TLE, and present caspase-1 as a potential target. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiazhen Nao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yujia Shen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuheng Xu
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sunliang Cui
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Chung YS, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Hydrogen Peroxide Stress in SH-SY5Y Cells. Life (Basel) 2021; 11:life11060585. [PMID: 34202937 PMCID: PMC8235403 DOI: 10.3390/life11060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture—pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the “signaling of interleukin-4 and interleukin-13” pathway as the predominant mechanism in addition to regulating the “attenuation phase” and “HSP90 chaperone cycle for steroid hormone receptors” pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
27
|
Bartolini L, Moran MP, Norato G, Thomas B, Dick AD, Wells E, Suslovic W, Bumbut A, Chamberlain JM, Theodore WH, Gaillard WD, Jacobson S. Differential activation of neuroinflammatory pathways in children with seizures: A cross-sectional study. Seizure 2021; 91:150-158. [PMID: 34161903 DOI: 10.1016/j.seizure.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Inflammation plays a crucial role in epileptogenesis. We analyzed inflammatory cytokines in plasma and saliva from children with seizures and healthy controls and measured their associations with HHV6 and EBV infection. METHODS We analyzed plasma from 36 children within 24 h of seizures (cases) and 43 healthy controls and saliva from 44 cases and 44 controls with a multiplex immunoassay. Saliva from all controls and 65 cases and blood from 26 controls and 35 cases were also analyzed by PCR for viral DNA. Primary outcome was cytokine levels in cases vs. controls. Secondary outcomes included detection of HHV-6 and EBV viral DNA in cases vs. controls and viral loads in cases vs. controls. Statistical analysis included the Wilcoxon Rank Sum test, Fisher's exact test, ANOVA, and Spearman correlation. RESULTS Compared to controls, patients had higher levels of CCL11 (p = 0.0018), CCL26 (p<0.001), IL10 (p = 0.044), IL6 (p<0.001), IL8 (p = 0.018), and MIP1β (p = 0.0012). CCL11 was higher with 3 or more seizures (p = 0.01), seizures longer than 10 min (p = 0.001), and when EEG showed focal slowing (p = 0.02). In saliva, febrile seizures had higher levels of IL-1β (n = 7, p = 0.04) and new onset seizures had higher IL-6 (n = 15, p = 0.02). Plasma and saliva cytokine levels did not show a correlation. The frequency of HHV-6 and EBV detection was similar across groups and not different than controls. We found no correlation between viral load and cytokine levels. CONCLUSIONS We showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to viral infection.
Collapse
Affiliation(s)
- Luca Bartolini
- The Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, United States.
| | - Michael P Moran
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| | - Gina Norato
- Office of Biostatistics, NINDS, NIH, Bethesda, MD, United States
| | - Bobbe Thomas
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | - Alexander D Dick
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Elizabeth Wells
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - William Suslovic
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Adrian Bumbut
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - James M Chamberlain
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | | | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
28
|
Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 2021; 43:485-492. [PMID: 34036451 DOI: 10.1007/s10072-021-05331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
AIM This study compared dynamic thiol-disulfide homeostasis (an oxidative stress marker), anti-inflammatory interleukin-10 (IL-10) levels, and proinflammatory interferon gamma (IFN-γ) levels in drug-resistant epilepsy patients with those in patients with well-controlled epilepsy and healthy controls. METHOD This prospective cross-sectional study enrolled 89 people: 27 with drug-resistant epilepsy, 30 with well-controlled epilepsy, and 32 healthy controls matched in demographic characteristics. RESULTS The mean serum IL-10 levels were significantly lower and the mean serum IFN-γ levels significantly higher in the drug-resistant epilepsy patients compared to the well-controlled epilepsy and healthy control groups. The mean serum native thiol (SH) and total thiol (TT) levels were significantly lower, and the disulfide (SS) levels were significantly higher in the drug-resistant group than in the other two groups. CONCLUSIONS The significant differences in thiol-disulfide homeostasis and IL-10 and IFN-γ levels in the drug-resistant epilepsy group suggest that these markers indicate a poor prognosis in epilepsy.
