1
|
Cao G, Guo J, Yang K, Xu R, Jia X, Wang X. DCPIB Attenuates Ischemia-Reperfusion Injury by Regulating Microglial M1/M2 Polarization and Oxidative Stress. Neuroscience 2024; 551:119-131. [PMID: 38734301 DOI: 10.1016/j.neuroscience.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The inflammatory response plays an indispensable role in ischemia-reperfusion injury, the most significant of which is the inflammatory response caused by microglial polarization. Anti-inflammatory therapy is also an important remedial measure after failed vascular reconstruction. Maintaining the internal homeostasis of the brain is a crucial measure for suppressing the inflammatory response. The mechanism underlying the relationship between DCPIB, a selective blocker of volume-regulated anion channels (VRAC), and inflammation induced by cerebral ischemia-reperfusion injury is currently unclear. The purpose of this study was to investigate the relationship between DCPIB and microglial M1/M2 polarization-mediated inflammation after cerebral ischemia-reperfusion injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO). DCPIB was administered by a lateral ventricular injection within 5 min after reperfusion. Behavioral assessments were conducted at 1, 3, and 7 days after tMCAO/R. Pathological injuries were evaluated using TTC assay, HE and Nissl staining, brain water content measurement, and immunofluorescence staining. The levels of inflammatory cytokines were analyzed using qPCR and ELISA. Additionally, the phenotypic variations of microglia were examined using immunofluorescence staining. In mouse tMCAO/R model, DCPIB administration markably reduced mortality, improved behavioral performance, and alleviated pathological injury. DCPIB treatment significantly inhibited the inflammatory response, promoted the conversion of M1 microglia to M2 microglia via the MAPK signaling pathway, and ultimately protected neurons from the microglia-mediated inflammatory response. In addition, DCPIB inhibited oxidative stress induced by cerebral ischemia-reperfusion injury. In conclusion, DCPIB attenuates cerebral ischemia-reperfusion injury by regulating microglial M1/M2 polarization and oxidative stress.
Collapse
Affiliation(s)
- Guihua Cao
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Guo
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ye T, Zhang N, Zhang A, Sun X, Pang B, Wu X. The influence of ferroptosis on the in vitro OGD/R model in rat microglia. Neurol Res 2024:1-9. [PMID: 39011891 DOI: 10.1080/01616412.2024.2370205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/13/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia. METHODS Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting. RESULTS Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11. CONCLUSION Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.
Collapse
Affiliation(s)
- Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiuqi Sun
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xuemei Wu
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
4
|
Mizrachi M, Diamond B. Impact of microglia isolation and culture methodology on transcriptional profile and function. J Neuroinflammation 2024; 21:87. [PMID: 38589917 PMCID: PMC11000335 DOI: 10.1186/s12974-024-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Microglial isolation and culturing methods continue to be explored to maximize cellular yield, purity, responsiveness to stimulation and similarity to in vivo microglia. This study aims to evaluate five different microglia isolation methods-three variants of microglia isolation from neonatal mice and two variants of microglia isolation from adult mice-on transcriptional profile and response to HMGB1. METHODS Microglia from neonatal mice, age 0-3 days (P0-P3) were isolated from mixed glial cultures (MGC). We included three variations of this protocol that differed by use of GM-CSF in culture (No GM-CSF or 500 pg/mL GM-CSF), and days of culture in MGC before microglial separation (10 or 21). Protocols for studying microglia from adult mice age 6-8 weeks included isolation by adherence properties followed by 7 days of culture with 100 ng/mL GM-CSF and 100 ng/mL M-CSF (Vijaya et al. in Front Cell Neurosci 17:1082180, 2023), or acute isolation using CD11b beads (Bordt et al. in STAR Protoc 1:100035, 2020. https://doi.org/10.1016/j.xpro.2020.100035 ). Purity, yield, and RNA quality of the isolated microglia were assessed by flow cytometry, hemocytometer counting, and Bioanalyzer, respectively. Microglial responsiveness to an inflammatory stimulus, HMGB1, was evaluated by measuring TNFα, IL1β, and IFNβ concentration in supernatant by ELISA and assessing gene expression patterns using bulk mRNA sequencing. RESULTS All five methods demonstrated greater than 90% purity. Microglia from all cultures increased transcription and secretion of TNFα, IL1β, and IFNβ in response to HMGB1. RNA sequencing showed a larger number of differentially expressed genes in response to HMGB1 treatment in microglia cultured from neonates than from adult mice, with sparse changes among the three MGC culturing conditions. Additionally, cultured microglia derived from adult and microglia derived from MGCs from neonates display transcriptional signatures corresponding to an earlier developmental stage. CONCLUSION These findings suggest that while all methods provided high purity, the choice of protocol may significantly influence yield, RNA quality, baseline transcriptional profile and response to stimulation. This comparative study provides valuable insights to inform the choice of microglial isolation and culture method.
Collapse
Affiliation(s)
- Mark Mizrachi
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Betty Diamond
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
5
|
Wang W, Li J, Cui S, Li J, Ye X, Wang Z, Zhang T, Jiang X, Kong Y, Chen X, Chen YQ, Zhu S. Microglial Ffar4 deficiency promotes cognitive impairment in the context of metabolic syndrome. SCIENCE ADVANCES 2024; 10:eadj7813. [PMID: 38306420 PMCID: PMC10836723 DOI: 10.1126/sciadv.adj7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-β signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.
Collapse
Affiliation(s)
- Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Tingting Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xin Chen
- Jiangnan University Medical Center, Wuxi 214002, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
6
|
Pandya CD, Vekaria HJ, Zamorano M, Trout AL, Ritzel RM, Guzman GU, Bolden C, Sullivan PG, Gensel JC, Miller BA. Azithromycin reduces hemoglobin-induced innate neuroimmune activation. Exp Neurol 2024; 372:114574. [PMID: 37852468 DOI: 10.1016/j.expneurol.2023.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Neonatal intraventricular hemorrhage (IVH) releases blood products into the lateral ventricles and brain parenchyma. There are currently no medical treatments for IVH and surgery is used to treat a delayed effect of IVH, post-hemorrhagic hydrocephalus. However, surgery is not a cure for intrinsic brain injury from IVH, and is performed in a subacute time frame. Like many neurological diseases and injuries, innate immune activation is implicated in the pathogenesis of IVH. Innate immune activation is a pharmaceutically targetable mechanism to reduce brain injury and post-hemorrhagic hydrocephalus after IVH. Here, we tested the macrolide antibiotic azithromycin, which has immunomodulatory properties, to reduce innate immune activation in an in vitro model of microglial activation using the blood product hemoglobin (Hgb). We then utilized azithromycin in our in vivo model of IVH, using intraventricular blood injection into the lateral ventricle of post-natal day 5 rat pups. In both models, azithromycin modulated innate immune activation by several outcome measures including mitochondrial bioenergetic analysis, cytokine expression and flow cytometric analysis. This suggests that azithromycin, which is safe for neonates, could hold promise for modulating innate immune activation after IVH.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Center for Advanced Translational Stroke Science (CATSS), Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Miriam Zamorano
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America
| | - Amanda L Trout
- Center for Advanced Translational Stroke Science (CATSS), Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Rodney M Ritzel
- Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - Gary U Guzman
- Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - Christopher Bolden
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Brandon A Miller
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America.
| |
Collapse
|
7
|
Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Current methods for the microglia isolation: Overview and comparative analysis of approaches. Cell Tissue Res 2024; 395:147-158. [PMID: 38099956 DOI: 10.1007/s00441-023-03853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Microglia represent a distinct population of neuroglia, constituting ~ 10% of all CNS cells and exhibit high plasticity. Proper functioning of microglia is critical in the event of CNS damage due to the rapid modulation of their functions. Microglia are not only the first stage of immune defense against injury and infection, contributing to both the innate and adaptive local immune response, but also play a vital role in maintaining homeostasis of the brain and spinal cord. For this reason, microglia deserve special attention in the study of neuropathological responses. Studying microglia behavior in various in vivo models of neuropathologies is certainly a priority, as it allows us to evaluate the behavior in the context of the changing microenvironment of nervous tissue. However, sometimes there are some technological problems that hinder the identification of the features of intercellular interactions, ensured cooperation between microglia and other cell types. In this regard, the use of in vitro models remains relevant today, contributing to a more in-depth understanding of the mechanisms of microglial involvement in neuropathology. The methods considered in this review for obtaining an isolated culture of microglia, along with their advantages and disadvantages, can help researchers in selecting the appropriate source and method for obtaining these cells, thereby opening up opportunities for gaining new neurobiological knowledge.
