1
|
Koehn LM, Nguyen KV, Tucker R, Lim YP, Chen X, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Microvascular Endothelial Components and Cytokines After Exposure to Hypoxia-Ischemia in Neonatal Rats. Mol Neurobiol 2025; 62:5057-5072. [PMID: 39505805 DOI: 10.1007/s12035-024-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are neuroprotective and attenuate lipopolysaccharide (LPS)-mediated blood-brain barrier (BBB) disruption in neonatal rodents. We investigated some mechanism(s) fundamental to neuroprotection by IAIPs including changes in cerebral endothelial components and inflammation. Postnatal day-7 rats exposed to sham surgery and placebo or carotid ligation plus 8% FiO2 (90 min) were given IAIPs (30 or 60 mg/kg) or placebo and were killed 6, 12, 24, or 36 h after hypoxia-ischemia (HI). Proteins regulating BBB permeability to leukocytes (vascular cell adhesion molecule 1, VCAM-1), lipid-soluble (P-glycoprotein, PGP), and lipid-insoluble molecules (zonula occludens-1, ZO-1) were measured by immunoblot, and cytokines were measured in serum and cortex. HI resulted in reductions in ZO-1 and increases in VCAM-1, PGP, interferon-γ (IFN-γ), interleukin-12 (IL-12), vascular endothelial growth factor (VEGF), IL-α, and macrophage colony-stimulating factor (M-CSF) in cortex and increases in IL-4, IL-5, IL-10, and granulocyte colony-stimulating factor (G-CSF) in serum. IAIPs attenuated the reductions in ZO-1 and delayed increases in VCAM-1 and PGP in cortex and attenuated increases in cytokines in serum (IL-4, IL-5, IL-10, IFN-γ, G-CSF) and cortex (IL-1α, IL-12, IFN-γ, VEGF, M-CSF) after HI. We conclude that vascular endothelial proteins and cytokines exhibit sequential changes after HI and IAIPs modulate some of these HI-related changes in neonatal rats.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
- Present Address: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kevin V Nguyen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Shepherd E, Karim T, McIntyre S, Goldsmith S, Keir A, Badawi N, Hunt RW, Galinsky R. Neonatal magnesium sulphate for neuroprotection: A systematic review and meta-analysis. Dev Med Child Neurol 2024; 66:1157-1172. [PMID: 38468452 PMCID: PMC11579813 DOI: 10.1111/dmcn.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
AIM To review the evidence of the effects of neonatal magnesium sulphate for neuroprotection in perinatal asphyxia and hypoxic-ischaemic encephalopathy (HIE). METHOD This was a systematic review of randomized controlled trials (RCTs) (with meta-analysis) and non-RCTs assessing magnesium sulphate for treating perinatal asphyxia and HIE at 35 weeks or more gestation (primary outcomes: neonatal death and death or long-term major neurodevelopmental disability). RESULTS Twenty-five RCTs (2099 infants) and four non-RCTs (871 infants) were included, 23 in low- and middle-income countries (LMICs). In RCTs, reductions in neonatal death with magnesium sulphate versus placebo or no treatment (risk ratio [RR] = 0.68; 95% confidence interval [CI] = 0.53-0.86; 13 RCTs), and magnesium sulphate with melatonin versus melatonin alone (RR = 0.74; 95% CI = 0.58-0.95; one RCT) were observed. No difference in neonatal death was seen for magnesium sulphate with therapeutic hypothermia versus therapeutic hypothermia alone (RR = 0.66, 95% CI = 0.34-1.26; three RCTs), or magnesium sulphate versus phenobarbital (RR = 3.00; 95% CI = 0.86-10.46; one RCT). No reduction in death or long-term neurodevelopmental disability (RR = 0.52; 95% CI = 0.14-1.89; one RCT) but reductions in several short-term adverse outcomes were observed with magnesium sulphate. Evidence was low- to very-low certainty because of risk of bias and imprecision. INTERPRETATION Given the uncertainty of the current evidence, further robust neonatal magnesium sulphate research is justified. This may include high-quality studies to determine stand-alone effects in LMICs and effects with and after therapeutic hypothermia in high-income countries.
Collapse
Affiliation(s)
- Emily Shepherd
- Women and Kids Theme, South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Tasneem Karim
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Amy Keir
- Women and Kids Theme, South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Grace Centre for Newborn Intensive CareThe Children's HospitalSydneyNew South WalesAustralia
| | - Rod W. Hunt
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
- Monash NewbornMonash Children's HospitalMelbourneVictoriaAustralia
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Wang L, Lu X, Wang M, Zhao X, Li P, Zhang H, Meng Q, Zhang Y, Wang Y, Wang W, Ji L, Hou H, Li D. The association between plasma IgG N-glycosylation and neonatal hypoxic-ischemic encephalopathy: a case-control study. Front Cell Neurosci 2024; 18:1335688. [PMID: 38572072 PMCID: PMC10987743 DOI: 10.3389/fncel.2024.1335688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Hypoxic-ischemic encephalopathy (HIE) is one of severe neonatal brain injuries, resulting from inflammation and the immune response after perinatal hypoxia and ischemia. IgG N-glycosylation plays a crucial role in various inflammatory diseases through mediating the balance between anti-inflammatory and pro-inflammatory responses. This study aimed to explore the effect of IgG N-glycosylation on the development of HIE. Methods This case-control study included 53 HIE patients and 57 control neonates. An ultrahigh-performance liquid chromatography (UPLC) method was used to determine the features of the plasma IgG N-glycans, by which 24 initial glycan peaks (GPs) were quantified. Multivariate logistic regression was used to examine the association between initial glycans and HIE, by which the significant parameters were used to develop a diagnostic model. Though receiver operating characteristic (ROC) curves, area under the curve (AUC) and 95% confidence interval (CI) were calculated to assess the performance of the diagnostic model. Results There were significant differences in 11 initial glycans between the patient and control groups. The levels of fucosylated and galactosylated glycans were significantly lower in HIE patients than in control individuals, while sialylated glycans were higher in HIE patients (p < 0.05). A prediction model was developed using three initial IgG N-glycans and fetal distress, low birth weight, and globulin. The ROC analysis showed that this model was able to discriminate between HIE patients and healthy individuals [AUC = 0.798, 95% CI: (0.716-0.880)]. Discussion IgG N-glycosylation may play a role in the pathogenesis of HIE. Plasma IgG N-glycans are potential noninvasive biomarkers for screening individuals at high risk of HIE.
