1
|
Yang HC, Lavadi RS, Sauerbeck AD, Wallendorf M, Kummer TT, Song SK, Lin TH. Diffusion basis spectrum imaging detects subclinical traumatic optic neuropathy in a closed-head impact mouse model of traumatic brain injury. Front Neurol 2023; 14:1269817. [PMID: 38152638 PMCID: PMC10752006 DOI: 10.3389/fneur.2023.1269817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/12/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Traumatic optic neuropathy (TON) is the optic nerve injury secondary to brain trauma leading to visual impairment and vision loss. Current clinical visual function assessments often fail to detect TON due to slow disease progression and clinically silent lesions resulting in potentially delayed or missed treatment in patients with traumatic brain injury (TBI). Methods Diffusion basis spectrum imaging (DBSI) is a novel imaging modality that can potentially fill this diagnostic gap. Twenty-two, 16-week-old, male mice were equally divided into a sham or TBI (induced by moderate Closed-Head Impact Model of Engineered Rotational Acceleration device) group. Briefly, mice were anesthetized with isoflurane (5% for 2.5 min followed by 2.5% maintenance during injury induction), had a helmet placed over the head, and were placed in a holder prior to a 2.1-joule impact. Serial visual acuity (VA) assessments, using the Virtual Optometry System, and DBSI scans were performed in both groups of mice. Immunohistochemistry (IHC) and histological analysis of optic nerves was also performed after in vivo MRI. Results VA of the TBI mice showed unilateral or bilateral impairment. DBSI of the optic nerves exhibited bilateral involvement. IHC results of the optic nerves revealed axonal loss, myelin injury, axonal injury, and increased cellularity in the optic nerves of the TBI mice. Increased DBSI axon volume, decreased DBSI λ||, and elevated DBSI restricted fraction correlated with decreased SMI-312, decreased SMI-31, and increased DAPI density, respectively, suggesting that DBSI can detect coexisting pathologies in the optic nerves of TBI mice. Conclusion DBSI provides an imaging modality capable of detecting subclinical changes of indirect TON in TBI mice.
Collapse
Affiliation(s)
- Hsin-Chieh Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Raj Swaroop Lavadi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew D. Sauerbeck
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael Wallendorf
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Terrance T. Kummer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- VA Medical Center, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Hu Z, Sun P, George A, Zeng X, Li M, Lin TH, Ye Z, Wei X, Jiang X, Song SK, Yang R. Diffusion basis spectrum imaging detects pathological alterations in substantia nigra and white matter tracts with early-stage Parkinson's disease. Eur Radiol 2023; 33:9109-9119. [PMID: 37438642 DOI: 10.1007/s00330-023-09780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES Using diffusion basis spectrum imaging (DBSI) to examine the microstructural changes in the substantia nigra (SN) and global white matter (WM) tracts of patients with early-stage PD. METHODS Thirty-seven age- and sex-matched patients with early-stage PD and 22 healthy controls (HCs) were enrolled in this study. All participants underwent clinical assessments and diffusion-weighted MRI scans, analyzed by diffusion tensor imaging (DTI) and DBSI to assess the pathologies of PD in SN and global WM tracts. RESULTS The lower DTI fraction anisotropy (FA) was seen in SN of PD patients (PD: 0.316 ± 0.034 vs HCs: 0.331 ± 0.019, p = 0.015). The putative cells marker-DBSI-restricted fraction (PD: 0.132 ± 0.051 vs HCs: 0.105 ± 0.039, p = 0.031) and the edema/extracellular space marker-DBSI non-restricted-fraction (PD: 0.150 ± 0.052 vs HCs: 0.122 ± 0.052, p = 0.020) were both significantly higher and the density of axons/dendrites marker-DBSI fiber-fraction (PD: 0.718 ± 0.073 vs HCs: 0.773 ± 0.071, p = 0.003) was significantly lower in SN of PD patients. DBSI-restricted fraction in SN was negatively correlated with HAMA scores (r = - 0.501, p = 0.005), whereas DTI-FA was not correlated with any clinical scales. In WM tracts, only higher DTI axial diffusivity (AD) among DTI metrics was found in multiple WM regions in PD, while lower DBSI fiber-fraction and higher DBSI non-restricted-fraction were detected in multiple WM regions. DBSI non-restricted-fraction in both left fornix (cres)/stria terminalis (r = -0.472, p = 0.004) and right posterior thalamic radiation (r = - 0.467, p = 0.005) was negatively correlated with MMSE scores. CONCLUSION DBSI could potentially detect and quantify the extent of inflammatory cell infiltration, fiber/dendrite loss, and edema in both SN and WM tracts in patients with early-stage PD, a finding remains to be further investigated through more extensive longitudinal DBSI analysis. CLINICAL RELEVANCE STATEMENT Our study shows that DBSI indexes can potentially detect early-stage PD's pathological changes, with a notable ability to distinguish between inflammation and edema. This implies that DBSI has the potential to be an imaging biomarker for early PD diagnosis. KEY POINTS • Diffusion basis spectrum imaging detected higher restricted-fraction in Parkinson's disease, potentially reflecting inflammatory cell infiltration. • Diffusion basis spectrum imaging detected higher non-restricted-fraction and lower fiber-fraction in Parkinson's disease, indicating the presence of edema and/or dopaminergic neuronal/dendritic loss. • Diffusion basis spectrum imaging metrics correlated with non-motor symptoms, suggesting its potential diagnostic role to detect early-stage PD dysfunctions.
Collapse
Affiliation(s)
- Zexuan Hu
- Department of Radiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangdong, 510310, Guangzhou, China
| | - Peng Sun
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Room 2313, 4525 Scott Ave, Campus Box 8227, St. Louis, MO, 63110-1093, USA
| | - Ajit George
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Room 2313, 4525 Scott Ave, Campus Box 8227, St. Louis, MO, 63110-1093, USA
| | - Xiangling Zeng
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, #1 Panfu Road, Yuexiu District, Guangdong, 510180, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, #1 Panfu Road, Yuexiu District, Guangdong, 510180, Guangzhou, China
| | - Tsen-Hsuan Lin
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Room 2313, 4525 Scott Ave, Campus Box 8227, St. Louis, MO, 63110-1093, USA
| | - Zezhong Ye
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Room 2313, 4525 Scott Ave, Campus Box 8227, St. Louis, MO, 63110-1093, USA
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, #1 Panfu Road, Yuexiu District, Guangdong, 510180, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, #1 Panfu Road, Yuexiu District, Guangdong, 510180, Guangzhou, China
| | - Sheng-Kwei Song
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Room 2313, 4525 Scott Ave, Campus Box 8227, St. Louis, MO, 63110-1093, USA.