Collapse
Affiliation(s)
- E R Akhmetzyanova
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia.
| | - A A Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia
| | - Y O Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
8
|
Bai X, Qiu Y, Wang J, Dong Y, Zhang T, Jin H. Panax quinquefolium saponins attenuates microglia activation following acute cerebral ischemia-reperfusion injury via Nrf2/miR-103-3p/TANK pathway. Cell Biol Int 2024; 48:201-215. [PMID: 37885132 DOI: 10.1002/cbin.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke is one of the leading causes of death and disability among adults worldwide. Intravenous thrombolysis is the only approved pharmacological treatment for acute ischemic stroke. However, reperfusion by thrombolysis will lead to the rapid activation of microglia cells which induces interferon-inflammatory response in the ischemic brain tissues. Panax quinquefolium saponins (PQS) has been proven to be effective in acute ischemic stroke, but there is no unified understanding about its specific mechanism. Here, we will report for the first time that PQS can significantly inhibit the activation of microglia cells in cerebral of MCAO rats via activation of Nrf2/miR-103-3p/TANK axis. Our results showed that PQS can directly bind to Nrf2 protein and inhibit its ubiquitination, which result in the indirectly enhancing the expression of TANK protein via transcriptional regulation on miR-103-3p, and finally to suppress the nuclear factor kappa-B dominated rapid activation of microglial cells induced by oxygen-glucose deprivation/reoxygenation vitro and cerebral ischemia-reperfusion injury in vivo. In conclusion, our study not only revealed the new mechanism of PQS in protecting against the inflammatory activation of microglia cells caused by cerebral ischemia-reperfusion injury, but also suggested that Nrf2 is a potential target for development of new drugs of ischemic stroke. More importantly, our study also reminded that miR-103-3p might be used as a prognostic biomarker for patients with ischemic stroke.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Jin
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Tsui CT, Mirkiani S, Roszko DA, Churchward MA, Mushahwar VK, Todd KG. In vitro biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia. Front Bioeng Biotechnol 2024; 12:1351087. [PMID: 38314352 PMCID: PMC10834782 DOI: 10.3389/fbioe.2024.1351087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 μm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1β), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.
Collapse
Affiliation(s)
- Christopher T. Tsui
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - David A. Roszko
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
11
|
Shen W, Wang X, Tang M, Yao L, Wan C, Niu J, Kolattukudy PE, Jin Z. Huoluo Xiaoling Pellet promotes microglia M2 polarization through increasing MCPIP1 expression for ischemia stroke alleviation. Biomed Pharmacother 2023; 164:114914. [PMID: 37236023 DOI: 10.1016/j.biopha.2023.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Huoluo Xiaoling Pellet (HXP), a Chinese patent medicine, is commonly administered for the treatment of treat ischemic strokes. MCPIP1, an inducible suppressor of the inflammatory response, is a regulator of microglial M2 polarization. This study aimed to explore whether HXP can promote microglial M2 polarization by upregulating MCPIP1 expression, consequently mitigating cerebral ischemic injury. Our study involved 85 Sprague-Dawley rats (weighing 250-280 g). We established middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation-reoxygenation (OGD/R) models with MCPIP1 knockdown to assess the effects of HXP on ischemic strokes. Our findings show that HXP reduced brain water content, improved neurological function, and inhibited the expression of inflammatory factors in the brain tissues of MCAO rats. The neuroprotective effects of HXP on cerebral ischemic injuries were compromised by MCPIP1 knockdown. Immunofluorescence results indicated that the expression of microglia marker Iba1 and M2 phenotypic marker CD206 was upregulated in MCAO rats and OGD/R-treated microglia. Administration of HXP significantly reduced Iba1 expression and facilitated CD206 expression, an effect that was counteracted by sh-MCPIP1 transfection. Western blotting revealed that HXP treatment augmented the expression of MCPIP1, microglial M2 marker proteins (CD206 and Arg1), and PPARγ, while reducing the expression of microglial M1 marker proteins (CD16 and iNOS) in MCAO rats and OGD/R-induced microglia. MCPIP1 knockdown suppressed HXP-mediated upregulation of MCPIP1, CD206, Arg1, and PPARγ, as well as the downregulation of CD16 and iNOS. Our findings suggest that HXP primarily ameliorates ischemic stroke through the upregulation of MCPIP1, which in turn induces microglial M2 polarization.
Collapse
Affiliation(s)
- Wei Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou 310000, China
| | - Xiaoguang Wang
- School of Life Science, Xiamen University, No.4221-120, Xiangan North Road, Xiamen 361100, China
| | - Meiqi Tang
- Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, China
| | - Lan Yao
- Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, China
| | - Chenyu Wan
- The Affiliated Hospital of Hangzhou Normal University, No.126 Wenzhou Road, Hangzhou 310015, China
| | - Jianli Niu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Blvd, Orlando, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Blvd, Orlando, United States
| | - Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
12
|
Chen S, Wang L, Yuan Y, Wen Y, Shu S. Electroacupuncture regulates microglia polarization via lncRNA-mediated hippo pathway after ischemic stroke. Biotechnol Genet Eng Rev 2023:1-17. [PMID: 36760060 DOI: 10.1080/02648725.2023.2177046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia polarization and microglia-mediated inflammation play a crucial role in the development of ischaemic brain injury. Electroacupuncture (EA) has the function of anti-inflammatory, which has been thoroughly validated and utilized to treat ischemic brain damage. The fundamental mechanism by which EA alleviates ischemic brain damage by decreasing microglia polarization and microglia-mediated inflammation, however, remains unknown. In the current study, the activation of microglia and inflammatory cytokines was analyzed to confirm the anti-inflammatory function of EA in middle cerebral artery occlusion (MCAO) rats. Whole-transcriptome sequencing was used to examine the differentially expressed lncRNAs in the control, MCAO, and MCAO +EA groups. Our findings demonstrated that EA treatment reduced microglia activation and inflammatory cytokine production. In addition, there are 44 lncRNAs were found significantly different in three groups, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the predicted targets of these lncRNAs suggested that the Hippo pathway may contribute to the development of ischaemic brain injury and to the anti-inflammatory function of EA. Moreover, our data showed that lncRNA TCONS_00022826 (Lnc826) was upregulated in MCAO group, whereas blocked by EA treatment. Furthermore, in vitro OGD cell model data showed that Lnc826 promoted M1 polarization of microglia by regulating the Hippo pathway. Our data suggested that regulating microglia polarization via Lnc826-mediated hippo pathway is a possible mechanism of the EA treatment on ischemic brain injury.
Collapse
Affiliation(s)
- Shenxu Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of TCM, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmei Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yuan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Tuina, Changhai Hospital, Shanghai China
| | - Yunfan Wen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Li Z, Sun W, Duan W, Jiang Y, Chen M, Lin G, Wang Q, Fan Z, Tong Y, Chen L, Li J, Cheng G, Wang C, Li C, Chen L. Guiding Epilepsy Surgery with an LRP1-Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14-25. [PMID: 35588160 DOI: 10.1021/acsami.2c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.