Collapse
Affiliation(s)
- Liangao Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinxia Lu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xuezhen Zhao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peirui Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haitao Zhang
- Department of neonatology, Tai'an Maternal and Child Health Hospital, Tai'an, China
| | - Qingtang Meng
- Department of neonatology, Tai'an Maternal and Child Health Hospital, Tai'an, China
| | - Yujing Zhang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Long Ji
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dong Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
4
|
Dave AM, Porter NA, Korade Z, Peeples ES. Effects of Neonatal Hypoxic-Ischemic Injury on Brain Sterol Synthesis and Metabolism. Neuropediatrics 2024; 55:23-31. [PMID: 37871611 DOI: 10.1055/s-0043-1776286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) results from disruptions to blood supply and oxygen in the perinatal brain. The goal of this study was to measure brain sterol metabolites and plasma oxysterols after injury in a neonatal HIBI mouse model to assess for potential therapeutic targets in the brain biochemistry as well as potential circulating diagnostic biomarkers. METHODS Postnatal day 9 CD1-IGS mouse pups were randomized to HIBI induced by carotid artery ligation followed by 30 minutes at 8% oxygen or to sham surgery and normoxia. Brain tissue was collected for sterol analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Plasma was collected for oxysterol analysis by LC-MS/MS. RESULTS There were minimal changes in brain sterol concentrations in the first 72 hours after HIBI. In severely injured brains, there was a significant increase in desmosterol, 7-DHC, 8-DHC, and cholesterol 24 hours after injury in the ipsilateral tissue. Lanosterol, 24-dehydrolathosterol, and 14-dehydrozymostenol decreased in plasma 24 hours after injury. Severe neonatal HIBI was associated with increased cholesterol and sterol precursors in the cortex at 24 hours after injury. CONCLUSIONS Differences in plasma oxysterols were seen at 24 hours but were not present at 30 minutes after injury, suggesting that these sterol intermediates would be of little value as early diagnostic biomarkers.
Collapse
Affiliation(s)
- Amanda M Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| |
Collapse
|
5
|
Renz M, Müller L, Herbst M, Riedel J, Mohnke K, Ziebart A, Ruemmler R. Analysis of cerebral Interleukin-6 and tumor necrosis factor alpha patterns following different ventilation strategies during cardiac arrest in pigs. PeerJ 2023; 11:e16062. [PMID: 37790622 PMCID: PMC10544304 DOI: 10.7717/peerj.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hypoxia-induced neuroinflammation after cardiac arrest has been shown to be mitigated by different ventilation methods. In this prospective randomized animal trial, 35 landrace pigs were randomly divided into four groups: intermittent positive pressure ventilation (IPPV), synchronized ventilation 20 mbar (SV 20 mbar), chest compression synchronized ventilation 40 mbar (CCSV 40 mbar) and a control group (Sham). After inducing ventricular fibrillation, basic life support (BLS) and advanced life support (ALS) were performed, followed by post-resuscitation monitoring. After 6 hours, the animals were euthanized, and direct postmortem brain tissue samples were taken from the hippocampus (HC) and cortex (Cor) for molecular biological investigation of cytokine mRNA levels of Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα). The data analysis showed that CCSV 40 mbar displayed low TNFα mRNA-levels, especially in the HC, while the highest TNFα mRNA-levels were detected in SV 20 mbar. The results indicate that chest compression synchronized ventilation may have a potential positive impact on the cytokine expression levels post-resuscitation. Further studies are needed to derive potential therapeutic algorithms from these findings.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Lea Müller
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Manuel Herbst
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg Universität, Mainz, Germany
| | - Julian Riedel
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| |
Collapse
|
6
|
Gao Y, Liu H, Zhou J, Guo M, Sun J, Duan M. THE PROTECTIVE EFFECT OF C23 IN A RAT MODEL OF CARDIAC ARREST AND RESUSCITATION. Shock 2023; 59:892-901. [PMID: 36930651 DOI: 10.1097/shk.0000000000002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ABSTRACT Background : Systemic inflammation acts as a contributor to neurologic deficits after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Extracellular cold-inducible RNA-binding, protein (CIRP) has been demonstrated to be responsible in part for the inflammation through binding to toll-like receptor 4 (TLR4) after cerebral ischemia. The short peptide C23 derived from CIRP has a high affinity for TLR4, we hypothesize that C23 reduces systemic inflammation after CA/CPR by blocking the binding of CIRP to TLR4. Methods : Adult male SD rats in experimental groups were subjected to 5 min of CA followed by resuscitation. C23 peptide (8 mg/kg) or normal saline was injected intraperitoneally at the beginning of the return of spontaneous circulation (ROSC). Results : The expressions of CIRP, TNF-α, IL-6, and IL-1β in serum and brain tissues were significantly increased at 24 h after ROSC ( P < 0.05). C23 treatment could markedly decrease the expressions of TNF-α, IL-6, and IL-1β in serum ( P < 0.05). Besides, it can decrease the expressions of TLR4, TNF-α, IL-6, and IL-1β in the cortex and hippocampus and inhibit the colocalization of CIRP and TLR4 ( P < 0.05). In addition, C23 treatment can reduce the apoptosis of hippocampus neurons ( P < 0.05). Finally, the rats in the C23 group have improved survival rate and neurological prognosis ( P < 0.05). Conclusions: These findings suggest that C23 can reduce systemic inflammation and it has the potential to be developed into a possible therapy for post-CA syndrome.
Collapse
Affiliation(s)
- Yu Gao
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Jiejie Zhou
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu, China
| | - Min Guo
- Department of anesthesiology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jie Sun
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | | |
Collapse
|
7
|
Teo EJ, Chand KK, Miller SM, Wixey JA, Colditz PB, Bjorkman ST. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain. Sci Rep 2023; 13:282. [PMID: 36609414 PMCID: PMC9823001 DOI: 10.1038/s41598-022-27034-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1β), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)β in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.
Collapse
Affiliation(s)
- Elliot J. Teo
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Kirat. K. Chand
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Stephanie M. Miller
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - S. Tracey. Bjorkman
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
8
|
Galinsky R, Kelly S, Green E, Hunt R, Nold-Petry C, Gunn A, Nold M. Interleukin-1: an important target for perinatal neuroprotection? Neural Regen Res 2023; 18:47-50. [PMID: 35799507 PMCID: PMC9241389 DOI: 10.4103/1673-5374.341044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy. Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth. Multiple pathways are involved in the pathogenesis of perinatal inflammation. However, studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1. In this review, we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury. We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage, and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist, anakinra, as a safe and effective therapeutic intervention. We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment, and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
Collapse
|
9
|
Cakir U, Ceran B, Tayman C. Two Useful Umbilical Biomarkers for Therapeutic Hypothermia Decision in Patients with Hypoxic İschemic Encephalopathy with Perinatal Asphyxia: Netrin-1 and Neuron Specific Enolase. Fetal Pediatr Pathol 2022; 41:977-986. [PMID: 35188847 DOI: 10.1080/15513815.2022.2041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) has a high risk of mortality in addition to serious neurological damage. In this study, we investigated the values of umbilical cord netrin-1 (NT-1) and neuron specific enolase (NSE) levels in the early diagnosis of HIE stage II/III induced by neonatal asphyxia. In the study group, infants with gestational age ≥ 36 weeks who were diagnosed with HIE II/III were included. NT-1 and NSE levels were measured from the umbilical cord immediately after birth. Results were compared between HIE II/III and the healthy control group. Cutoff values for serum NT-1 and NSE were determined with receiver-operating characteristics curves and the area under the curve (AUC) was used to determine the diagnostic value of NT-1 and NSE levels in infants diagnosed with HIE II/III. NT-1 (358.3 ± 108.3 pg/mL) and NSE (52.97 ± 17.8 ng/mL) levels in the cord blood in the HIE group were significantly higher (p = .030, p = .001, respectively) than cord blood values in the control group (NT-1 (275.1 ± 84.6 pg/mL) and NSE (28.7 ± 16.3 ng/mL)). NT-1 cutoff value for HIE was 292.3 pg/mL and 34.7 ng/mL for NSE (AUC: 990, sensitivity: 94%, specificity 100% and AUC: 1.0, sensitivity: 100% vs. specificity 100%, respectively). NT-1 and NSE represent candidate biomarkers with high reliability in the prediction in newborns with moderate-to-severe HIE.