Collapse
|
29
|
Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci 2021; 11:brainsci11050663. [PMID: 34069567 PMCID: PMC8161227 DOI: 10.3390/brainsci11050663] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring spontaneous seizures. Drug resistance appears in 30% of patients and it can lead to premature death, brain damage or a reduced quality of life. The purpose of the study was to analyze the drug resistance mechanisms, especially neuroinflammation, in the epileptogenesis. The information bases of biomedical literature Scopus, PubMed, Google Scholar and SciVerse were used. To obtain full-text documents, electronic resources of PubMed Central and Research Gate were used. The article examines the recent research of the mechanisms of drug resistance in epilepsy and discusses the hypotheses of drug resistance development (genetic, epigenetic, target hypothesis, etc.). Drug-resistant epilepsy is associated with neuroinflammatory, autoimmune and neurodegenerative processes. Neuroinflammation causes immune, pathophysiological, biochemical and psychological consequences. Focal or systemic unregulated inflammatory processes lead to the formation of aberrant neural connections and hyperexcitable neural networks. Inflammatory mediators affect the endothelium of cerebral vessels, destroy contacts between endothelial cells and induce abnormal angiogenesis (the formation of “leaky” vessels), thereby affecting the blood–brain barrier permeability. Thus, the analysis of pro-inflammatory and other components of epileptogenesis can contribute to the further development of the therapeutic treatment of drug-resistant epilepsy.
Collapse
|
30
|
Suleymanova EM. Behavioral comorbidities of epilepsy and neuroinflammation: Evidence from experimental and clinical studies. Epilepsy Behav 2021; 117:107869. [PMID: 33684786 DOI: 10.1016/j.yebeh.2021.107869] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Currently, a significant amount of data is accumulated showing that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative diseases, and epilepsy. Various brain insults, such as prolonged seizure activity, trigger the activation of microglia and astrocytes in the brain. These cells, in turn, begin to synthesize pro-inflammatory cytokines. The inflammatory response to the insult causes a cascade of processes leading to a wide range of pathological effects, including changes in neuronal excitability, long-term plastic changes, astrocyte dysfunction, impaired blood-brain barrier (BBB) permeability, and neurodegeneration. These effects may ultimately contribute to the development of chronic spontaneous seizures. On the other hand, neuroinflammation contributes to the pathogenesis of a number of neuropsychiatric disorders. Therefore, neuroinflammation can be a link between epilepsy and its comorbidities, such as mood and anxiety disorders and memory impairment. The mechanisms behind these behavioral and cognitive impairments remain not fully understood. In this paper, clinical evidence of an important role of neuroinflammation in epilepsy and potentially comorbid neurological disorders is reviewed, as well as possible mechanisms of its involvement in the pathogenesis of these conditions obtained from experimental data.
Collapse
Affiliation(s)
- Elena M Suleymanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia.