Collapse
Affiliation(s)
- Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiqing Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guorong Lin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianing Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangli Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
14
|
Establishment and Application of a Novel In Vitro Model of Microglial Activation in Traumatic Brain Injury. J Neurosci 2023; 43:319-332. [PMID: 36446585 PMCID: PMC9838700 DOI: 10.1523/jneurosci.1539-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mechanical impact-induced primary injury after traumatic brain injury (TBI) leads to acute microglial pro-inflammatory activation and consequently mediates neurodegeneration, which is a major secondary brain injury mechanism. However, the detailed pathologic cascades have not been fully elucidated, partially because of the pathologic complexity in animal TBI models. Although there are several in vitro TBI models, none of them closely mimic post-TBI microglial activation. In the present study, we aimed to establish an in vitro TBI model, specifically reconstituting the pro-inflammatory activation and associated neurodegeneration following TBI. We proposed three sets of experiments. First, we established a needle scratch injured neuron-induced microglial activation and neurodegeneration in vitro model of TBI. Second, we compared microglial pro-inflammatory cytokines profiles between the in vitro TBI model and TBI in male mice. Additionally, we validated the role of injured neurons-derived damage-associated molecular patterns in amplifying microglial pro-inflammatory pathways using the in vitro TBI model. Third, we applied the in vitro model for the first time to characterize the cellular metabolic profile of needle scratch injured-neuron-activated microglia, and define the role of metabolic reprogramming in mediating pro-inflammatory microglial activation and mediated neurodegeneration. Our results showed that we successfully established a novel in vitro TBI model, which closely mimics primary neuronal injury-triggered microglial pro-inflammatory activation and mediated neurodegeneration after TBI. This in vitro model provides an advanced and highly translational platform for dissecting interactions in the pathologic processes of neuronal injury-microglial activation-neuronal degeneration cascade, and elucidating the detailed underlying cellular and molecular insights after TBI.SIGNIFICANCE STATEMENT Microglial activation is a key component of acute neuroinflammation that leads to neurodegeneration and long-term neurologic outcome deficits after TBI. However, it is not feasible to truly dissect primary neuronal injury-induced microglia activation, and consequently mediated neurodegeneration in vivo Furthermore, there is currently lacking of in vitro TBI models closely mimicking the TBI primary injury-mediated microglial activation. In this study, we successfully established and validated a novel in vitro TBI model of microglial activation, and for the first time, characterized the cellular metabolic profile of microglia in this model. This novel microglial activation in vitro TBI model will help in elucidating microglial inflammatory activation and consequently associated neurodegeneration after TBI.
Collapse
|
15
|
Anwar MM, Özkan E, Shomalizadeh N, Sapancı S, Özler C, Kesibi J, Gürsoy-Özdemir Y. Assessing the role of primary healthy microglia and gap junction blocker in hindering Alzheimer's disease neuroinflammatory type: Early approaches for therapeutic intervention. Front Neurosci 2023; 16:1041461. [PMID: 36704003 PMCID: PMC9871931 DOI: 10.3389/fnins.2022.1041461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a predominantly heterogeneous disease with a highly complex pathobiology. The presence of amyloid-beta (Aβ) depositions and the accumulation of hyperphosphorylated tau protein remain the characteristic hallmarks of AD. These hallmarks can be detected throughout the brain and other regions, including cerebrospinal fluid (CSF) and the spinal cord. Microglia cells, the brain-resident macrophage type of the brain, are implicated in maintaining healthy brain homeostasis. The localized administration of primary healthy microglia (PHM) is suggested to play a role in mitigating AD hallmark depositions and associated cognitive dysfunction. Carbenoxolone (CBX) is the most common gap junction blocker. It cannot effectively cross the blood-brain barrier (BBB) under systemic administration. Therefore, localized administration of CBX may be a recommended intervention against AD by acting as an antioxidant and anti-inflammatory agent. This study aims to determine whether the localized intracerebroventricular (ICV) administration of PHM and CBX may act as an effective therapeutic intervention for AD neuroinflammatory type. In addition, this study also aims to reveal whether detecting AD hallmarks in the spinal cord and CSF can be considered functional and effective during AD early diagnosis. Male albino rats were divided into four groups: control (group 1), lipopolysaccharide (LPS)-induced AD neuroinflammatory type (group 2), ICV injection of LPS + isolated PHM (group 3), and ICV injection of LPS + CBX (group 4). Morris water maze (MWM) was conducted to evaluate spatial working memory. The brain and spinal cord were isolated from each rat with the collection of CSF. Our findings demonstrate that the localized administration of PHM and CBX can act as promising therapeutic approaches against AD. Additionally, Aβ and tau toxic aggregates were detected in the spinal cord and the CSF of the induced AD model concomitant with the brain tissues. Overall, it is suggested that the ICV administration of PHM and CBX can restore normal brain functions and alleviate AD hallmark depositions. Detecting these depositions in the spinal cord and CSF may be considered in AD early diagnosis. As such, conducting clinical research is recommended to reveal the benefits of related therapeutic approaches compared with preclinical findings.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Narges Shomalizadeh
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Selin Sapancı
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Ceyda Özler
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Judy Kesibi
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, KUTTAM, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Hu J, Wang P, Wang Z, Xu Y, Peng W, Chen X, Fang Y, Zhu L, Wang D, Wang X, Lin L, Ruan L. Fibroblast-Conditioned Media Enhance the Yield of Microglia Isolated from Mixed Glial Cultures. Cell Mol Neurobiol 2023; 43:395-408. [PMID: 35152327 DOI: 10.1007/s10571-022-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Microglia are the main immune cells of the central nervous system (CNS) and comprise various model systems used to investigate inflammatory mechanisms in CNS disorders. Currently, shaking and mild trypsinization are widely used microglial culture methods; however, the problems with culturing microglia include low yield and a time-consuming process. In this study, we replaced normal culture media (NM) with media containing 25% fibroblast-conditioned media (F-CM) to culture mixed glia and compared microglia obtained by these two methods. We found that F-CM significantly improved the yield and purity of microglia and reduced the total culture time of mixed glia. The microglia obtained from the F-CM group showed longer ramified morphology than those from the NM group, but no difference was observed in cell size. Microglia from the two groups had similar phagocytic function and baseline phenotype markers. Both methods yielded microglia were responsive to various stimuli such as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and interleukin-4 (IL-4). The current results suggest that F-CM affect the growth of primary microglia in mixed glia culture. This method can produce a high yield of primary microglia within a short time and may be a convenient method for researchers to investigate inflammatory mechanisms and some CNS disorders.
Collapse
Affiliation(s)
- Jian Hu
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yuyun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Wenshuo Peng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.
| | - Lixin Ruan
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.
| |
Collapse
|
17
|
A simplified procedure for isolation of primary murine microglia. Biotechniques 2022; 73:273-279. [DOI: 10.2144/btn-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There are various approaches in which one can isolate microglia from murine brains, such as immunomagnetic, density gradient, FACS and differential adhesive methods. In this procedure a modified flask-tapping approach was used due to its simplicity and reproducibility. Our protocol requires only a single step to isolate the microglia from the mixed cell population. Once the microglia were isolated, we characterized cell purity, microglial morphology and phagocytic activity. The single-step protocol, without the need for additional astrocyte or oligodendrocyte separation, allows microglial cells to be used immediately for experimental purposes. The protocol is low-cost and can be performed in any lab with standard cell-culture equipment.
Collapse
|
18
|
Zeng Y, Zhang W, Xue T, Zhang D, Lv M, Jiang Y. Sphk1-induced autophagy in microglia promotes neuronal injury following cerebral ischaemia-reperfusion. Eur J Neurosci 2022; 56:4287-4303. [PMID: 35766986 DOI: 10.1111/ejn.15749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022]
Abstract
Microglial hyperactivation mediated by sphingosine kinase 1/sphingosine-1-phosphate (SphK1/S1P) signalling and the consequent inflammatory mediator production serve as the key drivers of cerebral ischaemia-reperfusion injury (CIRI). Although SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether SphK1 is similarly capable of regulating damage mediated by CIRI-activated microglia. In the current study, we adopted both in vitro oxygen-glucose deprivation reperfusion (OGDR) models and in vivo rat models of focal CIRI to ascertain this possibility. It was found that CIRI upregulated SphK1 and induced autophagy in microglia, while inhibiting these changes significantly impaired to prevented neuronal apoptosis. Results of mechanistic investigation revealed that SphK1 promoted autophagy via the tumour necrosis factor receptor associated factor 2 (TRAF2) pathway. Altogether, our findings unfolded to reveal a novel mechanism, whereby SphK1-induced autophagy in microglia contributed to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in ischaemic stroke patients.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tengteng Xue
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dayong Zhang
- Department of New Media and Arts, Harbin Institute of Technology, Harbin, China
| | - Manhua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongjia Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, Meyer T, Krivitsky A, Shidlovsky N, Madi A, Ruppin E, Mayo L. Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain 2022; 145:3288-3307. [PMID: 35899587 DOI: 10.1093/brain/awac222] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.