Collapse
Affiliation(s)
- Ufuk Cakir
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| | - Burak Ceran
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Li X, Ma M, Zhao B, Li N, Fang L, Wang D, Luan T. Chlorinated Polycyclic Aromatic Hydrocarbons Induce Immunosuppression in THP-1 Macrophages Characterized by Disrupted Amino Acid Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16012-16023. [PMID: 36282008 DOI: 10.1021/acs.est.2c06471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent chlorinated polycyclic aromatic hydrocarbon (Cl-PAH) occurrence in environmental samples and emerging detection in human serum have warned of their underestimated risks. Studies showed that some Cl-PAHs exhibit dioxin-like properties, implying immunotoxic potential but lacking direct evidence and specific mechanisms. Here, we integrated a high-content screening (HCS) system and high-resolution mass spectrometry to investigate the immune dysfunction and metabolic disruption induced by Cl-PAHs and their parent PAHs (PPAHs) in THP-1 macrophages. Both 9-chloroanthracene and 2,7-dichlorofluorene exerted clear immunosuppression on THP-1 mφs, while their PPAHs exhibited different immune disturbances. Interestingly, Cl-PAH/PPAHs induced complex alterations in the multicytokine/chemokine network, including biphasic alterations with initial inhibition and later enhancement. Furthermore, the protein-protein interaction results revealed that inflammatory cytokines are the core of this complicated network regulation. Connecting immune phenotypes and metabolomics, amino acid metabolism reprogramming was identified as a potential cause of Cl-PAH/PAH-induced immunotoxicity. Phytosphingosine and l-kynurenine were proposed as candidate immunosuppression biomarkers upon Cl-PAH exposure. This article provides direct immunotoxicity evidence of Cl-PAHs without activating AhR for the first time and discusses the contribution of metabolites to Cl-PAH/PPAH-induced immune responses in macrophages, highlighting the potential of developing new methods based on immunometabolism mechanisms for toxic risk evaluation of environmental chemicals.
Collapse
Affiliation(s)
- Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
| | - Mei Ma
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bilin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Na Li
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou510275, China
| | - Donghong Wang
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| |
Collapse
|
11
|
Pang R, Mujuni BM, Martinello KA, Webb EL, Nalwoga A, Ssekyewa J, Musoke M, Kurinczuk JJ, Sewegaba M, Cowan FM, Cose S, Nakakeeto M, Elliott AM, Sebire NJ, Klein N, Robertson NJ, Tann CJ. Elevated serum IL-10 is associated with severity of neonatal encephalopathy and adverse early childhood outcomes. Pediatr Res 2022; 92:180-189. [PMID: 33674741 PMCID: PMC9411052 DOI: 10.1038/s41390-021-01438-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neonatal encephalopathy (NE) contributes substantially to child mortality and disability globally. We compared cytokine profiles in term Ugandan neonates with and without NE, with and without perinatal infection or inflammation and identified biomarkers predicting neonatal and early childhood outcomes. METHODS In this exploratory biomarker study, serum IL-1α, IL-6, IL-8, IL-10, TNFα, and VEGF (<12 h) were compared between NE and non-NE infants with and without perinatal infection/inflammation. Neonatal (severity of NE, mortality) and early childhood (death or neurodevelopmental impairment to 2.5 years) outcomes were assessed. Predictors of outcomes were explored with multivariable linear and logistic regression and receiver-operating characteristic analyses. RESULTS Cytokine assays on 159 NE and 157 non-NE infants were performed; data on early childhood outcomes were available for 150 and 129, respectively. NE infants had higher IL-10 (p < 0.001), higher IL-6 (p < 0.017), and lower VEGF (p < 0.001) levels. Moderate and severe NE was associated with higher IL-10 levels compared to non-NE infants (p < 0.001). Elevated IL-1α was associated with perinatal infection/inflammation (p = 0.013). Among NE infants, IL-10 predicted neonatal mortality (p = 0.01) and adverse early childhood outcome (adjusted OR 2.28, 95% CI 1.35-3.86, p = 0.002). CONCLUSIONS Our findings support a potential role for IL-10 as a biomarker for adverse outcomes after neonatal encephalopathy. IMPACT Neonatal encephalopathy is a common cause of child death and disability globally. Inflammatory cytokines are potential biomarkers of encephalopathy severity and outcome. In this Ugandan health facility-based cohort, neonatal encephalopathy was associated with elevated serum IL-10 and IL-6, and reduced VEGF at birth. Elevated serum IL-10 within 12 h after birth predicted severity of neonatal encephalopathy, neonatal mortality, and adverse early childhood developmental outcomes, independent of perinatal infection or inflammation, and provides evidence to the contribution of the inflammatory processes. Our findings support a role for IL-10 as a biomarker for adverse outcomes after neonatal encephalopathy in a sub-Saharan African cohort.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women's Health, University College London, London, UK
| | - Brian M Mujuni
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Emily L Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Angela Nalwoga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Julius Ssekyewa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Margaret Musoke
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Margaret Sewegaba
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Frances M Cowan
- Department of Pediatrics, Imperial College London, London, UK
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Margaret Nakakeeto
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Neil J Sebire
- UCL Institute of Child Health and GOSH BRC, UCL, London, UK
| | - Nigel Klein
- UCL Institute of Child Health and GOSH BRC, UCL, London, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Cally J Tann
- Institute for Women's Health, University College London, London, UK.
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
12
|
Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Mutshiya T, Yang Q, Akin MA, Price D, Sokolska M, Bainbridge A, Hristova M, Tachtsidis I, Tann CJ, Peebles D, Hagberg H, Wolfs TGAM, Klein N, Kramer BW, Fleiss B, Gressens P, Golay X, Robertson NJ. Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia-ischemia. Pediatr Res 2022; 91:1416-1427. [PMID: 34050269 PMCID: PMC8160560 DOI: 10.1038/s41390-021-01584-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.