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, #1 Panfu Road, Yuexiu District, Guangdong, 510180, Guangzhou, China.
| |
Collapse
|
3
|
Criswell SR, Nielsen SS, Faust IM, Shimony JS, White RL, Lenox-Krug J, Racette BA. Neuroinflammation and white matter alterations in occupational manganese exposure assessed by diffusion basis spectrum imaging. Neurotoxicology 2023; 97:25-33. [PMID: 37127223 PMCID: PMC10524700 DOI: 10.1016/j.neuro.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To evaluate in-vivo neuroinflammation and white matter (WM) microstructural integrity in occupational manganese (Mn) exposure. METHODS We assessed brain inflammation using Diffusion Basis Spectrum Imaging (DBSI) in 26 Mn-exposed welders, 17 Mn-exposed workers, and 26 non-exposed participants. Cumulative Mn exposure was estimated from work histories and the Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores were completed by a movement specialist. Tract-based Spatial Statistics allowed for whole-brain voxel-wise WM analyses to compare WM DBSI-derived measures between the Mn-exposed and non-exposed groups. Exploratory grey matter region of interest (ROI) analyses examined the presence of similar alterations in the basal ganglia. We used voxelwise general linear modeling and linear regression to evaluate the association between cumulative Mn exposure, WM or basal ganglia DBSI metrics, and UPDRS3 scores, while adjusting for age. RESULTS Mn-exposed welders had higher DBSI-derived restricted fraction (DBSI-RF), higher DBSI-derived nonrestricted fraction (DBSI-NRF), and lower DBSI-derived fiber fraction (DBSI-FF) in multiple WM tracts (all p < 0.05) in comparison to less-exposed workers and non-exposed participants. Basal ganglia ROI analyses revealed higher average caudate DBSI-NRF and DBSI-derived radial diffusion (DBSI-RD) values in Mn-exposed welders relative to non-exposed participants (p < 0.05). Caudate DBSI-NRF was also associated with greater cumulative Mn exposure and higher UPRDS3 scores. CONCLUSIONS Mn-exposed welders demonstrate greater DBSI-derived indicators of neuroinflammation-related cellularity (DBSI-RF), greater extracellular edema (DBSI-NRF), and lower apparent axonal density (DBSI-FF) in multiple WM tracts suggesting a neuroinflammatory component in the pathophysiology of Mn neurotoxicity. Caudate DBSI-NRF was positively associated with both cumulative Mn exposure and clinical parkinsonism, indicating a possible dose-dependent effect on extracellular edema with associated motor effects.
Collapse
Affiliation(s)
- Susan R Criswell
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Irene M Faust
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; John Cochran Division, St. Louis VA Medical Center, Neurology Section, 915 N. Grand Blvd, St. Louis, MO 63106, USA
| | - Jason Lenox-Krug
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Brad A Racette
- Department of Neurology, Barrow Neurological Institute, 2910 N. 3rd Ave, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 Andrews Rd, Parktown 2193, South Africa
| |
Collapse
|
4
|
Li ZA, Samara A, Ray MK, Rutlin J, Raji CA, Shimony JS, Sun P, Song SK, Hershey T, Eisenstein SA. Childhood obesity is linked to putative neuroinflammation in brain white matter, hypothalamus, and striatum. Cereb Cortex Commun 2023; 4:tgad007. [PMID: 37207193 PMCID: PMC10191798 DOI: 10.1093/texcom/tgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from the Adolescent Brain Cognitive DevelopmentSM Study. Compared with children with normal-weight, greater DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index and related anthropometrics. Comparable findings were seen in the striatum with a previously reported restriction spectrum imaging (RSI) model. Gain in waist circumference over 1 and 2 years related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related putative neuroinflammation in children.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Amjad Samara
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
| | - Mary Katherine Ray
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Cyrus A Raji
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Han RH, Johanns TM, Roberts KF, Tao Y, Luo J, Ye Z, Sun P, Blum J, Lin TH, Song SK, Kim AH. Diffusion basis spectrum imaging as an adjunct to conventional MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment effect. Neurooncol Adv 2023; 5:vdad050. [PMID: 37215950 PMCID: PMC10195207 DOI: 10.1093/noajnl/vdad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.
Collapse
Affiliation(s)
- Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tanner M Johanns
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaleigh F Roberts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yu Tao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Zhang X. Magnetic resonance imaging of the monkey fetal brain in utero. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:177-190. [PMID: 36937817 PMCID: PMC10019598 DOI: 10.13104/imri.2022.26.4.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-human primates (NHPs) are the closest living relatives of the human and play a critical role in investigating the effects of maternal viral infection and consumption of medicines, drugs, and alcohol on fetal development. With the advance of contemporary fast MRI techniques with parallel imaging, fetal MRI is becoming a robust tool increasingly used in clinical practice and preclinical studies to examine congenital abnormalities including placental dysfunction, congenital heart disease (CHD), and brain abnormalities non-invasively. Because NHPs are usually scanned under anesthesia, the motion artifact is reduced substantially, allowing multi-parameter MRI techniques to be used intensively to examine the fetal development in a single scanning session or longitudinal studies. In this paper, the MRI techniques for scanning monkey fetal brains in utero in biomedical research are summarized. Also, a fast imaging protocol including T2-weighted imaging, diffusion MRI, resting-state functional MRI (rsfMRI) to examine rhesus monkey fetal brains in utero on a clinical 3T scanner is introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, Georgia, 30329, USA
| |
Collapse
|
7
|
3-Dimensional Immunostaining and Automated Deep-Learning Based Analysis of Nerve Degeneration. Int J Mol Sci 2022; 23:ijms232314811. [PMID: 36499143 PMCID: PMC9739543 DOI: 10.3390/ijms232314811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease driven by inflammation and demyelination in the brain, spinal cord, and optic nerve. Optic neuritis, characterized by inflammation and demyelination of the optic nerve, is a symptom in many patients with MS. The optic nerve is the highway for visual information transmitted from the retina to the brain. It contains axons from the retinal ganglion cells (RGCs) that reside in the retina, myelin forming oligodendrocytes and resident microglia and astrocytes. Inflammation, demyelination, and axonal degeneration are also present in the optic nerve of mice subjected to experimental autoimmune encephalomyelitis (EAE), a preclinical mouse model of MS. Monitoring the optic nerve in EAE is a useful strategy to study the presentation and progression of pathology in the visual system; however, current approaches have relied on sectioning, staining and manual quantification. Further, information regarding the spatial load of lesions and inflammation is dependent on the area of sectioning. To better characterize cellular pathology in the EAE model, we employed a tissue clearing and 3D immunolabelling and imaging protocol to observe patterns of immune cell infiltration and activation throughout the optic nerve. Increased density of TOPRO staining for nuclei captured immune cell infiltration and Iba1 immunostaining was employed to monitor microglia and macrophages. Axonal degeneration was monitored by neurofilament immunolabelling to reveal axonal swellings throughout the optic nerve. In parallel, we developed a convolutional neural network with a UNet architecture (CNN-UNet) called BlebNet for automated identification and quantification of axonal swellings in whole mount optic nerves. Together this constitutes a toolkit for 3-dimensional immunostaining to monitor general optic nerve pathology and fast automated quantification of axonal defects that could also be adapted to monitor axonal degeneration and inflammation in other neurodegenerative disease models.