Collapse
Affiliation(s)
- Rita Perelroizen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Bar Philosof
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noga Budick-Harmelin
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Chernobylsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Katzir
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dor Shimon
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Tessler
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Gaoni-Yogev
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Meyer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Krivitsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nuphar Shidlovsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lior Mayo
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Duan C, Wang H, Jiao D, Geng Y, Wu Q, Yan H, Li C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO-1 Pathway. Front Pharmacol 2022; 13:889226. [PMID: 35571134 PMCID: PMC9092178 DOI: 10.3389/fphar.2022.889226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH), a severe hemorrhagic stroke, induces cerebral oxidative stress and severe secondary neurological injury. Curcumin was demonstrated to inhibit oxidative stress in the brain after ICH. However, the pharmacological mechanism needs further research. We used an intrastriatal injection of autologous blood to make the rat ICH model, and then the rat was treated with curcumin (100 mg/kg/day). Modified Neurological Severity Score (mNSS) and corner test results showed that curcumin could significantly promote the neurological recovery of ICH rats. Meanwhile, curcumin could substantially reduce ROS and MDA in the tissues around intracranial hematoma and prevent GSH depletion. To explore the pharmacological molecular mechanism of curcumin, we used HAPI cells and primary rat cortical microglia for in vitro experiments. In vitro, heme-treated cells were used as the cell model of ICH to explore the molecular mechanism of inhibiting oxidative stress by curcumin treatment. The results showed that curcumin significantly inhibited heme-induced oxidative stress, decreased intracellular ROS and MDA, and promoted Nrf2 and its downstream antioxidant gene (HO-1, NQO1, and Gpx4) expression. These results suggest that curcumin inhibits oxidative stress by activating the Nrf2/HO-1 pathway. Here, our results indicate that curcumin can promote the inhibition of oxidative stress in microglia by activating the Nrf2/HO-1 pathway and promoting neurological recovery after ICH, providing a new therapeutic target for clinical treatment of ICH.
Collapse
Affiliation(s)
- Chenyang Duan
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Hanbin Wang
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Dian Jiao
- Tianjin University, Tianjin, China.,Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Yanqin Geng
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chunhui Li
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| |
Collapse
|
21
|
Dordoe C, Wang X, Lin P, Wang Z, Hu J, Wang D, Fang Y, Liang F, Ye S, Chen J, Zhao Y, Xiong Y, Yang Y, Lin L, Li X. Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-κB pathways. Neuropharmacology 2022; 212:109064. [PMID: 35452626 DOI: 10.1016/j.neuropharm.2022.109064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that participate in response to pathological process after ischemic injury. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is an effective neuroprotective factor that is also known as a metabolic regulator. The present study aimed to investigate the effects and mechanism of the neuroprotective ability of nmFGF1 on microglia in mice after photothrombosis (PT) stroke model, to determine whether it could ameliorate ischemic injury in stroke experiment. We discovered that the intranasal administration of nmFGF1 reduced infarct size and ameliorated neurological deficits in behavioral assessment by regulating the secretion of proinflammatory and anti-inflammatory cytokines. Furthermore, in the in vitro experiments, we found that nmFGF1 regulated the expression levels of proinflammatory and anti-inflammatory cytokines in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation. Evidence have shown that when nuclear factor erythroid 2-related factor 2 (Nfr2) is activated, it inhibits nuclear factor-kappa B (NF-κB) activation to alleviate inflammation. Interestingly, nmFGF1 treatment in vivo remarkably inhibited NF-κB pathway activation and activated Nrf2 pathway. In addition, nmFGF1 and NF-κB inhibitor (BAY11-7082) inhibited NF-κB pathway in LPS-stimulated BV2 microglia. Moreover, in LPS-stimulated BV2 microglia, the anti-inflammatory effect produced by nmFGF1 was knocked down by Nrf2 siRNA. These results indicate that nmFGF1 promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via Nrf2 and NF-κB signaling pathways, making nmFGF1 a potential agent against ischemic stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 501-190, Republic of Korea
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yunjun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang, 325035, China.
| | - Xianfeng Li
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China.
| |
Collapse
|
22
|
Han X, Liu X, Zhuang J, Liang X, Luo Q, Chen P, Wen Y, Wang X, Peng J, Yang Y, Sha X, Zhuang J. A modified high-yield method for primary culture of rat retinal microglial cells. Exp Eye Res 2022; 215:108919. [PMID: 34979098 DOI: 10.1016/j.exer.2021.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022]
Abstract
Microglial cells are the main immune cells of the retina. The primary culture of the retinal microglia is critically important in investigating the cells' properties and behaviors in neurodegenerative and inflammatory retinal disease. Here, we described a modified protocol of a microglial cell culture from the neonatal rat retina. In our culture protocol, the retina was isolated from the neonatal rat eye from postnatal day 1 to day 3 and trypsinized into a single-cell suspension. The cells were seeded into a T75 flask, which was pre-coated with poly-D-lysine (PDL) and cultured with dulbecco's modified eagle medium-F12 (DMEM/F12) that contained 10% fetal bovine serum (FBS) with different concentrations. Small bright rounded cells were observed on the top of mixed glial cells on the seventh day, and attained the maximum cell number on the 14th day. Then, the isolation was performed by a shaking method and isolated cells were identified with microglia markers ionized calcium-binding adaptor molecule 1 (IBA1), transmembrane protein 119 (TMEM119), cluster of differentiation 11b (CD11b), as well as astrocyte marker glial fibrillary acidic protein (GFAP) by immunofluorescence staining. Additionally, the initial plating ratio of the mixed glial cell, culture period of isolation, procedures of the isolation, as well as the purification procedure, were optimized for our primary microglial cell culture. The morphological changes and phagocytic function were performed after lipopolysaccharide (LPS) stimulation. Moreover, the release of pro-inflammatory cytokines at different time points of LPS activation were measured. In the present study, we found that the concentration of one retina/T75 flask could harvest the largest number of microglial cells. Besides, we continuously cultured the mixed glial cells as long as one month and isolated the mixed glial cells as much as three times. In our study, we used an isolation-shaking rate of 200 rpm for 2h, which guaranteed the steady rate and resulted in high purification of the primary retinal-microglial cells, with no need of an additional purification procedure. In conclusion, we provided a high-producing protocol for the primary culture of purified rat retinal-microglial cells.