Collapse
Affiliation(s)
- Kathryn A Martinello
- Institute for Women's Health, University College London, London, UK
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | - Mustafa Ali Akin
- Department of Paediatrics, Ondokuz Mayıs University, Samsun, Turkey
| | - David Price
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Cally J Tann
- Adolescent, Reproductive and Child Health Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Donald Peebles
- Institute for Women's Health, University College London, London, UK
| | - Henrik Hagberg
- Department of Clinical Sciences, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Kings College London, London, UK
| | - Tim G A M Wolfs
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Nigel Klein
- Paediatric Infectious Diseases and Immunology, Institute of Child Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Kelly SB, Stojanovska V, Zahra VA, Moxham A, Miller SL, Moss TJM, Hooper SB, Nold MF, Nold-Petry CA, Dean JM, Bennet L, Polglase GR, Gunn AJ, Galinsky R. Interleukin-1 blockade attenuates white matter inflammation and oligodendrocyte loss after progressive systemic lipopolysaccharide exposure in near-term fetal sheep. J Neuroinflammation 2021; 18:189. [PMID: 34465372 PMCID: PMC8408978 DOI: 10.1186/s12974-021-02238-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased systemic and tissue levels of interleukin (IL)-1β are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). Methods Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. Results LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1β immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1β expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. Conclusion IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02238-4.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Alison Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
15
|
Shah TA, Pallera HK, Kaszowski CL, Bass WT, Lattanzio FA. Therapeutic Hypothermia Inhibits the Classical Complement Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurosci 2021; 15:616734. [PMID: 33642979 PMCID: PMC7907466 DOI: 10.3389/fnins.2021.616734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Complement activation is instrumental in the pathogenesis of Hypoxic-ischemic encephalopathy (HIE), a significant cause of neonatal mortality and disability worldwide. Therapeutic hypothermia (HT), the only available treatment for HIE, only modestly improves outcomes. Complement modulation as a therapeutic adjunct to HT has been considered, but is challenging due to the wide-ranging role of the complement system in neuroinflammation, homeostasis and neurogenesis in the developing brain. We sought to identify potential therapeutic targets by measuring the impact of treatment with HT on complement effector expression in neurons and glia in neonatal HIE, with particular emphasis on the interactions between microglia and C1q. METHODS The Vannucci model was used to induce HIE in term-equivalent rat pups. At P10-12, pups were randomly assigned to three different treatment groups: Sham (control), normothermia (NT), and hypothermia (HT) treatment. Local and systemic complement expression and neuronal apoptosis were measured by ELISA, TUNEL and immunofluorescence labeling, and differences compared between groups. RESULTS Treatment with HT is associated with decreased systemic and microglial expression of C1q, decreased systemic C5a levels, and decreased microglial and neuronal deposition of C3 and C9. The effect of HT on cytokines was variable with decreased expression of pro and anti-inflammatory effectors. HT treatment was associated with decreased C1q binding on cells undergoing apoptosis. CONCLUSION Our data demonstrate the extreme complexity of the immune response in neonatal HIE. We propose modulation of downstream effectors C3a and C5a as a therapeutic adjunct to HT to enhance neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Haree K. Pallera
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - William Thomas Bass
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
- Children’s Specialty Group, Norfolk, VA, United States
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
16
|
Lingam I, Avdic-Belltheus A, Meehan C, Martinello K, Ragab S, Peebles D, Barkhuizen M, Tann CJ, Tachtsidis I, Wolfs TGAM, Hagberg H, Klein N, Fleiss B, Gressens P, Golay X, Kramer BW, Robertson NJ. Serial blood cytokine and chemokine mRNA and microRNA over 48 h are insult specific in a piglet model of inflammation-sensitized hypoxia-ischaemia. Pediatr Res 2021; 89:464-475. [PMID: 32521540 DOI: 10.1038/s41390-020-0986-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exposure to inflammation exacerbates injury in neonatal encephalopathy (NE). We hypothesized that brain biomarker mRNA, cytokine mRNA and microRNA differentiate inflammation (E. coli LPS), hypoxia (Hypoxia), and inflammation-sensitized hypoxia (LPS+Hypoxia) in an NE piglet model. METHODS Sixteen piglets were randomized: (i) LPS 2 μg/kg bolus; 1 μg/kg infusion (LPS; n = 5), (ii) Saline with hypoxia (Hypoxia; n = 6), (iii) LPS commencing 4 h pre-hypoxia (LPS+Hypoxia; n = 5). Total RNA was acquired at baseline, 4 h after LPS and 1, 3, 6, 12, 24, 48 h post-insult (animals euthanized at 48 h). Quantitative PCR was performed for cytokines (IL1A, IL6, CXCL8, IL10, TNFA) and brain biomarkers (ENO2, UCHL1, S100B, GFAP, CRP, BDNF, MAPT). MicroRNA was detected using GeneChip (Affymetrix) microarrays. Fold changes from baseline were compared between groups and correlated with cell death (TUNEL) at 48 h. RESULTS Within 6 h post-insult, we observed increased IL1A, CXCL8, CCL2 and ENO2 mRNA in LPS+Hypoxia and LPS compared to Hypoxia. IL10 mRNA differentiated all groups. Four microRNAs differentiated LPS+Hypoxia and Hypoxia: hsa-miR-23a, 27a, 31-5p, 193-5p. Cell death correlated with TNFA (R = 0.69; p < 0.01) at 1-3 h and ENO2 (R = -0.69; p = 0.01) at 48 h. CONCLUSIONS mRNA and miRNA differentiated hypoxia from inflammation-sensitized hypoxia within 6 h in a piglet model. This information may inform human studies to enable triage for tailored neuroprotection in NE. IMPACT Early stratification of infants with neonatal encephalopathy is key to providing tailored neuroprotection. IL1A, CXCL8, IL10, CCL2 and NSE mRNA are promising biomarkers of inflammation-sensitized hypoxia. IL10 mRNA levels differentiated all three pathological states; fold changes from baseline was the highest in LPS+Hypoxia animals, followed by LPS and Hypoxia at 6 h. miR-23, -27, -31-5p and -193-5p were significantly upregulated within 6 h of a hypoxia insult. Functional analysis highlighted the diverse roles of miRNA in cellular processes.
Collapse
Affiliation(s)
- Ingran Lingam
- Neonatology, Institute for Women's Health, University College London, London, UK
| | | | - Christopher Meehan
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Kathryn Martinello
- Neonatology, Institute for Women's Health, University College London, London, UK.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sara Ragab
- Neonatology, Institute for Women's Health, University College London, London, UK
| | - Donald Peebles
- Maternal Fetal Medicine, Institute for Women's Health, University College London, London, UK
| | - Melinda Barkhuizen
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Cally J Tann
- Neonatology, Institute for Women's Health, University College London, London, UK.,Maternal Adolescent, Reproductive and Child Health (MARCH) Centre, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tim G A M Wolfs
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Nigel Klein
- Paediatric Infectious Diseases & Immunology, Institute of Child Health, University College London, London, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Kings College London, London, UK
| | - Pierre Gressens
- Centre for the Developing Brain, Kings College London, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019, Paris, France
| | - Xavier Golay
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - Boris W Kramer
- Maternal Fetal Medicine, Institute for Women's Health, University College London, London, UK
| | - Nicola J Robertson
- Neonatology, Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
17
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
18
|
Cho KH, Davidson JO, Dean JM, Bennet L, Gunn AJ. Cooling and immunomodulation for treating hypoxic-ischemic brain injury. Pediatr Int 2020; 62:770-778. [PMID: 32119180 DOI: 10.1111/ped.14215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.