Collapse
|
8
|
Kilgore CB, Strain JF, Nelson B, Cooley SA, Rosenow A, Glans M, Cade WT, Reeds DN, Paul RH, Ances BM. Cardiorespiratory Fitness Is Associated With Better White Matter Integrity in Persons Living With HIV. J Acquir Immune Defic Syndr 2022; 89:558-565. [PMID: 34966145 PMCID: PMC9058177 DOI: 10.1097/qai.0000000000002907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite improved survival rates, neurocognitive impairment persists in persons living with HIV (PLWH). An active lifestyle is linked to improved cognition among PLWH, yet the neural substrates remain unclear. Diffusion tensor imaging and diffusion basis spectrum imaging measure HIV-related changes in brain white matter integrity. We used these measures of structural brain integrity to assess white matter changes, physical fitness, and cognition in a cross-sectional study of PLWH. METHODS Forty-four virologically well-controlled PLWH were recruited (average age of 56 years, a median recent CD4+ count of 682 cells/mm3). Diffusion tensor imaging -derived fractional anisotropy (FA) and diffusion basis spectrum imaging-derived axonal density were calculated. Cardiorespiratory fitness [maximal volume of oxygen consumption (VO2 max)] was measured by performing indirect calorimetry during exercise to volitional exhaustion. Cardiovascular risk was assessed by the Framingham risk score. Neuropsychological performance (NP) testing evaluated learning, memory, psychomotor/processing speed, and executive function. Partial correlations assessed the relationships among cardiorespiratory fitness, neuroimaging, NP, and HIV clinical metrics (CD4+ count and time since diagnosis). RESULTS Higher VO2 max was associated with higher FA and higher axonal density in multiple white matter tracts, including the corticospinal tract and superior longitudinal fasciculus. Better NP in the motor/psychomotor domain was positively associated with FA and axonal density in diverse tracts including those associated with motor and visuospatial processing. However, higher VO2 max was not associated with NP or HIV clinical metrics. CONCLUSIONS An active lifestyle promoting cardiorespiratory fitness may lead to better white matter integrity and decreased susceptibility to cognitive decline in virologically well-controlled PLWH.
Collapse
Affiliation(s)
- Collin B Kilgore
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Brittany Nelson
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Sarah A Cooley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Alexander Rosenow
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Michelle Glans
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | - Dominic N Reeds
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Robert H Paul
- Department of Psychology, University of Missouri-St. Louis, St. Louis, MO
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO; and
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
9
|
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin Ultrasound CT MR 2021; 42:490-506. [PMID: 34537117 DOI: 10.1053/j.sult.2021.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain "in vivo", and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications.
Collapse
Affiliation(s)
- Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain.
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Center for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; E-health Center, Universitat Oberta de Catalunya. Barcelona. Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| |
Collapse
|
10
|
Yang R, Lin TH, Zhan J, Lai S, Song C, Sun P, Ye Z, Wallendorf M, George A, Cross AH, Song SK. Diffusion basis spectrum imaging measures anti-inflammatory and neuroprotective effects of fingolimod on murine optic neuritis. NEUROIMAGE-CLINICAL 2021; 31:102732. [PMID: 34166868 PMCID: PMC8240023 DOI: 10.1016/j.nicl.2021.102732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 10/30/2022]
Abstract
OBJECTIVE To prospectively determine whether diffusion basis spectrum imaging (DBSI) detects, differentiates and quantitates coexisting inflammation, demyelination, axonal injury and axon loss in mice with optic neuritis (ON) due to experimental autoimmune encephalomyelitis (EAE), and to determine if DBSI accurately measures effects of fingolimod on underlying pathology. METHODS EAE was induced in 7-week-old C57BL/6 female mice. Visual acuity (VA) was assessed daily to detect onset of ON after which daily oral-treatment with either fingolimod (1 mg/kg) or saline was given for ten weeks. In vivo DBSI scans of optic nerves were performed at baseline, 2-, 6- and 10-weeks post treatment. DBSI-derived metrics including restricted isotropic diffusion tensor fraction (putatively reflecting cellularity), non-restricted isotropic diffusion tensor fraction (putatively reflecting vasogenic edema), DBSI-derived axonal volume, axial diffusivity, λ∥ (putatively reflecting axonal integrity), and increased radial diffusivity, λ⊥ (putatively reflecting demyelination). Mice were killed immediately after the last DBSI scan for immunohistochemical assessment. RESULTS Optic nerves of fingolimod-treated mice exhibited significantly better (p < 0.05) VA than saline-treated group at each time point. During ten-week of treatment, DBSI-derived non-restricted and restricted-isotropic-diffusion-tensor fractions, and axonal volumes were not significantly different (p > 0.05) from the baseline values in fingolimod-treated mice. Transient DBSI-λ∥ decrease and DBSI-λ⊥ increase were detected during Fingolimod treatment. DBSI-derived metrics assessed in vivo significantly correlated (p < 0.05) with the corresponding histological markers. CONCLUSION DBSI was used to assess changes of the underlying optic nerve pathologies in EAE mice with ON, exhibiting great potential as a noninvasive outcome measure for monitoring disease progression and therapeutic efficacy for MS.