Collapse
Affiliation(s)
- Xiaokun Han
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou City, China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jiejie Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xida Liang
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou City, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Ye Wen
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou City, China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Juan Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou City, China
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xiangyin Sha
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou City, China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
23
|
Wang T, Sun Q, Yang J, Wang G, Zhao F, Chen Y, Jin Y. Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β, TNF-α, and iNOS upregulation. Food Chem Toxicol 2021; 157:112550. [PMID: 34517076 DOI: 10.1016/j.fct.2021.112550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
The synthetic organic chemical, 1,2-dichloroethane (1,2-DCE), can cause brain edemas under subacute poisoning. Our previous studies indicated that neuroinflammation could be induced due to astrocytes and microglia activation during brain edemas in 1,2-DCE-intoxicated mice. However, the crosstalk between these two glial cells in 1,2-DCE-induced neuroinflammation remained unclear. In this study, primary cultured rat astrocytes and microglia, as well as an immortalized microglia cell line were employed to study the effects of 2-chloroethanol (2-CE, a 1,2-DCE intermediate metabolite in vivo) treated astrocytes on microglia polarization. Our current results revealed that 2-CE treated rat astrocytes were activated through p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) signaling pathways. Theses pathways were triggered by reactive oxygen species (ROS) produced during 2-CE metabolism. Also, astrocytes were more sensitive to 2-CE effects than microglia. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expressions were upregulated in 2-CE-induced reactive astrocytes, enhancing IL-1β, TNF-α, and nitric oxide (NO) excretions, which stimulated microglia polarization. Therefore, the neuroinflammation induced by 1,2-DCE in mice's brains is probably triggered by reactive astrocytes.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qi Sun
- Department of Child and Adolescent Health, China Medical University, Shenyang, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuhua Chen
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
24
|
McFarland KN, Ceballos C, Rosario A, Ladd T, Moore B, Golde G, Wang X, Allen M, Ertekin-Taner N, Funk CC, Robinson M, Baloni P, Rappaport N, Chakrabarty P, Golde TE. Microglia show differential transcriptomic response to Aβ peptide aggregates ex vivo and in vivo. Life Sci Alliance 2021; 4:4/7/e202101108. [PMID: 34127518 PMCID: PMC8321667 DOI: 10.26508/lsa.202101108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
Aggregation and accumulation of amyloid-β (Aβ) is a defining feature of Alzheimer's disease pathology. To study microglial responses to Aβ, we applied exogenous Aβ peptide, in either oligomeric or fibrillar conformation, to primary mouse microglial cultures and evaluated system-level transcriptional changes and then compared these with transcriptomic changes in the brains of CRND8 APP mice. We find that primary microglial cultures have rapid and massive transcriptional change in response to Aβ. Transcriptomic responses to oligomeric or fibrillar Aβ in primary microglia, although partially overlapping, are distinct and are not recapitulated in vivo where Aβ progressively accumulates. Furthermore, although classic immune mediators show massive transcriptional changes in the primary microglial cultures, these changes are not observed in the mouse model. Together, these data extend previous studies which demonstrate that microglia responses ex vivo are poor proxies for in vivo responses. Finally, these data demonstrate the potential utility of using microglia as biosensors of different aggregate conformation, as the transcriptional responses to oligomeric and fibrillar Aβ can be distinguished.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, USA .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Awilda Rosario
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Thomas Ladd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brenda Moore
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Griffin Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA .,McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi RE, Zhang Y, Quan Q, Xie Z. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol 2021; 4:560. [PMID: 33980987 PMCID: PMC8115254 DOI: 10.1038/s42003-021-02047-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulation and spread of tau in Alzheimer's disease and other tauopathies occur in a prion-like manner. However, the mechanisms and downstream consequences of tau trafficking remain largely unknown. We hypothesized that tau traffics from neurons to microglia via extracellular vesicles (EVs), leading to IL-6 generation and cognitive impairment. We assessed mice and neurons treated with anesthetics sevoflurane and desflurane, and applied nanobeam-sensor technology, an ultrasensitive method, to measure tau/p-tau amounts. Sevoflurane, but not desflurane, increased tau or p-tau amounts in blood, neuron culture medium, or EVs. Sevoflurane increased p-tau amounts in brain interstitial fluid. Microglia from tau knockout mice took up tau and p-tau when treated with sevoflurane-conditioned neuron culture medium, leading to IL-6 generation. Tau phosphorylation inhibitor lithium and EVs generation inhibitor GW4869 attenuated tau trafficking. GW4869 mitigated sevoflurane-induced cognitive impairment in mice. Thus, tau trafficking could occur from neurons to microglia to generate IL-6, leading to cognitive impairment.
Collapse
Affiliation(s)
- Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lining Huang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Fang Fang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
- NanoMosaic, Woburn, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
26
|
Pandya CD, Vekaria H, Joseph B, Slone SA, Gensel JC, Sullivan PG, Miller BA. Hemoglobin induces oxidative stress and mitochondrial dysfunction in oligodendrocyte progenitor cells. Transl Res 2021; 231:13-23. [PMID: 33460824 PMCID: PMC8016702 DOI: 10.1016/j.trsl.2021.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) in the infant brain give rise to mature oligodendrocytes that myelinate CNS axons. OPCs are particularly vulnerable to oxidative stress that occurs in many forms of brain injury. One common cause of infant brain injury is neonatal intraventricular hemorrhage (IVH), which releases blood into the CSF and brain parenchyma of preterm infants. Although blood contains the powerful oxidant hemoglobin, the direct effects of hemoglobin on OPCs have not been studied. We utilized a cell culture system to test if hemoglobin induced free radical production and mitochondrial dysfunction in OPCs. We also tested if phenelzine (PLZ), an FDA-approved antioxidant drug, could protect OPCs from hemoglobin-induced oxidative stress. OPCs were isolated from Sprague Dawley rat pups and exposed to hemoglobin with and without PLZ. Outcomes assessed included intracellular reactive oxygen species levels using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent dye, oxygen consumption using the XFe96 Seahorse assay, and proliferation measured by BrdU incorporation assay. Hemoglobin induced oxidative stress and impaired mitochondrial function in OPCs. PLZ treatment reduced hemoglobin-induced oxidative stress and improved OPC mitochondrial bioenergetics. The effects of hemoglobin and PLZ on OPC proliferation were not statistically significant, but showed trends towards hemoglobin reducing OPC proliferation and PLZ increasing OPC proliferation (P=0.06 for both effects). Collectively, our results indicate that hemoglobin induces mitochondrial dysfunction in OPCs and that antioxidant therapy reduces these effects. Therefore, antioxidant therapy may hold promise for white matter diseases in which hemoglobin plays a role, such as neonatal IVH.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Stacey A Slone
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky; Lexington VA Health Care System, Lexington, Kentucky
| | - Brandon A Miller
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
27
|
Suzuki K, Shinohara M, Uno Y, Tashiro Y, Gheni G, Yamamoto M, Fukumori A, Shindo A, Mashimo T, Tomimoto H, Sato N. Deletion of B-cell translocation gene 2 (BTG2) alters the responses of glial cells in white matter to chronic cerebral hypoperfusion. J Neuroinflammation 2021; 18:86. [PMID: 33812385 PMCID: PMC8019185 DOI: 10.1186/s12974-021-02135-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Uno
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Ghupurjan Gheni
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Miho Yamamoto
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Akio Fukumori
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Zhao C, Deng Y, He Y, Huang X, Wang C, Li W. Decreased Level of Exosomal miR-5121 Released from Microglia Suppresses Neurite Outgrowth and Synapse Recovery of Neurons Following Traumatic Brain Injury. Neurotherapeutics 2021; 18:1273-1294. [PMID: 33475953 PMCID: PMC8423926 DOI: 10.1007/s13311-020-00999-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022] Open
Abstract
Activated microglia can suppress neurite outgrowth and synapse recovery in the acute stage following traumatic brain injury (TBI). However, the underlying mechanism has not been clearly elucidated. Exosomes derived from microglia have been reported to play a critical role in microglia-neuron interaction in healthy and pathological brains. Here, we aimed to investigate the role of microglia-derived exosomes in regulating neurite outgrowth and synapse recovery following TBI. In our study, exosomes derived from microglia were co-cultured with stretch-injured neurons in vitro and intravenously injected into mice that underwent fluid percussion injury (FPI) by tail vein injection in vivo. The results showed that microglia-derived exosomes could be absorbed by neurons in vitro and in vivo. Moreover, exosomes derived from stretch-injured microglia decreased the protein levels of GAP43, PSD-95, GluR1, and Synaptophysin and dendritic complexity in stretch-injured neurons in vitro, and reduced GAP43+ NEUN cell percentage and apical dendritic spine density in the pericontusion region in vivo. Motor coordination was also impaired in mice treated with stretch-injured microglia-derived exosomes after FPI. A microRNA microarray showed that the level of miR-5121 was decreased most greatly in exosomes derived from stretch-injured microglia. Overexpression of miR-5121 in stretch-injured microglia-derived exosomes partly reversed the suppression of neurite outgrowth and synapse recovery of neurons both in vitro and in vivo. Moreover, motor coordination in miR-5121 overexpressed exosomes treated mice was significantly improved after FPI. Following mechanistic study demonstrated that miR-5121 might promote neurite outgrowth and synapse recovery by directly targeting RGMa. In conclusion, our finding revealed a novel exosome-mediated mechanism of microglia-neuron interaction that suppressed neurite outgrowth and synapse recovery of neurons following TBI.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi He
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Xianjian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China
| | - Chuanfang Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong, China.