| |
Collapse
|
31
|
Saengow VE, Chiangjong W, Khongkhatithum C, Changtong C, Chokchaichamnankit D, Weeraphan C, Kaewboonruang P, Thampratankul L, Manuyakorn W, Hongeng S, Srisomsap C, Svasti J, Chutipongtanate S, Visudtibhan A. Proteomic analysis reveals plasma haptoglobin, interferon-γ, and interleukin-1β as potential biomarkers of pediatric refractory epilepsy. Brain Dev 2021; 43:431-439. [PMID: 33267992 DOI: 10.1016/j.braindev.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Children with refractory epilepsy (RE) are associated with increased mortality rate, nonfatal injuries, disability, and diminished quality of life. Biomarkers for the early prediction of RE is still an unmet need. METHODS Eighteen children with RE and six age-matched unrelated controls were included in this study. Plasma samples were prefractionated by the optimized thermal treatment before proteomic analysis using 2DE-LC-MS/MS. Bioinformatic analysis was carried out using STRING protein network. Immunoassay of unprocessed plasma was applied to confirm changes of proteins of interest. P-value < 0.05 was considered statistically significant. RESULTS Proteomic analysis (n = 6 each group) revealed nine differentially expressed proteins, i.e., haptoglobin, S100A9, serpin B1, apolipoprotein A-I, apolipoprotein A-IV, apolipoprotein C-II, alpha-1-acid glycoprotein 1 and 2, and transthyretin. Western immunoblotting confirmed haptoglobin upregulation in the RE group. STRING protein network predicted the inflammatory cytokines, i.e., interferon gamma (IFN-γ), interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), play roles in pathophysiology in RE patients. Cytokine immunoassay (n = 24, 18 RE vs. 6 controls) exhibited plasma IFN-γ was upregulated in RE patients as compared to the healthy individuals (median [IQR]; 2.9 [2.9, 4.9] vs. 1.32 [0.8, 1.5] pg/mL, p = 0.0013), and plasma IL-1β was significantly downregulated in patients (1.0 [0.2, 1.9] vs. 4.5 [1.9, 11.0] pg/mL, p = 0.01). TNF-α had no difference between groups. The results suggest that haptoglobin may be associated with oxidative brain damage, while IFN-γ and IL-1β may be involved with neuroinflammation. CONCLUSIONS Alterations in plasma haptoglobin, IFN-γ, and IL-1β were associated with RE patients. Future studies using a combination of these candidate biomarkers may help predict the intractability of epilepsy in pediatric populations.
Collapse
Affiliation(s)
| | - Wararat Chiangjong
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chaiyos Khongkhatithum
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Channarong Changtong
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Patcharin Kaewboonruang
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lunliya Thampratankul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wiparat Manuyakorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Somchai Chutipongtanate
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Anannit Visudtibhan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
32
|
Shen L, Yang J, Tang Y. Predictive Values of the SeLECT Score and IL-1β for Post-Stroke Epilepsy. Neuropsychiatr Dis Treat 2021; 17:2465-2472. [PMID: 34349512 PMCID: PMC8326770 DOI: 10.2147/ndt.s324271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To establish a new prognostic tool for the prediction of post-stroke epilepsy (PSE) through combining the SeLECT score with IL-1β. PATIENTS AND METHODS This prospective observational study included 915 patients with acute ischemic stroke. The SeLECT score was calculated, and serum IL-1β levels were measured within 24 h of their admission. One unprovoked late seizure following the acute phase of stroke was diagnosed as PSE. All patients were divided into PSE group and non-PSE group according to the occurrence of PSE. Multivariate analysis was performed to determine the independent associations between the SeLECT score, IL-1β and PSE. Receiver operating characteristic (ROC) curve was employed to assess the predictive values of the SeLECT score, IL-1β and their combination for PSE. RESULTS Fifty-three patients occurred PSE within 1 year after stroke onset (5.8%). Multivariate analysis demonstrated that the SeLECT score [odds ratio (OR): 1.416, 95% confidence interval (CI): 1.191-1.863, P=0.013] and IL-1β (OR: 1.457, 95% CI: 1.215-1.894, P<0.001) were independent risk factors for PSE after adjusting for more than one comorbidity, stroke laterality, large-artery atherosclerosis, thrombolysis, age and use of statins. The AUC of the SeLECT score and IL-1β for predicting PSE was 0.756 (SE: 0.033, 95% CI: 0.692-0.819) and 0.811 (SE: 0.032, 95% CI: 0.748-0.875), respectively. The AUC of their combination was 0.933 (SE: 0.027, 95% CI: 0.880-0.985). Z test showed that the AUC of their combination was significantly higher than that of the SeLECT score or IL-1β alone (0.933 vs 0.756, Z=4.151, P<0.01; 0.933 vs 0.811, Z=2.914, P<0.01). Combination prediction of the SeLECT score and IL-1β for PSE had a high predictive value with a sensitivity of 88.06% and specificity of 82.37%. CONCLUSION The combination of the SeLECT score and IL-1β had a potential to act as a new prognostic tool for the prediction of PSE.