Collapse
Affiliation(s)
- Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Zhan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shengsheng Lai
- Department of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China
| | - Chunyu Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Wallendorf
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ajit George
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Vavasour IM, Sun P, Graf C, Yik JT, Kolind SH, Li DK, Tam R, Sayao AL, Schabas A, Devonshire V, Carruthers R, Traboulsee A, Moore GW, Song SK, Laule C. Characterization of multiple sclerosis neuroinflammation and neurodegeneration with relaxation and diffusion basis spectrum imaging. Mult Scler 2021; 28:418-428. [PMID: 34132126 DOI: 10.1177/13524585211023345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Advanced magnetic resonance imaging (MRI) methods can provide more specific information about various microstructural tissue changes in multiple sclerosis (MS) brain. Quantitative measurement of T1 and T2 relaxation, and diffusion basis spectrum imaging (DBSI) yield metrics related to the pathology of neuroinflammation and neurodegeneration that occurs across the spectrum of MS. OBJECTIVE To use relaxation and DBSI MRI metrics to describe measures of neuroinflammation, myelin and axons in different MS subtypes. METHODS 103 participants (20 clinically isolated syndrome (CIS), 33 relapsing-remitting MS (RRMS), 30 secondary progressive MS and 20 primary progressive MS) underwent quantitative T1, T2, DBSI and conventional 3T MRI. Whole brain, normal-appearing white matter, lesion and corpus callosum MRI metrics were compared across MS subtypes. RESULTS A gradation of MRI metric values was seen from CIS to RRMS to progressive MS. RRMS demonstrated large oedema-related differences, while progressive MS had the most extensive abnormalities in myelin and axonal measures. CONCLUSION Relaxation and DBSI-derived MRI measures show differences between MS subtypes related to the severity and composition of underlying tissue damage. RRMS showed oedema, demyelination and axonal loss compared with CIS. Progressive MS had even more evidence of increased oedema, demyelination and axonal loss compared with CIS and RRMS.
Collapse
Affiliation(s)
- Irene M Vavasour
- Department of Radiology, The University of British Columbia, UBC Hospital, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| | - Peng Sun
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Carina Graf
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Jackie T Yik
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada/Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada/Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - David Kb Li
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Gr Wayne Moore
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada/Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Sheng-Kwei Song
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Cornelia Laule
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada/Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada/Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Lin TH, Zhan J, Song C, Wallendorf M, Sun P, Niu X, Yang R, Cross AH, Song SK. Diffusion Basis Spectrum Imaging Detects Axonal Loss After Transient Dexamethasone Treatment in Optic Neuritis Mice. Front Neurosci 2021; 14:592063. [PMID: 33551721 PMCID: PMC7862582 DOI: 10.3389/fnins.2020.592063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
Optic neuritis is a frequent first symptom of multiple sclerosis (MS) for which corticosteroids are a widely employed treatment option. The Optic Neuritis Treatment Trial (ONTT) reported that corticosteroid treatment does not improve long-term visual acuity, although the evolution of underlying pathologies is unclear. In this study, we employed non-invasive diffusion basis spectrum imaging (DBSI)-derived fiber volume to quantify 11% axonal loss 2 months after corticosteroid treatment (vs. baseline) in experimental autoimmune encephalomyelitis mouse optic nerves affected by optic neuritis. Longitudinal DBSI was performed at baseline (before immunization), after a 2-week corticosteroid treatment period, and 1 and 2 months after treatment, followed by histological validation of neuropathology. Pathological metrics employed to assess the optic nerve revealed axonal protection and anti-inflammatory effects of dexamethasone treatment that were transient. Two months after treatment, axonal injury and loss were indistinguishable between PBS- and dexamethasone-treated optic nerves, similar to results of the human ONTT. Our findings in mice further support that corticosteroid treatment alone is not sufficient to prevent eventual axonal loss in ON, and strongly support the potential of DBSI as an in vivo imaging outcome measure to assess optic nerve pathology.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jie Zhan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Radiology, The First Affiliated Hospital, Nanchang University, Jiangxi, China
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael Wallendorf
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuan Niu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ruimeng Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Ye Z, Price RL, Liu X, Lin J, Yang Q, Sun P, Wu AT, Wang L, Han RH, Song C, Yang R, Gary SE, Mao DD, Wallendorf M, Campian JL, Li JS, Dahiya S, Kim AH, Song SK. Diffusion Histology Imaging Combining Diffusion Basis Spectrum Imaging (DBSI) and Machine Learning Improves Detection and Classification of Glioblastoma Pathology. Clin Cancer Res 2020; 26:5388-5399. [PMID: 32694155 DOI: 10.1158/1078-0432.ccr-20-0736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Glioblastoma (GBM) is one of the deadliest cancers with no cure. While conventional MRI has been widely adopted to examine GBM clinically, accurate neuroimaging assessment of tumor histopathology for improved diagnosis, surgical planning, and treatment evaluation remains an unmet need in the clinical management of GBMs. EXPERIMENTAL DESIGN We employ a novel diffusion histology imaging (DHI) approach, combining diffusion basis spectrum imaging (DBSI) and machine learning, to detect, differentiate, and quantify areas of high cellularity, tumor necrosis, and tumor infiltration in GBM. RESULTS Gadolinium-enhanced T1-weighted or hyperintense fluid-attenuated inversion recovery failed to reflect the morphologic complexity underlying tumor in patients with GBM. Contrary to the conventional wisdom that apparent diffusion coefficient (ADC) negatively correlates with increased tumor cellularity, we demonstrate disagreement between ADC and histologically confirmed tumor cellularity in GBM specimens, whereas DBSI-derived restricted isotropic diffusion fraction positively correlated with tumor cellularity in the same specimens. By incorporating DBSI metrics as classifiers for a supervised machine learning algorithm, we accurately predicted high tumor cellularity, tumor necrosis, and tumor infiltration with 87.5%, 89.0%, and 93.4% accuracy, respectively. CONCLUSIONS Our results suggest that DHI could serve as a favorable alternative to current neuroimaging techniques in guiding biopsy or surgery as well as monitoring therapeutic response in the treatment of GBM.