| | - Weiping Li
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002 Sungang Road, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Morini R, Bizzotto M, Perrucci F, Filipello F, Matteoli M. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Front Immunol 2021; 12:640937. [PMID: 33708226 PMCID: PMC7940197 DOI: 10.3389/fimmu.2021.640937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023] Open
Abstract
The role of microglia in controlling synapse homeostasis is becoming increasingly recognized by the scientific community. In particular, the microglia-mediated elimination of supernumerary synapses during development lays the basis for the correct formation of neuronal circuits in adulthood, while the possible reactivation of this process in pathological conditions, such as schizophrenia or Alzheimer's Disease, provides a promising target for future therapeutic strategies. The methodological approaches to investigate microglial synaptic engulfment include different in vitro and in vivo settings. Basic in vitro assays, employing isolated microglia and microbeads, apoptotic membranes, liposomes or synaptosomes allow the quantification of the microglia phagocytic abilities, while co-cultures of microglia and neurons, deriving from either WT or genetically modified mice models, provide a relatively manageable setting to investigate the involvement of specific molecular pathways. Further detailed analysis in mice brain is then mandatory to validate the in vitro assays as representative for the in vivo situation. The present review aims to dissect the main technical approaches to investigate microglia-mediated phagocytosis of neuronal and synaptic substrates in critical developmental time windows.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Matteo Bizzotto
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabio Perrucci
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabia Filipello
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Consiglio Nazionale Delle Ricerche (CNR), Institute of Neuroscience - URT Humanitas, Rozzano, Italy
| |
Collapse
|
30
|
Balouch B, Funnell JL, Ziemba AM, Puhl DL, Lin K, Gottipati MK, Gilbert RJ. Conventional immunomarkers stain a fraction of astrocytes in vitro: A comparison of rat cortical and spinal cord astrocytes in naïve and stimulated cultures. J Neurosci Res 2020; 99:806-826. [PMID: 33295039 DOI: 10.1002/jnr.24759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 11/05/2022]
Abstract
Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), glutamine synthetase (GS), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT-1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT-1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis. No group has performed a comprehensive immunocytochemical evaluation to quantify the percentage of cells labeled by these markers in vitro, nor compared changes in staining between cortex- and spinal cord-derived cells in naïve and stimulated cultures. Here, we quantified the percentage of cells positively stained for these six markers in astrocyte, microglia, and oligodendrocyte cultures isolated from neonatal rat cortices and spinal cords. Additionally, we incubated the astrocytes with transforming growth factor (TGF)-β1 or TGF-β3 to determine if the labeling of these markers is altered by these stimuli. We found that only SOX9 in cortical cultures and ALDH1L1 in spinal cord cultures labeled more than 75% of the cells in naïve and stimulated astrocyte cultures and stained less than 5% of the cells in microglia and oligodendrocyte cultures. Furthermore, significantly more cortical than spinal cord astrocytes stained for GFAP, GLAST, and ALDH1L1 in naïve cultures, whereas significantly more spinal cord than cortical astrocytes stained for GLAST and GS in TGF-β1-treated cultures. These findings are important as variability in marker staining may lead to misinterpretation of the astrocyte response in cocultures, migration assays, or engineered disease models.
Collapse
Affiliation(s)
- Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Neuroscience Program, Smith College, Northampton, MA, USA
| | - Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kathy Lin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
31
|
Mishra S, Rajput C, Singh MP. Cypermethrin Induces the Activation of Rat Primary Microglia and Expression of Inflammatory Proteins. J Mol Neurosci 2020; 71:1275-1283. [PMID: 33230707 DOI: 10.1007/s12031-020-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Cypermethrin activates microglia, which is found to be decisive in neurodegeneration in the experimental rats. While the involvement of microglial activation in toxicant-induced neurodegeneration is reported, the effect of low concentration of cypermethrin on the expression of inflammatory proteins from the rat primary microglia is not yet properly understood. The study intended to delineate the effect of low concentration of cypermethrin on the expression and release of proteins from the microglia. Rat primary microglial cells were treated with cypermethrin to check the expression of inflammatory proteins. Cypermethrin-treated microglia conditioned media and cells were collected to measure the expression and release of inflammatory proteins. Cypermethrin augmented the protein kinase C-δ (PKC-δ), inducible nitric oxide synthase (iNOS), phosphorylated mitogen-activated protein kinase (MAPK) p38 and p42/44, matrix metalloproteinase (MMP)-3, and MMP-9 levels in the cell lysate and tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in the microglia conditioned media. Pre-treatment with minocycline, a microglial activation inhibitor or rottlerin, a PKC-δ inhibitor, notably reduced the release of TNF-α in the conditioned media and expression of iNOS protein in the microglia. Minocycline reduced the expression of PKC-δ, phosphorylated p38 and p42/44 MAPKs, MMP-3, and MMP-9 proteins in the microglia. While cypermethrin-treated conditioned media induced the toxicity in the rat primary neurons, minocycline or rottlerin reduced the cypermethrin treated microglia conditioned media-induced toxicity. The outcomes of the present study suggest that cypermethrin activates microglia and releases TNF-α and IL-1β as well as up-regulates the expression of PKC-δ, iNOS, phosphorylated p38 and p42/44 MAPKs, MMP-3, and MMP-9 proteins, which could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
32
|
Frühauf M, Zeitschel U, Höfling C, Ullm F, Rabiger FV, Alber G, Pompe T, Müller U, Roßner S. Construction of a 3D brain extracellular matrix model to study the interaction between microglia and T cells in co-culture. Eur J Neurosci 2020; 53:4034-4050. [PMID: 32954591 DOI: 10.1111/ejn.14978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders are characterised by the activation of brain-resident microglia cells and by the infiltration of peripheral T cells. However, their interplay in disease has not been clarified yet. It is difficult to investigate complex cellular dynamics in living animals, and simple two-dimensional (2D) cell culture models do not resemble the soft 3D structure of brain tissue. Therefore, we developed a biomimetic 3D in vitro culture system for co-cultivation of microglia and T cells. As the activation and/or migration of immune cells in the brain might be affected by components of the extracellular matrix, defined 3D fibrillar collagen I-based matrices were constructed and modified with hyaluronan and/or chondroitin sulphate, resembling aspects of brain extracellular matrix. Murine microglia and spleen-derived T cells were cultured alone or in co-culture on the constructed matrices. Microglia exhibited in vivo-like morphology and T cells showed enhanced survival when co-cultured with microglia or to a minor degree in the presence of glia-conditioned medium. The open and porous fibrillar structure of the matrix allowed for cell invasion and direct cell-cell interaction, with stronger invasion of T cells. Both cell types showed no dependence on the matrix modifications. Microglia could be activated on the matrices by lipopolysaccharide resulting in interleukin-6 and tumour necrosis factor-α secretion. The findings herein indicate that biomimetic 3D matrices allow for co-cultivation and activation of primary microglia and T cells and provide useful tools to study their interaction in vitro.
Collapse
Affiliation(s)
- Marie Frühauf
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Immunology/Molecular Pathogenesis, Centre for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Friederike V Rabiger
- Institute of Immunology/Molecular Pathogenesis, Centre for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Centre for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Centre for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Lang GP, Ndongson-Dongmo B, Lajqi T, Brodhun M, Han Y, Wetzker R, Frasch MG, Bauer R. Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice-role of phosphoinositide 3-kinase gamma. J Neuroinflammation 2020; 17:292. [PMID: 33028343 PMCID: PMC7541275 DOI: 10.1186/s12974-020-01954-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Joint International Research Laboratory of Ethnomedicine and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
34
|
Hernando S, Herran E, Hernandez RM, Igartua M. Nanostructured Lipid Carriers Made of Ω-3 Polyunsaturated Fatty Acids: In Vitro Evaluation of Emerging Nanocarriers to Treat Neurodegenerative Diseases. Pharmaceutics 2020; 12:pharmaceutics12100928. [PMID: 33003360 PMCID: PMC7601928 DOI: 10.3390/pharmaceutics12100928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (ND) are one of the main problems of public health systems in the 21st century. The rise of nanotechnology-based drug delivery systems (DDS) has become in an emerging approach to target and treat these disorders related to the central nervous system (CNS). Among others, the use of nanostructured lipid carriers (NLCs) has increased in the last few years. Up to today, most of the developed NLCs have been made of a mixture of solid and liquid lipids without any active role in preventing or treating diseases. In this study, we successfully developed NLCs made of a functional lipid, such as the hydroxylated derivate of docohexaenoic acid (DHAH), named DHAH-NLCs. The newly developed nanocarriers were around 100 nm in size, with a polydispersity index (PDI) value of <0.3, and they exhibited positive zeta potential due to the successful chitosan (CS) and TAT coating. DHAH-NLCs were shown to be safe in both dopaminergic and microglia primary cell cultures. Moreover, they exhibited neuroprotective effects in dopaminergic neuron cell cultures after exposition to 6-hydroxydopamine hydrochloride (6-OHDA) neurotoxin and decreased the proinflammatory cytokine levels in microglia primary cell cultures after lipopolysaccharide (LPS) stimuli. The levels of the three tested cytokines, IL-6, IL-1β and TNF-α were decreased almost to control levels after the treatment with DHAH-NLCs. Taken together, these data suggest the suitability of DHAH-NLCs to attaining enhanced and synergistic effects for the treatment of NDs.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Enara Herran
- Biokeralty Research Institute, C/Albert Einstein 25 bajo, Edificio E-3 Miñano, 01510 Álava, Spain;
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (R.M.H.); (M.I.); Tel.: +34-94501-3095 (R.M.H.); +34-94501-3007 (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (R.M.H.); (M.I.); Tel.: +34-94501-3095 (R.M.H.); +34-94501-3007 (M.I.)