Collapse
Affiliation(s)
- Kenta Ht Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Park IS, Mahapatra C, Park JS, Dashnyam K, Kim JW, Ahn JC, Chung PS, Yoon DS, Mandakhbayar N, Singh RK, Lee JH, Leong KW, Kim HW. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials 2020; 242:119919. [PMID: 32146371 DOI: 10.1016/j.biomaterials.2020.119919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
In critical limb ischemia (CLI), overproduction of reactive oxygen species (ROS) and impairment of neovascularization contribute to muscle damage and limb loss. Cerium oxide nanoparticles (CNP, or 'nanoceria') possess oxygen-modulating properties which have shown therapeutic utility in various disease models. Here we show that CNP exhibit pro-angiogenic activity in a mouse hindlimb ischemia model, and investigate the molecular mechanism underlying the pro-angiogenic effect. CNP were injected into a ligated region of a femoral artery, and tissue reperfusion and hindlimb salvage were monitored for 3 weeks. Tissue analysis revealed stimulation of pro-angiogenic markers, maturation of blood vessels, and remodeling of muscle tissue following CNP administration. At a dose of 0.6 mg CNP, mice showed reperfusion of blood vessels in the hindlimb and a high rate of limb salvage (71%, n = 7), while all untreated mice (n = 7) suffered foot necrosis or limb loss. In vitro, CNP promoted endothelial cell tubule formation via the Ref-1/APE1 signaling pathway, and the involvement of this pathway in the CNP response was confirmed in vivo using immunocompetent and immunodeficient mice and by siRNA knockdown of APE1. These results demonstrate that CNP provide an effective treatment of CLI with excessive ROS by scavenging ROS to improve endothelial survival and by inducing Ref-1/APE1-dependent angiogenesis to revascularize an ischemic limb.
Collapse
Affiliation(s)
- In-Su Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Cell Therapy Center, Ajou University Medical Center, Suwon, South Korea
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jong-Wan Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Jin Chul Ahn
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Biomedical Science, Dankook University, Cheonan, 31116, South Korea; Biomedical Translational Research Institute, Dankook University, Cheonan, 31116, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Otolaryngology-Head and Neck Surgery, Dankook University, Cheonan, 31116, South Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of System Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
20
|
Poupon-Bejuit L, Rocha-Ferreira E, Thornton C, Hagberg H, Rahim AA. Neuroprotective Effects of Diabetes Drugs for the Treatment of Neonatal Hypoxia-Ischemia Encephalopathy. Front Cell Neurosci 2020; 14:112. [PMID: 32435185 PMCID: PMC7218053 DOI: 10.3389/fncel.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The perinatal period represents a time of great vulnerability for the developing brain. A variety of injuries can result in death or devastating injury causing profound neurocognitive deficits. Hypoxic-ischemic neonatal encephalopathy (HIE) remains the leading cause of brain injury in term infants during the perinatal period with limited options available to aid in recovery. It can result in long-term devastating consequences with neurologic complications varying from mild behavioral deficits to severe seizure, intellectual disability, and/or cerebral palsy in the newborn. Despite medical advances, the only viable option is therapeutic hypothermia which is classified as the gold standard but is not used, or may not be as effective in preterm cases, infection-associated cases or low resource settings. Therefore, alternatives or adjunct therapies are urgently needed. Ongoing research continues to advance our understanding of the mechanisms contributing to perinatal brain injury and identify new targets and treatments. Drugs used for the treatment of patients with type 2 diabetes mellitus (T2DM) have demonstrated neuroprotective properties and therapeutic efficacy from neurological sequelae following HIE insults in preclinical models, both alone, or in combination with induced hypothermia. In this short review, we have focused on recent findings on the use of diabetes drugs that provide a neuroprotective effect using in vitro and in vivo models of HIE that could be considered for clinical translation as a promising treatment.
Collapse
Affiliation(s)
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
21
|
Huang P, Zhou Q, Lin Q, Lin L, Wang H, Chen X, Jiang S, Fu H, Deng Y. Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/β-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol 2020; 30:495-514. [PMID: 31622511 PMCID: PMC8018074 DOI: 10.1111/bpa.12798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is thought to play a pivotal role in the pathogenesis of periventricular white matter (PWM) damage (PWMD) induced by neonatal sepsis. Because the complement cascade is implicated in inflammatory response, this study was carried out to determine whether C3a is involved in PWMD, and, if so, whether it would induce axonal hypomyelination. Furthermore, we explored if C3a would act through its C3a receptor (C3aR) and thence inhibit maturation of oligodendrocyte precursor cells (OPCs) via the WNT/β-catenin signal pathway. Sprague Dawley (SD) rats aged 1 day were intraperitoneally injected with lipopolysaccharide (LPS) (1 mg/kg). C3a was upregulated in activated microglia and astrocytes in the PWM up to 7 days after LPS injection. Concomitantly, enhanced C3aR expression was observed in NG2+ oligodendrocytes (OLs). Myelin proteins including CNPase, PLP, MBP and MAG were significantly reduced in the PWM of 28-day septic rats. The number of PLP+ and MBP+ cells was markedly decreased. By electron microscopy, myelin sheath thickness was thinner and the average g-ratios were higher. This was coupled with an increase in number of NG2+ cells and decreased number of CC1+ cells. Olig1, Olig2 and SOX10 protein expression was significantly reduced in the PWM after LPS injection. Very strikingly, C3aRa administration for the first 7 days could reverse the above-mentioned pathological alterations in the PWM of septic rats. When incubated with C3a, expression of MBP, CNPase, PLP, MAG, Olig1, Olig2, SOX10 and CC1 in primary cultured OPCs was significantly downregulated as opposed to increased NG2. Moreover, WNT/β-catenin signaling pathway was found to be implicated in inhibition of OPCs maturation and differentiation induced by C3a in vitro. As a corollary, it is speculated that C3a in the PWM of septic rats is closely associated with the disorder of OPCs differentiation and maturation through WNT/β-catenin signaling pathway, which would contribute ultimately to axonal hypomyelination.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| | - Qiuping Zhou
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Qiongyu Lin
- Department of critical care medicineJieyang People's HospitalJieyang522000GuangdongChina
| | - Lanfen Lin
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Department of critical care medicineGuangdong Second Provincial General HospitalGuangzhou510317GuangdongChina
| | - Huifang Wang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Affiliated South China HospitalSourthern Medical University (Guangdong Provincial People's Hospital)Guangzhou510515GuangdongChina
| | - Xuan Chen
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Shantou University Medical CollegeShantou5105063GuangdongChina
| | - Shuqi Jiang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Hui Fu
- Department of AnatomyWuhan University School of Basic Medical SciencesWuhan430072HubeiChina
| | - Yiyu Deng
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| |
Collapse
|
22
|