Collapse
Affiliation(s)
- Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Price
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Xiran Liu
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Joshua Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Qingsong Yang
- Department of Radiology, Changhai Hospital, Yangpu District, Shanghai, China
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Anthony T Wu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Liang Wang
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Sam E Gary
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Diane D Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Wallendorf
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Jian L Campian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jr-Shin Li
- Department of Electrical & System Engineering, Washington University, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Ye Z, George A, Wu AT, Niu X, Lin J, Adusumilli G, Naismith RT, Cross AH, Sun P, Song S. Deep learning with diffusion basis spectrum imaging for classification of multiple sclerosis lesions. Ann Clin Transl Neurol 2020; 7:695-706. [PMID: 32304291 PMCID: PMC7261762 DOI: 10.1002/acn3.51037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) lesions are heterogeneous with regard to inflammation, demyelination, axonal injury, and neuronal loss. We previously developed a diffusion basis spectrum imaging (DBSI) technique to better address MS lesion heterogeneity. We hypothesized that the profiles of multiple DBSI metrics can identify lesion-defining patterns. Here we test this hypothesis by combining a deep learning algorithm using deep neural network (DNN) with DBSI and other imaging methods. METHODS Thirty-eight MS patients were scanned with diffusion-weighted imaging, magnetization transfer imaging, and standard conventional MRI sequences (cMRI). A total of 499 regions of interest were identified on standard MRI and labeled as persistent black holes (PBH), persistent gray holes (PGH), acute black holes (ABH), acute gray holes (AGH), nonblack or gray holes (NBH), and normal appearing white matter (NAWM). DBSI, diffusion tensor imaging (DTI), and magnetization transfer ratio (MTR) were applied to the 43,261 imaging voxels extracted from these ROIs. The optimized DNN with 10 fully connected hidden layers was trained using the imaging metrics of the lesion subtypes and NAWM. RESULTS Concordance, sensitivity, specificity, and accuracy were determined for the different imaging methods. DBSI-DNN derived lesion classification achieved 93.4% overall concordance with predetermined lesion types, compared with 80.2% for DTI-DNN model, 78.3% for MTR-DNN model, and 74.2% for cMRI-DNN model. DBSI-DNN also produced the highest specificity, sensitivity, and accuracy. CONCLUSIONS DBSI-DNN improves the classification of different MS lesion subtypes, which could aid clinical decision making. The efficacy and efficiency of DBSI-DNN shows great promise for clinical applications in automatic MS lesion detection and classification.
Collapse
Affiliation(s)
- Zezhong Ye
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Ajit George
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Anthony T. Wu
- Department of Biomedical EngineeringWashington UniversitySt. LouisMissouri63130
| | - Xuan Niu
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Joshua Lin
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia90033
| | - Gautam Adusumilli
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Robert T. Naismith
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Anne H. Cross
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110
| | - Peng Sun
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| | - Sheng‐Kwei Song
- Department of RadiologyWashington University School of MedicineSt. LouisMissouri63110
| |
Collapse
|
15
|
Rugel CL, Franz CK, Lee SSM. Influence of limb position on assessment of nerve mechanical properties by using shear wave ultrasound elastography. Muscle Nerve 2020; 61:616-622. [PMID: 32086830 DOI: 10.1002/mus.26842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Evaluation of nerve mechanical properties has the potential to improve assessment of nerve impairment. Shear wave velocity, as measured by using shear wave (SW) ultrasound elastography, is a promising indicator of nerve mechanical properties such as stiffness. However, elucidation of external factors that influence SW velocity, particularly nerve tension, is required for accurate interpretations. METHODS Median and ulnar nerve SW velocities were measured at proximal and distal locations with limb positions that indirectly altered nerve tension. RESULTS Shear wave velocity was greater at proximal and distal locations for limb positions that induced greater tension in the median (mean increase proximal 89.3%, distal 64%) and ulnar (mean increase proximal 91.1%, distal 37.4%) nerves. DISCUSSION Due to the influence of nerve tension when SW ultrasound elastography is used, careful consideration must be given to limb positioning.
Collapse
Affiliation(s)
- Chelsea L Rugel
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Colin K Franz
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Shirley Ryan AbilityLab, Chicago, Illinois
| | - Sabrina S M Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
16
|
Samara A, Murphy T, Strain J, Rutlin J, Sun P, Neyman O, Sreevalsan N, Shimony JS, Ances BM, Song SK, Hershey T, Eisenstein SA. Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging. Front Hum Neurosci 2020; 13:464. [PMID: 31992978 PMCID: PMC6971102 DOI: 10.3389/fnhum.2019.00464] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023] Open
Abstract
Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all corrected p < 0.05). Moreover, using region of interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were significantly greater and lower, respectively, in obese relative to non-obese individuals (Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion, these findings suggest that greater neuroinflammation-related cellularity and lower apparent axonal density are associated with human obesity and cognitive performance. Future studies are warranted to determine a potential role for neuroinflammation in obesity-related cognitive impairment.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Tatianna Murphy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeremy Strain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Nitya Sreevalsan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Sun P, George A, Perantie DC, Trinkaus K, Ye Z, Naismith RT, Song SK, Cross AH. Diffusion basis spectrum imaging provides insights into MS pathology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/2/e655. [PMID: 31871296 PMCID: PMC7011117 DOI: 10.1212/nxi.0000000000000655] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To use diffusion basis spectrum imaging (DBSI) to assess how damage to normal-appearing white matter (NAWM) in the corpus callosum (CC) influences neurologic impairment in people with MS (pwMS). Methods Using standard MRI, the primary pathologies in MS of axonal injury/loss, demyelination, and inflammation are not differentiated well. DBSI has been shown in animal models, phantoms, and in biopsied and autopsied human CNS tissues to distinguish these pathologies. Fifty-five pwMS (22 relapsing-remitting, 17 primary progressive, and 16 secondary progressive) and 13 healthy subjects underwent DBSI analyses of NAWM of the CC, the main WM tract connecting the cerebral hemispheres. Tract-based spatial statistics were used to minimize misalignment. Results were correlated with scores from a battery of clinical tests focused on deficits typical of MS. Results Normal-appearing CC in pwMS showed reduced fiber fraction and increased nonrestricted isotropic fraction, with the most extensive abnormalities in secondary progressive MS (SPMS). Reduced DBSI-derived fiber fraction and increased DBSI-derived nonrestricted isotropic fraction of the CC correlated with worse cognitive scores in pwMS. Increased nonrestricted isotropic fraction in the body of the CC correlated with impaired hand function in the SPMS cohort. Conclusions DBSI fiber fraction and nonrestricted isotropic fraction were the most useful markers of injury in the NAWM CC. These 2 DBSI measures reflect axon loss in animal models. Because of its ability to reveal axonal loss, as well as demyelination, DBSI may be a useful outcome measure for trials of CNS reparative treatments.