| |
Collapse
|
35
|
Wang D, Liu F, Zhu L, Lin P, Han F, Wang X, Tan X, Lin L, Xiong Y. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation 2020; 17:257. [PMID: 32867781 PMCID: PMC7457364 DOI: 10.1186/s12974-020-01921-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Resident microglia and macrophages are the predominant contributors to neuroinflammation and immune reactions, which play a critical role in the pathogenesis of ischemic brain injury. Controlling inflammatory responses is considered a promising therapeutic approach for stroke. Recombinant human fibroblast growth factor 21 (rhFGF21) presents anti-inflammatory properties by modulating microglia and macrophages; however, our knowledge of the inflammatory modulation of rhFGF21 in focal cerebral ischemia is lacking. Therefore, we investigated whether rhFGF21 improves ischemic outcomes in experimental stroke by targeting microglia and macrophages. Methods C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and randomly divided into groups that received intraperitoneal rhFGF21 or vehicle daily starting at 6 h after reperfusion. Behavior assessments were monitored for 14 days after MCAO, and the gene expression levels of inflammatory cytokines were analyzed via qRT-PCR. The phenotypic variation of microglia/macrophages and the presence of infiltrated immune cells were examined by flow cytometry and immunostaining. Additionally, magnetic cell sorting (MACS) in combination with fluorescence-activated cell sorting (FACS) was used to purify microglia and macrophages. Results rhFGF21 administration ameliorated neurological deficits in behavioral tests by regulating the secretion of pro-inflammatory and anti-inflammatory cytokines. rhFGF21 also attenuated the polarization of microglia/macrophages toward the M1 phenotype and the accumulation of peripheral immune cells after stroke, accompanied by a temporal evolution of the phenotype of microglia/macrophages and infiltration of peripheral immune cells. Furthermore, rhFGF21 treatment inhibited M1 polarization of microglia and pro-inflammatory cytokine expression through its actions on FGF receptor 1 (FGFR1) by suppressing nuclear factor-kappa B (NF-κB) and upregulating peroxisome proliferator-activated receptor-γ (PPAR-γ). Conclusions rhFGF21 treatment promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via the NF-κB and PPAR-γ signaling pathways, making it a potential anti-inflammatory agent for stroke treatment.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xianxi Tan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
36
|
MicroRNA-223 targets NLRP3 to relieve inflammation and alleviate spinal cord injury. Life Sci 2020; 254:117796. [DOI: 10.1016/j.lfs.2020.117796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
|
37
|
A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol 2020; 36:101644. [PMID: 32863210 PMCID: PMC7371982 DOI: 10.1016/j.redox.2020.101644] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023] Open
Abstract
Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-atherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-κB activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt(Ser473) (activation) and p-GSK3β(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3β markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt(Ser473)/GSK3β(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.
Collapse
|
38
|
Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL, Cui XJ, Wang YJ. Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 2020; 155:154-176. [PMID: 32215908 DOI: 10.1111/jnc.15011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and βIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Dong J, Liu X, Wang Y, Cai H, Le W. Nurr1 Cd11bcre conditional knockout mice display inflammatory injury to nigrostriatal dopaminergic neurons. Glia 2020; 68:2057-2069. [PMID: 32181533 DOI: 10.1002/glia.23826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptor-related 1 protein (NURR1) is essential for the development and maintenance of midbrain dopaminergic (DAergic) neurons. NURR1 also protects DAergic neurons against neuroinflammation. However, it remains to be determined to what extent does NURR1 exerts its protective function through acting autonomously in the microglia. Using Cre/lox gene targeting system, we deleted Nurr1 in the microglia of Nurr1Cd11bcre conditional knockout (cKO) mice. The Nurr1Cd11bcre cKO mice displayed age-dependent motor abnormalities and increased microglial activation, but with no obvious DAergic neurodegeneration. To boost the inflammatory injury, we systemically administered endotoxin lipopolysaccharide (LPS) to Nurr1Cd11bcre mice. As expected, LPS treatment exacerbated the motor phenotypes and inflammatory reactions in Nurr1Cd11bcre cKO mice. More importantly, LPS administration caused DAergic neuron loss and α-synuclein aggregation, two pathological hallmarks of Parkinson's disease (PD). Therefore, our findings provide in vivo evidence supporting a critical protective role of NURR1 in the microglia against inflammation-induced degeneration of DAergic neurons in PD.
Collapse
Affiliation(s)
- Jie Dong
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinyao Liu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuanyuan Wang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Science, Sichuan Provincial Hospital, Medical School of UESTC, China
| |
Collapse
|
40
|
Wang X, Zhu L, Hu J, Guo R, Ye S, Liu F, Wang D, Zhao Y, Hu A, Wang X, Guo K, Lin L. FGF21 Attenuated LPS-Induced Depressive-Like Behavior via Inhibiting the Inflammatory Pathway. Front Pharmacol 2020; 11:154. [PMID: 32184729 PMCID: PMC7058797 DOI: 10.3389/fphar.2020.00154] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Major depressive disorder is a serious neuropsychiatric disorder with high rates of recurrence and mortality. Many studies have supported that inflammatory processes play a central role in the etiology of depression. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factors (FGFs) family, regulates a variety of pharmacological activities, including energy metabolism, glucose and lipid metabolism, and insulin sensitivity. In addition, recent studies showed that the administration of FGF21, a regulator of metabolic function, had therapeutic effects on mood stabilizers, indicating that FGF21 could be a common regulator of the mood response. However, few studies have highlighted the antidepressant effects of FGF21 on lipopolysaccharide (LPS)-induced mice, and the anti-inflammatory mechanism of FGF21 in depression has not yet been elucidated. The purpose of the current study was to determine the antidepressant effects of recombinant human FGF21 (rhFGF21). The effects of rhFGF21 on depression-like behaviors and the inflammatory signaling pathway were investigated in both an LPS-induced mouse model and primary microglia in vitro. The current study demonstrated that LPS induced depressive-like behaviors, upregulated proinflammatory cytokines, and activated microglia in the mouse hippocampus and activated the inflammatory response in primary microglia, while pretreatment with rhFGF21 markedly improved depression-like behavior deficits, as shown by an increase in the total distance traveled and number of standing numbers in the open field test (OFT) and a decrease in the duration of immobility in the tail suspension test (TST) and forced swimming test (FST). Furthermore, rhFGF21 obviously suppressed expression levels of the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibited microglial activation and the nuclear factor-κB (NF-κB) signing pathway. Moreover, coadministration of rhFGF21 with the fibroblast growth factor receptor 1 (FGFR1) inhibitor PD173074 significantly reversed these protective effects, indicating that the antidepressant effects of rhFGF21 occur through FGFR1 activation. Taken together, the results of the current study demonstrated for the first time that exogenous rhFGF21 ameliorated LPS-induced depressive-like behavior by inhibiting microglial expression of proinflammatory cytokines through NF-κB suppression. This new discovery suggests rhFGF21 as a new therapeutic candidate for depression treatment.