Yang L, Zhao H, Cui H. Treatment and new progress of neonatal hypoxic-ischemic brain damage. Histol Histopathol 2020; 35:929-936. [PMID: 32167570 DOI: 10.14670/hh-18-214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal hypoxic ischemia (HI) results in different extents of brain damage, and immature brain tissue is particularly sensitive to the stimulation of HI. Hypoxic-ischemic brain damage (HIBD) is a common and serious nervous system disease in neonates, for both full-term infants and preterm infants, and is one of the main causes of neonatal death. The surviving infants are often associated with cerebral palsy, mental retardation, and other sequelae, which severely affect quality of life. For term infants, hypoxia and ischemia mainly affect gray matter, whereas in preterm infants, the white matter. However, up to now, inadequate standards and specific measures that can be used to treat hypoxic-ischemic brain injury are available. Recently, in addition to supportive therapy and symptomatic treatment, research on the treatment of hypoxic-ischemic brain injury has focused on the following aspects: hypothermia therapy, stem cell therapy, neuroprotective agents, ibuprofen, and combination therapy. In this review, we will summarize the treatment of HIBD and make suggestions for the future treatment direction.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hehua Zhao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
O'Brien CE, Santos PT, Kulikowicz E, Reyes M, Koehler RC, Martin LJ, Lee JK. Hypoxia-Ischemia and Hypothermia Independently and Interactively Affect Neuronal Pathology in Neonatal Piglets with Short-Term Recovery. Dev Neurosci 2019; 41:17-33. [PMID: 31108487 DOI: 10.1159/000496602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Therapeutic hypothermia is the standard of clinical care for moderate neonatal hypoxic-ischemic encephalopathy. We investigated the independent and interactive effects of hypoxia-ischemia (HI) and temperature on neuronal survival and injury in basal ganglia and cerebral cortex in neonatal piglets. Male piglets were randomized to receive HI injury or sham procedure followed by 29 h of normothermia, sustained hypothermia induced at 2 h, or hypothermia with rewarming during fentanyl-nitrous oxide anesthesia. Viable and injured neurons and apoptotic profiles were counted in the anterior putamen, posterior putamen, and motor cortex at 29 h after HI injury or sham procedure. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) identified genomic DNA fragmentation to confirm cell death. Though hypothermia after HI preserved viable neurons in the anterior and posterior putamen, hypothermia prevented neuronal injury in only the anterior putamen. Hypothermia initiated 2 h after injury did not protect against apoptotic cell death in either the putamen or motor cortex, and rewarming from hypothermia was associated with increased apoptosis in the motor cortex. In non-HI shams, sustained hypothermia during anesthesia was associated with neuronal injury and corresponding viable neuron loss in the anterior putamen and motor cortex. TUNEL confirmed increased neurodegeneration in the putamen of hypothermic shams. Anesthetized, normothermic shams did not show abnormal neuronal cytopathology in the putamen or motor cortex, thereby demonstrating minimal contribution of the anesthetic regimen to neuronal injury during normothermia. We conclude that the efficacy of hypothermic protection after HI is region specific and that hypothermia during anesthesia in the absence of HI may be associated with neuronal injury in the developing brain. Studies examining the potential interactions between hypothermia and anesthesia, as well as with longer durations of hypothermia, are needed.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Reyes
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Walker DJ, Zimmer C, Larriva M, Healy SD, Spencer KA. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. J Exp Biol 2019; 222:jeb187039. [PMID: 30814294 DOI: 10.1242/jeb.187039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/21/2019] [Indexed: 01/03/2025]
Abstract
Stress exposure during prenatal and postnatal development can have persistent and often dysfunctional effects on several physiological systems, including immune function, affecting the ability to combat infection. The neuroimmune response is inextricably linked to the action of the hypothalamic-pituitary-adrenal (HPA) axis. Cytokines released from neuroimmune cells, including microglia, activate the HPA axis, while glucocorticoids in turn regulate cytokine release from microglia. Because of the close links between these two physiological systems, coupled with potential for persistent changes to HPA axis activity following developmental stress, components of the neuroimmune system could be targets for developmental programming. However, little is known of any programming effects of developmental stress on neuroimmune function. We investigated whether developmental stress exposure via elevated prenatal corticosterone (CORT) or postnatal unpredictable food availability had long-term effects on pro- (IL-1β) and anti-inflammatory (IL-10) cytokine and microglia-dependent gene (CSF1R) expression within HPA axis tissues in a precocial bird, the Japanese quail (Coturnix japonica). Following postnatal stress, we observed increased IL-1β expression in the pituitary gland, reduced IL-10 expression in the amygdala and hypothalamus, and reduced CSF1R expression within the hypothalamus and pituitary gland. Postnatal stress disrupted the ratio of IL-1β:IL-10 expression within the hippocampus and hypothalamus. Prenatal stress only increased IL-1β expression in the pituitary gland. We found no evidence for interactive or cumulative effects across life stages on basal cytokine and glia expression in adulthood. We show that postnatal stress may have a larger impact than elevated prenatal CORT on basal immunity in HPA-axis-specific brain regions, with changes in cytokine homeostasis and microglia abundance. These results provide evidence for postnatal programming of a pro-inflammatory neuroimmune phenotype at the expense of reduced microglia, which could have implications for central nervous system health and subsequent neuroimmune responses.
Collapse
Affiliation(s)
- David J Walker
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Cédric Zimmer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Maria Larriva
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Susan D Healy
- School of Biology, Harold Mitchell Building, University of St Andrews, St Andrews KY16 9TH, UK
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| |
Collapse
|
25
|
Autilio C, Shankar-Aguilera S, Minucci A, Touqui L, De Luca D. Effect of cooling on lung secretory phospholipase A2 activity in vitro, ex vivo, and in vivo. Am J Physiol Lung Cell Mol Physiol 2019; 316:L498-L505. [DOI: 10.1152/ajplung.00201.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypothermia can modify surfactant composition and function. Secretory phospholipase A2 (sPLA2) hydrolyses surfactant phospholipids and is important in the pathobiology of several critical respiratory disorders. We hypothesize that sPLA2 activity might be influenced by the temperature partially explaining surfactant changes. This study aims to evaluate comprehensively the effect of hypothermia on sPLA2 activity. We measured sPLA2 activity at different temperatures, alone or combined with bile acids, in vitro (incubating human recombinant sPLA2-IIA and porcine sPLA2-IB), ex vivo (by cooling bronchoalveolar lavage samples from neonates with respiratory distress syndrome or no lung disease), and in vivo (using lavage samples obtained before and after 72 h of whole body cooling in neonates with hypoxic-ischemic encephalopathy). We also measured concentrations of various sPLA2 subtypes and natural sPLA2 inhibitors in in vivo cooled samples. Results were corrected for protein content and dilution. In vitro cooling did not show any effect of hypothermia on sPLA2. Ex vivo cooling did not alter total sPLA2 activity, and the addition of bile acids increased sPLA2 activity irrespective of the temperature and the type of sampled patient. In vivo hypothermia reduced median sPLA2 activity from 16.6 [15.2–106.7] IU/mg to 3.3 [2.7–8.5] IU/mg ( P = 0.026) and mean sPLA2-IIA from 1.1 (0.8) pg/μg to 0.6 (0.4) pg/μg ( P = 0.047), whereas dioleylphosphatidylglycerol increased from 8.3 (3.9)% to 12.8 (5.1)% ( P = 0.02). Whole body hypothermia decreases in vivo global sPLA2 activity in bronchoalveolar lavage fluids through the reduction of sPLA2-IIA and increment of dioleylphosphatidylglycerol. This effect is absent during in vitro or ex vivo hypothermia.