Collapse
Affiliation(s)
- Lan Shen
- Department of Neurology, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| | - Jun Yang
- Department of Critical Care Medicine, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| | - Yueling Tang
- Department of Neurology, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| |
Collapse
|
33
|
Fu M, Tao J, Wang D, Zhang Z, Wang X, Ji Y, Li Z. Downregulation of MicroRNA-34c-5p facilitated neuroinflammation in drug-resistant epilepsy. Brain Res 2020; 1749:147130. [DOI: 10.1016/j.brainres.2020.147130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
|
34
|
Wu W, Li Y, Wei Y, Bosco DB, Xie M, Zhao MG, Richardson JR, Wu LJ. Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav Immun 2020; 89:245-255. [PMID: 32621847 PMCID: PMC7572576 DOI: 10.1016/j.bbi.2020.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Microglia are the resident immune cells of the center nervous system and participate in various neurological diseases. Here we determined the function of microglia in epileptogenesis using microglial ablation approaches. Three different microglia-specific genetic tools were used, CX3CR1CreER/+:R26iDTA/+, CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice. We found that microglial depletion led to worse kainic acid (KA)-induced status epilepticus, higher mortality rate, and increased neuronal degeneration in the hippocampus. In KA-induced chronic spontaneous recurrent seizures, microglial depletion increased seizure frequency, interictal spiking, and seizure duration. Therefore, microglial depletion aggravates the severity of KA-induced acute and chronic seizures. Interestingly, microglial repopulation reversed the effects of depletion upon KA-induced status epilepticus. Our results demonstrate a beneficial role of microglia in suppressing both acute and chronic seizures, suggesting that microglia are a potential therapeutic target for the management of epilepsy.
Collapse
Affiliation(s)
- Wenning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Association between IL-1β and recurrence after the first epileptic seizure in ischemic stroke patients. Sci Rep 2020; 10:13505. [PMID: 32782321 PMCID: PMC7419303 DOI: 10.1038/s41598-020-70560-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022] Open
Abstract
To analyze the association of IL-1β with recurrence after the first epileptic seizure in ischemic stroke patients and evaluate its predictive value. 238 patients with the first epileptic seizure after ischemic stroke were included in this study. IL-1β expression levels were detected through quantitative Real-Time PCR. Kaplan–Meier method was used to perform univariate analysis with log-rank test. The variables with P < 0.1 were then included in multivariate analysis. Receiver operating characteristic (ROC) curve was used to evaluate the predictive value. Among all 238 patients, 107 patients (44.96%) had seizure recurrence and 131 patients (55.04%) had no recurrence. Kaplan–Meier analysis showed that high expression of IL-1β, low age (< 65 years), male, cortical involvement, large lesion size, late onset, severe neurological impairment and partial seizure type were associated with seizure recurrence. Multivariate analysis showed that IL-1β expression level (hazard ratio 2.057, 95% confidence interval 1.296–3.318) was independently associated with seizure recurrence. The area under ROC curve (AUC) was 0.803 (SE 0.030, 95% confidence interval 0.744–0.862) when IL-1β expression levels were applied in predicting seizure recurrence. IL-1β might be a useful biomarker for early discovery of recurrence after the first epileptic seizure in ischemic stroke patients.