Collapse
Affiliation(s)
- Peng Sun
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Ajit George
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Dana C Perantie
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Kathryn Trinkaus
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Zezhong Ye
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Robert T Naismith
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Sheng-Kwei Song
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Anne H Cross
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
18
|
Shirani A, Sun P, Trinkaus K, Perantie DC, George A, Naismith RT, Schmidt RE, Song SK, Cross AH. Diffusion basis spectrum imaging for identifying pathologies in MS subtypes. Ann Clin Transl Neurol 2019; 6:2323-2327. [PMID: 31588688 PMCID: PMC6856605 DOI: 10.1002/acn3.50903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/24/2019] [Accepted: 09/04/2019] [Indexed: 11/11/2022] Open
Abstract
Diffusion basis spectrum imaging (DBSI) combines discrete anisotropic diffusion tensors and the spectrum of isotropic diffusion tensors to model the underlying multiple sclerosis (MS) pathologies. We used clinical MS subtypes as a surrogate of underlying pathologies to assess DBSI as a biomarker of pathology in 55 individuals with MS. Restricted isotropic fraction (reflecting cellularity) and fiber fraction (representing apparent axonal density) were the most important DBSI metrics to classify MS using brain white matter lesions. These DBSI metrics outperformed lesion volume. When analyzing the normal‐appearing corpus callosum, the most significant DBSI metrics were fiber fraction, radial diffusivity (reflecting myelination), and nonrestricted isotropic fraction (representing edema). This study provides preliminary evidence supporting the ability of DBSI as a potential noninvasive biomarker of MS neuropathology.
Collapse
Affiliation(s)
- Afsaneh Shirani
- The John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Division of Multiple Sclerosis, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Peng Sun
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kathryn Trinkaus
- Biostatistics Shared Resource and Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Dana C Perantie
- The John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ajit George
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert T Naismith
- The John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Sheng-Kwei Song
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Anne H Cross
- The John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Abbatemarco JR, Fox RJ, Li H, Ontaneda D. Vitamin D and MRI measures in progressive multiple sclerosis. Mult Scler Relat Disord 2019; 35:276-282. [PMID: 31445221 DOI: 10.1016/j.msard.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vitamin D deficiency is a proposed risk factor for multiple sclerosis (MS), but its role in progressive MS is not well understood. OBJECTIVE To examine the association between vitamin D levels and MRI features in primary progressive (PPMS) and secondary progressive MS (SPMS). METHODS Serum 25-hydroxyvitamin D (25[OH]D) and 25-hydroxyvitamin D3 (25[OH]D3) levels were obtained from 267 subjects enrolled into the Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis (SPRINT-MS). Associations between imaging data and vitamin D levels was determined using Pearson or Spearman correlation and multivariate regression analyses. RESULTS 267 patients (age 55.6 ± 7.4, 47.2% male, and 51.3% PPMS) were evaluated with quantitative MRI and vitamin D levels. 25(OH)D and 25(OH)D3 were similar between PPMS and SPMS. There was no significant association between vitamin D and T1/2 lesion volume and brain parenchymal fraction. Modest associations were found between 25(OH)D3 and whole brain-magnetization transfer ratio (WB-MTR, r = 0.17, p = 0.007) and normal appearing grey matter MTR (NAGM-MTR, r = 0.15, p = 0.02). CONCLUSIONS 25(OH)D3 levels were not associated with brain volume or lesional measures in progressive MS contrary to what has been described in relapsing remitting MS. An association between WB-MTR and NAGM-MTR suggest higher vitamin D levels may exert a protective role on myelin content in progressive MS.
Collapse
Affiliation(s)
- Justin R Abbatemarco
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hong Li
- Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
20
|
Manogaran P, Samardzija M, Schad AN, Wicki CA, Walker-Egger C, Rudin M, Grimm C, Schippling S. Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis. Acta Neuropathol Commun 2019; 7:116. [PMID: 31315675 PMCID: PMC6637505 DOI: 10.1186/s40478-019-0768-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
The exact mechanisms and temporal sequence of neurodegeneration in multiple sclerosis are still unresolved. The visual pathway including its unmyelinated retinal axons, can serve as a prototypic model of neurodegeneration in experimental optic neuritis. We conducted a longitudinal study combining retinal imaging through optical coherence tomography (OCT) with immunohistochemical analyses of retinal and optic nerve tissue at various time points in experimental autoimmune encephalomyelitis (EAE).Inner retinal layer (IRL) thickness was measured in 30 EAE and 14 healthy control C57BL/6 J mice using OCT. Distribution of marker proteins was assessed by immunofluorescence staining and retinal mRNA levels were assayed using real-time PCR. Histological morphology was evaluated on light and electron microscopy images.Signs of inflammatory edema 11 days post immunisation coincided with IRL thickening, while neuro-axonal degeneration throughout the disease course contributed to IRL thinning observed after 20 days post immunisation. Retinal pathology, including axonal transport impairment, was observed early, prior to cellular infiltration (i.e. T-cells) in the optic nerve 11 days post immunisation. Yet, the effects of early retinal damage on OCT-derived readouts were outweighed by the initial inflammatory edema. Early microglial activation and astrocytosis was detected in the retina prior to retinal ganglion cell loss and persisted until 33 days post immunisation. Müller cell reactivity (i.e. aquaporin-4 and glutamine synthetase decrease) presented after 11 days post immunisation in the IRL. Severe neuro-axonal degeneration was observed in the optic nerve and retina until 33 days post immunisation.Initial signs of retinal pathology subsequent to early glial activity, suggests a need for prophylactic treatment of optic neuritis. Following early inflammation, Müller cells possibly respond to retinal pathology with compensatory mechanisms. Although the majority of the IRL damage observed is likely due to retrograde degeneration following optic neuritis, initial pathology, possibly due to gliosis, may contribute further to IRL thinning. These results add morphological substrate to our OCT findings. The extent and rapid onset of axonal and neuronal damage in this model appears relevant for testing interventions scaled to human optic neuritis.