Collapse
Affiliation(s)
- Chiara Autilio
- Laboratory of Clinical Molecular Biology, Department of Laboratory Medicine, University Hospital “A.Gemelli,” Catholic University of the Sacred Heart, Rome, Italy
- Dept of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Shivani Shankar-Aguilera
- Division of Pediatrics and Neonatal Critical Care, Medical Center “A.Béclère,” South Paris University Hospitals, Assistance Publique-Hopitaux de Paris, Paris, France
- Respiratory Physiopathology Unit, Institut Pasteur, Paris, France
| | - Angelo Minucci
- Laboratory of Clinical Molecular Biology, Department of Laboratory Medicine, University Hospital “A.Gemelli,” Catholic University of the Sacred Heart, Rome, Italy
| | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center “A.Béclère,” South Paris University Hospitals, Assistance Publique-Hopitaux de Paris, Paris, France
- Physiopathology and Therapeutic Innovation Unit, South Paris-Saclay University, Paris, France
| |
Collapse
|
26
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E, Criado E, Sobrino E, Vargas C, Ceprián M, Gutiérrez-Rodríguez A, Hind W, Martínez-Orgado J. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2018; 146:1-11. [PMID: 30468796 DOI: 10.1016/j.neuropharm.2018.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.
Collapse
Affiliation(s)
- Lorena Barata
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Luis Arruza
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | | | - Esther Aleo
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Eva Vierge
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Enrique Criado
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Elena Sobrino
- Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Carlos Vargas
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Ceprián
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | - José Martínez-Orgado
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
| |
Collapse
|
28
|
Bredthauer A, Lehle K, Scheuerle A, Schelzig H, McCook O, Radermacher P, Szabo C, Wepler M, Simon F. Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Med Exp 2018; 6:44. [PMID: 30357563 PMCID: PMC6200829 DOI: 10.1186/s40635-018-0209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/14/2018] [Indexed: 12/02/2022] Open
Abstract
Objective In rodents, intravenous sulfide protected against spinal cord ischemia/reperfusion (I/R) injury during aortic balloon occlusion. We investigated the effect of intravenous sulfide on aortic occlusion-induced porcine spinal cord I/R injury. Methods Anesthetized and mechanically ventilated “familial hypercholesterolemia Bretoncelles Meishan” (FBM) pigs with high-fat-diet-induced hypercholesterolemia and atherosclerosis were randomized to receive either intravenous sodium sulfide 2 h (initial bolus, 0.2 mg kg body weight (bw)−1; infusion, 2 mg kg bw−1 h−1; n = 4) or vehicle (sodium chloride, n = 4) prior to 45 min of thoracic aortic balloon occlusion and for 8 h during reperfusion (infusion, 1 mg kg bw−1 h−1). During reperfusion, noradrenaline was titrated to maintain blood pressure at above 80% of the baseline level. Spinal cord function was assessed by motor evoked potentials (MEPs) and lower limb reflexes using a modified Tarlov score. Spinal cord tissue damage was evaluated in tissue collected at the end of experiment using hematoxylin and eosin and Nissl staining. Results A balloon occlusion time of 45 min resulted in marked ischemic neuron damage (mean of 16% damaged motoneurons in the anterior horn of all thoracic motor neurons) in the spinal cord. In the vehicle group, only one animal recovered partial neuronal function with regain of MEPs and link motions at each time point after deflating. All other animals completely lost neuronal functions. The intravenous application of sodium sulfide did not prevent neuronal cell injury and did not confer to functional recovery. Conclusion In a porcine model of I/R injury of the spinal cord, treatment with intravenous sodium sulfide had no protective effect in animals with a pre-existing arteriosclerosis.
Collapse
Affiliation(s)
- Andre Bredthauer
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Angelika Scheuerle
- Institute of Pathology - Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Florian Simon
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
29
|
Huun MU, Garberg H, Løberg EM, Escobar J, Martinez-Orgado J, Saugstad OD, Solberg R. DHA and therapeutic hypothermia in a short-term follow-up piglet model of hypoxia-ischemia: Effects on H+MRS biomarkers. PLoS One 2018; 13:e0201895. [PMID: 30086156 PMCID: PMC6080779 DOI: 10.1371/journal.pone.0201895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Therapeutic hypothermia has become the standard of care for newborns with hypoxic-ischemic encephalopathy in high and middle income countries. Docosahexaenoic acid (DHA) has neuroprotective properties of reducing excitotoxicity, neuroinflammation and apoptosis in rodent models. We aim to study whether post hypoxic administration of i.v. DHA will reduce H+MRS biomarkers and gene expression of inflammation and apoptosis both with and without hypothermia in a large animal model. Methods Fifty-five piglets were randomized to severe global hypoxia (N = 48) or not (Sham, N = 7). Hypoxic piglets were further randomized by factorial design: Vehicle (VEH), DHA, VEH + Hypothermia (HT), or DHA + HT. 5 mg/kg DHA was given intravenously 210 min after end of hypoxia. Two-way ANOVA analyses were performed with DHA and hypothermia as main effects. Results Cortical lactate/N-acetylaspartate (Lac/NAA) was significantly reduced in DHA + HT compared to HT. DHA had significant main effects on increasing N-acetylaspartate and glutathione in hippocampus. Therapeutic hypothermia significantly reduced the Lac/NAA ratio and protein expression of IL-1β and TNFα in hippocampus and reduced Troponin T in serum. Neuropathology showed significant differences between sham and hypoxia, but no differences between intervention groups. Conclusion DHA and therapeutic hypothermia significantly improve specific H+MRS biomarkers in this short-term follow up model of hypoxia-ischemia. Longer recovery periods are needed to evaluate whether DHA can offer translational neuroprotection.
Collapse
Affiliation(s)
- Marianne Ullestad Huun
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Håvard Garberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Javier Escobar
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Ola Didrik Saugstad
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
30
|
Chevin M, Guiraut C, Sébire G. Effect of hypothermia on interleukin-1 receptor antagonist pharmacodynamics in inflammatory-sensitized hypoxic-ischemic encephalopathy of term newborns. J Neuroinflammation 2018; 15:214. [PMID: 30060742 PMCID: PMC6066954 DOI: 10.1186/s12974-018-1258-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hypothermia is increasingly tested in several neurological conditions, such as neonatal encephalopathy, stroke, traumatic brain injury, subarachnoid hemorrhage, spinal cord injury, and neurological outcomes of cardiac arrest. Current studies aim to increase benefits of hypothermia with new add-on therapies including immunomodulatory agents. Hypothermia has been shown to affect the metabolism of commonly used drugs, including those acting on neuroimmune pathways. Objective This study focuses on the effect of hypothermia on interleukin-1 receptor antagonist pharmacodynamics in a model of neonatal encephalopathy. Methods The effect of hypothermia on (i) the tissue concentration of the interleukin-1 receptor antagonist, (ii) the interleukin-1 inflammatory cascade, and (iii) the neuroprotective potential of interleukin-1 receptor antagonist has been assessed on our rat model of neonatal encephalopathy resulting from inflammation induced by bacterial compound plus hypoxia-ischemia. Results Hypothermia reduced the surface of core and penumbra lesions, as well as alleviated the brain weight loss induced by LPS+HI exposure. Hypothermia compared to normothermia significantly increased (range 50–65%) the concentration of the interleukin-1 receptor antagonist within the central nervous system. Despite this increase of intracerebral interleukin-1 receptor antagonist concentration, the intracerebral interleukin-1-induced tumor necrosis factor-alpha cascade was upregulated. In hypothermic condition, the known neuroprotective effect of interleukin-1 receptor antagonist was neutralized (50 mg/kg/12 h for 72 h) or even reversed (200 mg/kg/12 h for 72 h) as compared to normothermic condition. Conclusion Hypothermia interferes with the pharmacodynamic parameters of the interleukin-1 receptor antagonist, through a bioaccumulation of the drug within the central nervous system and a paradoxical upregulation of the interleukin-1 pathway. These effects seem to be at the origin of the loss of efficiency or even toxicity of the interleukin-1 receptor antagonist when combined with hypothermia. Such bioaccumulation could happen similarly with the use of other drugs combined to hypothermia in a clinical context.