Collapse
|
36
|
Basnyat P, Pesu M, Söderqvist M, Grönholm A, Liimatainen S, Peltola M, Raitanen J, Peltola J. Chronically reduced IL-10 plasma levels are associated with hippocampal sclerosis in temporal lobe epilepsy patients. BMC Neurol 2020; 20:241. [PMID: 32532251 PMCID: PMC7291453 DOI: 10.1186/s12883-020-01825-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence supports the role of soluble inflammatory mediators in the pathogenesis of refractory temporal lobe epilepsy (TLE). Hippocampal sclerosis (HS) is a well-described pathohistological abnormality in TLE. The association of proinflammatory cytokines with epileptic disease profiles is well established; however, the potential significance of circulating interleukin 10 (IL-10), particularly in TLE-associated HS, is still poorly understood. Therefore, taking into consideration the neuroprotective and anticonvulsive effects of IL-10, we performed this study to examine the role of the plasma levels of IL-10 in patients with TLE with HS (TLE + HS), TLE without HS (TLE-HS) and with other types of epilepsy. Methods This study included 270 patients with refractory epilepsy who were classified into four groups: i) 34 patients with TLE + HS, ii) 105 patients with TLE-HS, iii) 95 patients with extra-TLE (XLE) and iv) 36 patients with idiopathic generalized epilepsy (IGE). The plasma IL-10 levels were quantified using a commercially available enzyme-linked immunosorbent assay (ELISA). Results IL-10 levels were significantly lower in TLE + HS than in TLE-HS (p = 0.013). In a subgroup of TLE-HS patients who had seizures 1 month before sampling, patients with seizures had significantly higher IL-10 levels than patients who were seizure-free (p = 0.039). Among a small group (n = 15) of non-refractory TLE-HS patients, IL-10 levels showed a moderate negative correlation with the duration of epilepsy (r = − 0.585, p = 0.023). Conclusions This study demonstrated that chronically reduced levels of plasma IL-10 were associated with HS in TLE patients, suggesting that there was an inadequate systemic anti-inflammatory immune response. These results could provide new biological insights into the pathophysiology of HS in TLE. We also found that the production of IL-10 could be affected by the seizure frequency and declined concomitantly with increased disease durations. Therefore, the measurement of plasma IL-10 may have diagnostic value as a biomarker for stratifying TLE + HS from other epilepsy types or as a marker of disease progression towards a progressive form of epilepsy.
Collapse
Affiliation(s)
- Pabitra Basnyat
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, D532, 33520, Tampere, Finland. .,Department of Neurology, Tampere University Hospital, Tampere, Finland.
| | - Marko Pesu
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Mikael Söderqvist
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, D532, 33520, Tampere, Finland
| | - Anna Grönholm
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suvi Liimatainen
- Department of Neurology, Tampere University Hospital, Tampere, Finland
| | - Maria Peltola
- Department of Child Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Jani Raitanen
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland.,UKK Institute for Health Promotion Research, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, D532, 33520, Tampere, Finland.,Department of Neurology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
37
|
Tao H, Gong Y, Yu Q, Zhou H, Liu Y. Elevated Serum Matrix Metalloproteinase-9, Interleukin-6, Hypersensitive C-Reactive Protein, and Homocysteine Levels in Patients with Epilepsy. J Interferon Cytokine Res 2020; 40:152-158. [PMID: 31971845 DOI: 10.1089/jir.2019.0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation contributes to the occurrence and development of epilepsy. However, several inflammatory factors that are important for facilitating the diagnosis to reduce or prevent seizures need to be further studied. This study is aimed to explore serum levels of matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), hypersensitive C-reactive protein (hs-CRP), and homocysteine (HCY) in epilepsy patients and the relationship of them with epilepsy. Epilepsy patients (n = 101) in the Second Xiangya Hospital from January 2017 to August 2018 were allocated to the epilepsy groups, which were divided into idiopathic epilepsy group (n = 43) and symptomatic epilepsy group (n = 58) according to the pathogeny. Healthy individuals (n = 50) were allocated to the control group. The concentrations of serum MMP-9, IL-6, hs-CRP, and HCY in all samples were detected by enzyme-linked immunosorbent assay, chemiluminescence method, latex-enhanced immunoturbidimetry, and enzyme circulation method. The levels of serum MMP-9, IL-6, hs-CRP, and HCY in epilepsy patients were higher than those in the control group (P < 0.05, P < 0.01, P < 0.01, and P < 0.01, respectively). The levels of serum MMP-9, IL-6, hs-CRP, and HCY in the symptomatic epilepsy group were higher than those in the control group (P < 0.01 or P < 0.05, respectively). The levels of serum MMP-9, IL-6, and hs-CRP in idiopathic epilepsy patients were higher than those in the control group (P < 0.01 or P < 0.05, respectively). The serum HCY level in the idiopathic epilepsy group was lower than that in the symptomatic epilepsy group (P < 0.01). MMP-9, IL-6, hs-CRP, and HCY may be recommended as the state biomarker to distinguish etiology of epilepsy. We hope our study could provide help in some ways for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huai Tao