Collapse
Affiliation(s)
- Praveena Manogaran
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Zurich, Switzerland
| | - Anaïs Nura Schad
- Department of Biology, University of Zurich, Zurich, Switzerland
| | - Carla Andrea Wicki
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Wang N, Zhang J, Cofer G, Qi Y, Anderson RJ, White LE, Allan Johnson G. Neurite orientation dispersion and density imaging of mouse brain microstructure. Brain Struct Funct 2019; 224:1797-1813. [PMID: 31006072 DOI: 10.1007/s00429-019-01877-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Advanced biophysical models like neurite orientation dispersion and density imaging (NODDI) have been developed to estimate the microstructural complexity of voxels enriched in dendrites and axons for both in vivo and ex vivo studies. NODDI metrics derived from high spatial and angular resolution diffusion MRI using the fixed mouse brain as a reference template have not yet been reported due in part to the extremely long scan time required. In this study, we modified the three-dimensional diffusion-weighted spin-echo pulse sequence for multi-shell and undersampling acquisition to reduce the scan time. This allowed us to acquire several exhaustive datasets that would otherwise not be attainable. NODDI metrics were derived from a complex 8-shell diffusion (1000-8000 s/mm2) dataset with 384 diffusion gradient-encoding directions at 50 µm isotropic resolution. These provided a foundation for exploration of tradeoffs among acquisition parameters. A three-shell acquisition strategy covering low, medium, and high b values with at least angular resolution of 64 is essential for ex vivo NODDI experiments. The good agreement between neurite density index (NDI) and the orientation dispersion index (ODI) with the subsequent histochemical analysis of myelin and neuronal density highlights that NODDI could provide new insight into the microstructure of the brain. Furthermore, we found that NDI is sensitive to microstructural variations in the corpus callosum using a well-established demyelination cuprizone model. The study lays the ground work for developing protocols for routine use of high-resolution NODDI method in characterizing brain microstructure in mouse models.
Collapse
Affiliation(s)
- Nian Wang
- Center for In Vivo Microscopy, Department of Radiology, Duke Medical Center, Duke University, 3302, Durham, NC, 27710, USA.
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
| | - Jieying Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Gary Cofer
- Center for In Vivo Microscopy, Department of Radiology, Duke Medical Center, Duke University, 3302, Durham, NC, 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke Medical Center, Duke University, 3302, Durham, NC, 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Department of Radiology, Duke Medical Center, Duke University, 3302, Durham, NC, 27710, USA
| | - Leonard E White
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke Medical Center, Duke University, 3302, Durham, NC, 27710, USA.
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Kim JW, Andersson JL, Seifert AC, Sun P, Song SK, Dula C, Naismith RT, Xu J. Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging. Neuroimage 2019; 196:102-113. [PMID: 30930313 DOI: 10.1016/j.neuroimage.2019.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo human optic nerve diffusion magnetic resonance imaging (dMRI) is technically challenging with two outstanding issues not yet well addressed: (i) non-linear optic nerve movement, independent of head motion, and (ii) effect from partial-volumed cerebrospinal fluid or interstitial fluid such as in edema. In this work, we developed a non-linear optic nerve registration algorithm for improved volume alignment in axial high resolution optic nerve dMRI. During eyes-closed dMRI data acquisition, optic nerve dMRI measurements by diffusion tensor imaging (DTI) with and without free water elimination (FWE), and by diffusion basis spectrum imaging (DBSI), as well as optic nerve motion, were characterized in healthy adults at various locations along the posterior-to-anterior dimension. Optic nerve DTI results showed consistent trends in microstructural parametric measurements along the posterior-to-anterior direction of the entire intraorbital optic nerve, while the anterior portion of the intraorbital optic nerve exhibited the largest spatial displacement. Multi-compartmental dMRI modeling, such as DTI with FWE or DBSI, was less subject to spatially dependent biases in diffusivity and anisotropy measurements in the optic nerve which corresponded to similar spatial distributions of the estimated fraction of isotropic diffusion components. DBSI results derived from our clinically feasible (∼10 min) optic nerve dMRI protocol in this study are consistent with those from small animal studies, which provides the basis for evaluating the utility of multi-compartmental dMRI modeling in characterizing coexisting pathophysiology in human optic neuropathies.
Collapse
Affiliation(s)
- Joo-Won Kim
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jesper Lr Andersson
- Wellcome Center for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Alan C Seifert
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney Dula
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Lin TH, Sun P, Hallman M, Hwang FC, Wallendorf M, Ray WZ, Spees WM, Song SK. Noninvasive Quantification of Axonal Loss in the Presence of Tissue Swelling in Traumatic Spinal Cord Injury Mice. J Neurotrauma 2019; 36:2308-2315. [PMID: 30501460 DOI: 10.1089/neu.2018.6016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neuroimaging plays an important role in assessing axonal pathology after traumatic spinal cord injury. However, coexisting inflammation confounds imaging assessment of the severity of axonal injury. Herein, we applied diffusion basis spectrum imaging (DBSI) to quantitatively differentiate and quantify underlying pathologies in traumatic spinal cord injury at 3 days post-injury. Results reveal that DBSI was capable of detecting and differentiating axonal injury, demyelination, and inflammation-associated edema and cell infiltration in contusion-injured spinal cords. DBSI was able to detect and quantify axonal loss in the presence of white matter tract swelling. The DBSI-defined apparent axonal volume correlated with the corresponding histological markers. DBSI-derived pathological metrics could serve as neuroimaging biomarkers to differentiate and quantify coexisting white matter pathologies in spinal cord injury, providing potential surrogate outcome measures to assess spinal cord injury progression and response to therapies.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Peng Sun
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Mitchell Hallman
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Fay C Hwang
- 1Department of Radiology, Washington University, St. Louis, Missouri
| | - Michael Wallendorf
- 2Department of Biostatistics, Washington University, St. Louis, Missouri
| | - Wilson Z Ray
- 3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri.,4Department of Neurosurgery, Washington University, St. Louis, Missouri.,5Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - William M Spees
- 1Department of Radiology, Washington University, St. Louis, Missouri.,3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri
| | - Sheng-Kwei Song
- 1Department of Radiology, Washington University, St. Louis, Missouri.,3Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri.,5Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
24
|
Tsai CY, Poon YY, Chan JYH, Chan SHH. Baroreflex functionality in the eye of diffusion tensor imaging. J Physiol 2018; 597:41-55. [PMID: 30325020 DOI: 10.1113/jp277008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023] Open
Abstract