Collapse
Affiliation(s)
- Mathilde Chevin
- Department of Pediatrics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, (Glen site, Block E, M0.3211), Montreal, Quebec, H4A 3J1, Canada
| | - Clémence Guiraut
- Department of Pediatrics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, (Glen site, Block E, M0.3211), Montreal, Quebec, H4A 3J1, Canada
| | - Guillaume Sébire
- Department of Pediatrics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, (Glen site, Block E, M0.3211), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The rapid progress in biomarker science is on the threshold of significantly changing clinical care for infants in the neonatal ICU. Infants with neonatal brain injuries will likely be the first group whose management is dramatically altered with point-of-care, rapidly available brain biomarker analysis. Providing an interim update on progress in this area is the purpose of this review. RECENT FINDINGS Highlighted findings from the past 18 months of publications on biomarkers in neonatal brain injury include; Specific nonbrain markers of cardiac health and global asphyxia continue to provide information on brain injury after hypoxic-ischemic encephalopathy (HIE). Prediction of injury in the piglet hypoxia-ischemia model is improved with the use of a combination score of plasma metabolites. In a neonatal piglet model of perinatal hypoxia-ischemia, a systemic proinflammatory surge of cytokines has been identified after rewarming from therapeutic hypothermia. New biomarkers identified recently include osteopontin, activin A, neutrophil gelatinase-associated lipocalin, secretoneurin, Tau and neurofilament light protein. Brain-based biomarkers differ in their ability to predict short-term in-hospital outcomes and long-term neurologic deficits. SUMMARY Neonatal brain biomarker research is currently in its very early development with major advances still to be made.
Collapse
|
32
|
Bennet L, Dhillon S, Lear CA, van den Heuij L, King V, Dean JM, Wassink G, Davidson JO, Gunn AJ. Chronic inflammation and impaired development of the preterm brain. J Reprod Immunol 2018; 125:45-55. [DOI: 10.1016/j.jri.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
33
|
Ji H, Xu L, Wang Z, Fan X, Wu L. Effects of thymosin β4 on oxygen‑glucose deprivation and reoxygenation‑induced injury. Int J Mol Med 2018; 41:1749-1755. [PMID: 29328391 DOI: 10.3892/ijmm.2018.3369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemia causes severe brain injury and results in selective neuronal death through programmed cell death mechanisms, including apoptosis and autophagy. Minimizing neuronal injury has been considered a hot topic among clinicians. The present study elucidated the effect of thymosin β4 (Tβ4) on neuronal death induced by cerebral ischemia/reperfusion in PC12 cells that were subjected to oxygen‑glucose deprivation and reoxygenation (OGD/R). The survival, apoptotic and autophagy rates of PC12 cells were investigated. Tβ4 pre‑conditioning prior to OGD/R was performed to evaluate PC12‑cell viability and the protective mechanisms of Tβ4. Tβ4 significantly increased cell survival after OGD/R. Tβ4 inhibited the release of lactate dehydrogenase, downregulated malondialdehyde and upregulated the activities of glutathione peroxidase and superoxide dismutase. In addition, Tβ4 attenuated OGD/R‑associated decreases in the expression of P62 and the anti‑apoptotic protein B‑cell lymphoma‑2, as well as the upregulation of autophagy mediators, including autophagy‑related protein‑5 and the ratio of microtubule‑associated protein 1 light chain 3 (LC3) II vs. LC3 I. These results suggested that Tβ4 effectively inhibits cell apoptosis and autophagy induced by OGD/R. To the best of our knowledge, the present study was the first to report on the antioxidant, anti‑apoptotic and anti‑autophagic effects of Tβ4 in neuronal‑like PC12 cells. These results suggested that Tβ4 may be explored as a potential treatment for cerebral ischemia.
Collapse
Affiliation(s)
- Hua Ji
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Linhao Xu
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Zheng Wang
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xinli Fan
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Lihui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
34
|
Lv SY, Wu Q, Liu JP, Shao J, Wen LL, Xue J, Zhang XS, Zhang QR, Zhang X. Levels of Interleukin-1β, Interleukin-18, and Tumor Necrosis Factor-α in Cerebrospinal Fluid of Aneurysmal Subarachnoid Hemorrhage Patients May Be Predictors of Early Brain Injury and Clinical Prognosis. World Neurosurg 2017; 111:e362-e373. [PMID: 29277532 DOI: 10.1016/j.wneu.2017.12.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is a severe cerebrovascular accident with high morbidity and mortality. The aim of this study is to investigate the relationship between level of inflammatory cytokines in cerebrospinal fluid (CSF) of aSAH patients, the severity of aSAH, and the outcome of aSAH patients. METHODS aSAH patients were prospectively included and followed-up for 6 months. CSF samples were collected at 1-3, 4-6, and 7-9 days after aSAH onset. Levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) in the CSF of aSAH patients were measured by enzyme-linked immunosorbent assay. RESULTS Eighty-one aSAH patients were enrolled. The levels of IL-1β, IL-18 and TNF-α in the CSF were especially higher in the group of aSAH patients with cerebral edema, cerebral vasospasm, and a high grade on Hunt-Hess scale, the high World Federation of Neurological Surgeons grades, and Fisher grade (P < 0.01). Higher levels of plasma C-reactive protein in the blood were correlated with poor outcome. The areas under the receiver operating characteristic curves for the levels of inflammatory cytokines in CSF were 0.85, 0.84, and 0.95, respectively. Clinical features (age, Hunt-Hess grade, etc.) were positively correlated with poor outcomes (P < 0.05). CONCLUSIONS The levels of IL-1β, IL-18, and TNF-α in CSF were elevated in aSAH patients and were positively associated with cerebral edema and acute hydrocephalus. Our findings suggest that CSF inflammatory cytokines might be biomarkers to assess severity and predict outcomes.
Collapse
Affiliation(s)
- Sheng-Yin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China
| | - Jiang Shao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China
| | - Li-Li Wen
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jin Xue
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qing-Rong Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, Jiangsu Province, China; Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|