- School of Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yuji Gong
- Department of Laboratory Medicine, Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qi Yu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Hongfei Zhou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
- China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, Changsha, P.R. China
- Mental Health Institute of Central South University and Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, P.R. China
| |
Collapse
|
38
|
Zhong R, Chen Q, Li M, Zhang X, Lin W. Elevated Blood C-Reactive Protein Levels in Patients With Epilepsy: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:974. [PMID: 31620066 PMCID: PMC6759543 DOI: 10.3389/fneur.2019.00974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023] Open
Abstract
Background: In recent years, increasing attention has been paid to the association between C-reactive protein (CRP) levels and epilepsy. However, studies concerning CRP levels in epilepsy have also yielded conflicting results. Thus, the objective of the present study is to systematically review the evidence and conduct a meta-analysis to investigate CRP levels in epileptic patients compared with healthy controls. Methods: A systematic search of PubMed, EMBASE, and the Cochrane Library was performed for eligible studies. Standardized mean differences (SMDs) with 95% confidence intervals (95% CIs) were used as a measure to assess the association between CRP and epilepsy. Results: In total, 16 case–control studies were included in the present meta-analysis, which comprised 1918 individuals. Combined results indicated that epileptic patients had significantly increased CRP levels in peripheral blood compared with healthy controls (SMD = 0.43; 95% CI: 0.19–0.67). In addition, subgroup analyses by age demonstrated that significant differences in blood CRP levels between epileptic patients and healthy controls could be found in adults (SMD = 0.47; 95% CI: 0.21–0.73) but not children (SMD = 0.26; 95% CI: −0.48–0.99). Conclusion: The present meta-analysis shows that the CRP levels in peripheral blood were significantly increased in epileptic patients compared to healthy controls, indicating a significant association between inflammation and epilepsy. Epileptic seizures may be associated with the inflammatory response.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Qingling Chen
- Department of Hepatology, The First Hospital of Jilin University, Chang Chun, China
| | - Mengmeng Li
- Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Xinyue Zhang
- Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
39
|
Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, He Z, Qin L, Liang L, Luo X. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019; 16:66. [PMID: 30922332 PMCID: PMC6437919 DOI: 10.1186/s12974-019-1452-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Microglia are important for secreting chemical mediators of inflammatory responses in the central nervous system. Interleukin (IL)-10 and IL-1β secreted by glial cells support neuronal functions, but the related mechanisms remain vague. Our goal was to demonstrate the efficacy of IL-10 in suppressing IL-1β and in inflammasome activation in mice with epileptic seizure based on an epileptic-seizure mouse model. METHODS In this study, mice in which epileptic seizures were induced by administering picrotoxin (PTX) were used as a case group, and mice injected with saline were employed as the control group. The expression of nucleic acids, cytokines, or signaling pathways was detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blotting. RESULTS Our results demonstrated that IL-10 inhibits IL-1β production through two distinct mechanisms: (1) Treatment with lipopolysaccharides (LPS) results in IL-10 overexpression in microglia and reduced NLRP3 inflammasome activity, thus inhibiting caspase-1-related IL-1β maturation; (2) next, autocrine IL-10 was found to subsequently promote signal transducer and activator of transcription-3 (STAT-3), reducing amounts of pro-IL-1β. CONCLUSIONS Our results indicate that IL-10 is potentially effective in the treatment of inflammation encephalopathy, and suggest the potential usefulness of IL-10 for treating autoimmune or inflammatory ailments.