By applying diffusion tensor imaging (DTI) as a physiological tool to evaluate changes in functional connectivity between key brainstem nuclei in the baroreflex neural circuits of mice and rats, recent work has revealed several hitherto unidentified phenomena regarding baroreflex functionality. (1) The presence of robust functional connectivity between nucleus tractus solitarii (NTS) and nucleus ambiguus (NA) or rostral ventrolateral medulla (RVLM) offers a holistic view on the moment-to-moment modus operandi of the cardiac vagal baroreflex or baroreflex-mediated sympathetic vasomotor tone. (2) Under pathophysiological conditions (e.g. neurogenic hypertension), the disruption of functional connectivity between key nuclei in the baroreflex circuits is reversible. However, fatality ensues on progression from pathophysiological to pathological conditions (e.g. hepatic encephalopathy) when the functional connectivity between NTS and NA or RVLM is irreversibly severed. (3) The absence of functional connectivity between the NTS and caudal ventrolateral medulla (CVLM) necessitates partial rewiring of the classical neural circuit that includes CVLM as an inhibitory intermediate between the NTS and RVLM. (4) Sustained functional connectivity between the NTS and NA is responsible for the vital period between brain death and the inevitable cardiac death. (5) Reduced functional connectivity between the NTS and RVLM or NA points to inherent anomalous baroreflex functionality in floxed and Cre-Lox mice. (6) Disrupted NTS-NA functional connectivity in Flk-1 (VEGFR2) deficient mice offers an explanation for the hypertensive side-effect of anti-vascular endothelial growth factor therapy (anti-VEGF) therapy. These newly identified baroreflex functionalities revealed by DTI bear clinical and therapeutic implications.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yan-Yuen Poon
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
25
|
Shirani A, Sun P, Schmidt RE, Trinkaus K, Naismith RT, Song SK, Cross AH. Histopathological correlation of diffusion basis spectrum imaging metrics of a biopsy-proven inflammatory demyelinating brain lesion: A brief report. Mult Scler 2018; 25:1937-1941. [PMID: 29992856 DOI: 10.1177/1352458518786072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diffusion basis spectrum imaging (DBSI) models diffusion-weighted magnetic resonance imaging (MRI) signals as a combination of discrete anisotropic diffusion tensors and a spectrum of isotropic diffusion tensors. Here, we report the histopathological correlates of DBSI in the biopsied brain tissue of a patient with an inflammatory demyelinating lesion typical of multiple sclerosis (MS). Increased radial diffusivity (marker of demyelination), decreased fiber fraction (apparent axonal density), elevated nonrestricted isotropic fraction (marker of vasogenic edema), but unchanged axial diffusivity (marker of integrity of residual axons) seen in the lesion appeared consistent with histopathological findings of inflammatory demyelination with relative axonal sparing. Our report supports the application of DBSI as a biomarker in human studies of MS.
Collapse
Affiliation(s)
- Afsaneh Shirani
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Peng Sun
- Department of Radiology, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Robert E Schmidt
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Kathryn Trinkaus
- Siteman Biostatistics Shared Resource, Siteman Cancer Center and School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Robert T Naismith
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Anne H Cross
- John L. Trotter Multiple Sclerosis Center and Neuroimmunology Section, Department of Neurology, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
26
|
Using the Anterior Visual System to Assess Neuroprotection and Remyelination in Multiple Sclerosis Trials. Curr Neurol Neurosci Rep 2018; 18:49. [PMID: 29923130 DOI: 10.1007/s11910-018-0858-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Clinical trials using agents directed at neuroprotection and remyelination in multiple sclerosis (MS) are needed. As optic neuritis (ON) is common in people with MS and the pathology of ON is similar to other MS lesions in the brain, measurements of the anterior visual system are frequently utilized in neuroprotection and remyelination trials. Understanding the strengths and weaknesses of the measurements is vital when interpreting the results of this research. RECENT FINDINGS Techniques such as visual evoked potentials (VEP) and optical coherence tomography (OCT) are well established in MS and are thought to measure axonal integrity and myelination. Novel imaging techniques can also be used in conjunction with these measurements to provide better insight into optic nerve structure and function. Magnetization transfer imaging (MTR) together with optic nerve area and volume measures neurodegeneration; diffusion tensor imaging (DTI) measures myelination status and neurodegeneration. However, these techniques require various levels of experience to interpret, and all can be confounded by ocular motion and surrounding fat and bone. This article provides a review of established and novel techniques to measure the anterior visual system in multiple sclerosis with a focus on the evidence to support their use as outcome measures in clinical trials focused on neuroprotection and remyelination therapies.
Collapse
|
27
|
Manogaran P, Walker-Egger C, Samardzija M, Waschkies C, Grimm C, Rudin M, Schippling S. Exploring experimental autoimmune optic neuritis using multimodal imaging. Neuroimage 2018; 175:327-339. [PMID: 29627590 DOI: 10.1016/j.neuroimage.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.
Collapse
Affiliation(s)
- Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Conny Waschkies
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Visceral and Transplant Surgery Research, University Hospital Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland; Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Zhan J, Lin TH, Libbey JE, Sun P, Ye Z, Song C, Wallendorf M, Gong H, Fujinami RS, Song SK. Diffusion Basis Spectrum and Diffusion Tensor Imaging Detect Hippocampal Inflammation and Dendritic Injury in a Virus-Induced Mouse Model of Epilepsy. Front Neurosci 2018; 12:77. [PMID: 29497358 PMCID: PMC5818459 DOI: 10.3389/fnins.2018.00077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Hippocampal CA1 inflammation and dendritic loss are common in epilepsy. Quantitative detection of coexisting brain inflammation and injury could be beneficial in monitoring disease progression and assessing therapeutic efficacy. In this work, we used conventional diffusion tensor imaging (DTI, known to detect axonal injury and demyelination) and a novel diffusion basis spectrum imaging (DBSI, known to detect axonal injury, demyelination, and inflammation) to detect hippocampal CA1 lesions resulting from neuronal dendritic injury/loss and concomitant inflammation in Theiler's murine encephalomyelitis virus (TMEV)-induced seizure mice. Following the cross-sectional ex vivo diffusion magnetic resonance imaging measurements, immunohistochemistry was performed to validate DTI and DBSI findings. Both DTI and DBSI detected immunohistochemistry-confirmed dendritic injury in the hippocampal CA1 region. Additionally, DBSI-derived restricted isotropic diffusion tensor fraction correlated with 4',6-diamidine-2'-phenylindole dihydrochloride (DAPI)-positive nucleus counts, and DBSI-derived fiber fraction correlated with dendrite density assessed by microtubule-associated protein 2 staining. DTI-derived fractional anisotropy (FA) correlated with dendrite density and negatively correlated with DAPI-positive nucleus counts. Although both DTI and DBSI detected hippocampal injury/inflammation, DTI-FA was less specific than DBSI-derived pathological metrics for hippocampal CA1 dendritic injury and inflammation in TMEV-induced seizure mice.
Collapse
Affiliation(s)
- Jie Zhan
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Jiangxi, China.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Peng Sun
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Zezhong Ye
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Michael Wallendorf
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Honghan Gong
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Jiangxi, China
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Sheng-Kwei Song
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
29
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|