Collapse
Affiliation(s)
- Yi Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongfang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Pinggan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaolin Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanwen He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lijun Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liyang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiangyang Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
40
|
Zhu X, Li X, Zhu M, Xu K, Yang L, Han B, Huang R, Zhang A, Yao H. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. J Neuroinflammation 2018; 15:221. [PMID: 30075790 PMCID: PMC6091106 DOI: 10.1186/s12974-018-1260-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Mice with pilocarpine-induced temporal lobe epilepsy (TLE) are characterized by intense hippocampal neuroinflammation, a prominent pathological hallmark of TLE that is known to contribute to neuronal hyperexcitability. Recent studies indicate that Adam10, a member of a disintegrin and metalloproteinase domain-containing protein (Adam) family, has been involved in the neuroinflammation response. However, it remains unclear whether and how Adam10 modulates neuroinflammation responses in the context of an epileptic brain or whether Adam10 affects epileptogenesis via the neuroinflammation pathway. Methods Adult male C57BL/6J mice were subjected to intraperitoneal injection of pilocarpine to induce TLE. Adeno-associated viral (AAV) vectors carrying Adam10 (AAV-Adam10) or lentiviral vectors carrying short hairpin RNA, which is specific to the mouse Adam10 mRNA (shRNA-Adam10), were bilaterally injected into the hippocampus to induce overexpression or knockdown of Adam10, respectively. The specific anti-inflammatory agent minocycline was administered following status epilepticus (SE) to block hippocampal neuroinflammation. Continuous video EEG recording was performed to analyze epileptic behavior. Western blot, immunofluorescence staining, and ELISA were performed to determine Adam10 expression as well as hippocampal neuroinflammation. Results In this study, we demonstrate that overexpression of Adam10 in the hippocampus suppresses neuroinflammation and reduces seizure activity in TLE mice, whereas knockdown of Adam10 exacerbates hippocampal neuroinflammation and increases seizure activity. Furthermore, increased seizure activity in Adam10 knockdown TLE mice is dependent on hippocampal neuroinflammation. Conclusion These results suggest that Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. Our findings provide new insights into the Adam10 regulation of development of epilepsy via the neuroinflammation pathway and identify a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China.
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyi Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Kangni Xu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Li Yang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| |
Collapse
|
41
|
Nieoczym D, Socała K, Wlaź P. Evaluation of the Anticonvulsant Effect of Brilliant Blue G, a Selective P2X7 Receptor Antagonist, in the iv PTZ-, Maximal Electroshock-, and 6 Hz-Induced Seizure Tests in Mice. Neurochem Res 2017; 42:3114-3124. [PMID: 28702712 PMCID: PMC5649599 DOI: 10.1007/s11064-017-2348-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
Abstract
Epilepsy is one of the most common neurological disorders which is diagnosed in around 65 million people worldwide. Clinically available antiepileptic drugs fail to control epileptic activity in about 30% of patients and they are merely symptomatic treatments and cannot cure or prevent epilepsy. There remains a need for searching new therapeutic strategies for epileptic disorders. The P2X7 receptor has been recently investigated as a new target in epilepsy treatment. Preclinical studies revealed that P2X7 receptor antagonists have anticonvulsant properties in some models of epilepsy. We aimed to investigate whether P2X7 receptor antagonist-brilliant blue G (BBG)-is able to change seizure threshold in three acute seizure models in mice, i.e., in the intravenous pentylenetetrazole seizure threshold, maximal electroshock seizure threshold and 6 Hz psychomotor seizure threshold tests. BBG was administered acutely (50-200 mg/kg, 30 min before the tests) and sub-chronically (25-100 mg/kg, once daily for seven consecutive days). Moreover, the chimney and grip strength tests were used to estimate the influence of BBG on the motor coordination and muscular strength in mice, respectively. Our results revealed only a week anticonvulsant potential of the studied P2X7 receptor antagonist because it showed anticonvulsant action only in the 6 Hz seizure test, both after acute and sub-chronic administration. BBG did not significantly influence seizure thresholds in the remaining tests. Motor coordination and muscular strength were not affected by the studied P2X7 receptor antagonist. In summary, BBG does not possess any remarkable anticonvulsant potential in acute seizure models in mice.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Faculty of Biology and Biotechnology, Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
42
|
Gales JM, Prayson RA. Chronic inflammation in refractory hippocampal sclerosis-related temporal lobe epilepsy. Ann Diagn Pathol 2017; 30:12-16. [DOI: 10.1016/j.anndiagpath.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
43
|
Sedaghat R, Taab Y, Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms. Biomed Pharmacother 2017; 87:200-208. [DOI: 10.1016/j.biopha.2016.12.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
|