Collapse
Affiliation(s)
- Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Aiping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
41
|
Takase H, Chou SHY, Hamanaka G, Ohtomo R, Islam MR, Lee JW, Hsu L, Mathew J, Reyes-Bricio E, Hayakawa K, Xing C, Ning MM, Wang X, Arai K, Lo EH, Lok J. Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology 2020; 94:e1281-e1293. [PMID: 32107323 DOI: 10.1212/wnl.0000000000008868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine if CSF and plasma levels of soluble vascular endothelial (sVE)-cadherin are associated with functional outcome after subarachnoid hemorrhage (SAH) and to investigate sVE-cadherin effects on microglia. METHODS Serial CSF and plasma were collected from prospectively enrolled patients with nontraumatic SAH from a ruptured aneurysm in the anterior circulation and who required an external ventricular drain for clinical indications. Patients with normal-pressure hydrocephalus without SAH served as controls. For prospective assessment of long-term outcomes at 3 and 6 months after SAH, modified Rankin Scale scores (mRS) were obtained and dichotomized into good (mRS ≤ 2) vs poor (mRS > 2) outcome groups. For SAH severity, Hunt and Hess grade was assessed. Association of CSF sVE-cadherin levels with long-term outcomes, HH grade, and CSF tumor necrosis factor (TNF)-α levels were evaluated. sVE-cadherin effects on microglia were also studied. RESULTS sVE-cadherin levels in CSF, but not in plasma, were higher in patients with SAH and were associated with higher clinical severity and higher CSF TNF-α levels. Patients with SAH with higher CSF sVE-cadherin levels over time were more likely to develop worse functional outcome at 3 months after SAH. Incubation of cultured microglia with sVE-cadherin resulted in increased inducible nitric oxide synthase, interleukin-1β, reactive oxygen species, cell soma size, and metabolic activity, consistent with microglia activation. Microinjection of sVE-cadherin fragments into mouse brain results in an increased number of microglia surrounding the injection site, compared to injection of denatured vascular endothelial-cadherin fragments. CONCLUSIONS These results support the existence of a novel pathway by which sVE-cadherin, released from injured endothelium after SAH, can shift microglia into a more proinflammatory phenotype and contribute to neuroinflammation and poor outcome in SAH.
Collapse
Affiliation(s)
- Hajime Takase
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Sherry Hsiang-Yi Chou
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Gen Hamanaka
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ryo Ohtomo
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Mohammad R Islam
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Jong Woo Lee
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Liangge Hsu
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Justin Mathew
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Estefania Reyes-Bricio
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Kazuhide Hayakawa
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Changhong Xing
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ming Ming Ning
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Xiaoying Wang
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Ken Arai
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Eng H Lo
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA
| | - Josephine Lok
- From Neuroprotection Research Laboratories (H.T., S.H.-Y.C., G.H., R.O., M.R.I., J.M., E.R.-B., K.H., C.X., M.M.N., X.W., K.A., E.H.L., J.L.), Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown; Departments of Neurology (S.H.-Y.C., J.W.L.) and Radiology (L.H.), Brigham and Women's Hospital, Boston; Department of Pediatrics, Pediatric Critical Care Medicine (J.L.), Department of Radiology (E.H.L.), and Department of Neurology (M.M.N., E.H.L.), Massachusetts General Hospital, Boston; Department of Neurosurgery (H.T.), Yokohama City University, Yokohama, Japan; and Departments of Critical Care Medicine, Neurology, and Neurosurgery (S.H.-Y.C.), University of Pittsburgh, PA.
| |
Collapse
|
42
|
Hamanaka G, Kubo T, Ohtomo R, Takase H, Reyes-Bricio E, Oribe S, Osumi N, Lok J, Lo EH, Arai K. Microglial responses after phagocytosis: Escherichia coli bioparticles, but not cell debris or amyloid beta, induce matrix metalloproteinase-9 secretion in cultured rat primary microglial cells. Glia 2020; 68:1435-1444. [PMID: 32057146 DOI: 10.1002/glia.23791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.
Collapse
Affiliation(s)
- Gen Hamanaka
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomoya Kubo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hajime Takase
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Estefania Reyes-Bricio
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuntaro Oribe
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Kumarasamy M, Sosnik A. The Nose-To-Brain Transport of Polymeric Nanoparticles Is Mediated by Immune Sentinels and Not by Olfactory Sensory Neurons. ADVANCED BIOSYSTEMS 2019; 3:e1900123. [PMID: 32648679 DOI: 10.1002/adbi.201900123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Indexed: 11/11/2022]
Abstract
The nose-to-brain (N-to-B) transport mechanism of nanoparticles through the olfactory epithelium (OE) is not fully understood. Most research utilized nasal epithelial cell models completely deprived of olfactory cells. Aiming to shed light into key cellular pathways, in this work, for the first time, the interaction of polymeric nanoparticles in a 17-483 nm size range and with neutral and negatively and positively charged surfaces with primary olfactory sensory neurons, cortical neurons, and microglia isolated from olfactory bulb (OB), OE, and cortex of newborn rats is investigated. After demonstrating the good cell compatibility of the different nanoparticles, the nanoparticle uptake by confocal laser scanning fluorescence microscopy is monitored. Our findings reveal that neither olfactory nor forebrain neurons internalize nanoparticles. Conversely, it is demonstrated that olfactory and cortical microglia phagocytose the nanoparticles independently of their features. Overall, our findings represent the first unambiguous evidence of the possible involvement of microglia in N-to-B nanoparticle transport and the unlikely involvement of neurons. Furthermore, this approach emerges as a completely new experimental tool to screen the biocompatibility, uptake, and transport of nanomaterials by key cellular players of the N-to-B pathway in nanosafety and nanotoxicology and nanomedicine.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
44
|
Ogawa K, Tsurutani M, Hashimoto A, Soeda M. Simple propagation method for resident macrophages by co-culture and subculture, and their isolation from various organs. BMC Immunol 2019; 20:34. [PMID: 31533615 PMCID: PMC6749721 DOI: 10.1186/s12865-019-0314-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Resident macrophages (Mø) originating from yolk sac Mø and/or foetal monocytes colonise tissues/organs during embryonic development. They persist into adulthood by self-renewal at a steady state, independent of adult monocyte inputs, except for those in the intestines and dermis. Thus, many resident Mø can be propagated in vitro under optimal conditions; however, there are no specific in vitro culture methods available for the propagation of resident Mø from diverse tissues/organs. Results We provided a simple method for propagating resident Mø derived from the liver, spleen, lung, and brain of ICR male mice by co-culture and subculture along with the propagation of other stromal cells of the respective organs in standard culture media and successfully demonstrated the propagation of resident Mø colonising these organs. We also proposed a simple method for segregating Mø from stromal cells according to their adhesive property on bacteriological Petri dishes, which enabled the collection of more than 97.6% of the resident Mø from each organ. Expression analyses of conventional Mø markers by flow cytometry showed similar expression patterns among the Mø collected from the organs. Conclusion This is the first study to clearly provide a practical Mø propagation method applicable to resident Mø of diverse tissues and organs. Thus, this novel practical Mø propagation method can offer broad applications for the use of resident Mø of diverse tissues and organs.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Aya Hashimoto
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Miharu Soeda
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
45
|
Yin Y, Hong J, Phạm TL, Shin J, Gwon DH, Kwon HH, Shin N, Shin HJ, Lee SY, Lee WH, Kim DW. Evans Blue Reduces Neuropathic Pain Behavior by Inhibiting Spinal ATP Release. Int J Mol Sci 2019; 20:ijms20184443. [PMID: 31505901 PMCID: PMC6770806 DOI: 10.3390/ijms20184443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Upon peripheral nerve injury, vesicular ATP is released from damaged primary afferent neurons. This extracellular ATP subsequently activates purinergic receptors of the spinal cord, which play a critical role in neuropathic pain. As an inhibitor of the vesicular nucleotide transporter (VNUT), Evans blue (EB) inhibits the vesicular storage and release of ATP in neurons. Thus, we tested whether EB could attenuate neuropathic pain behavior induced by spinal nerve ligation (SNL) in rats by targeting VNUT. An intrathecal injection of EB efficiently attenuated mechanical allodynia for five days in a dose-dependent manner and enhanced locomotive activity in an SNL rat model. Immunohistochemical analysis showed that EB was found in VNUT immunoreactivity on neurons in the dorsal root ganglion and the spinal dorsal horn. The level of ATP in cerebrospinal fluid in rats with SNL-induced neuropathic pain decreased upon administration of EB. Interestingly, EB blocked ATP release from neurons, but not glial cells in vitro. Eventually, the loss of ATP decreased microglial activity in the ipsilateral dorsal horn of the spinal cord, followed by a reduction in reactive oxygen species and proinflammatory mediators, such as interleukin (IL)-1β and IL-6. Finally, a similar analgesic effect of EB was demonstrated in rats with monoiodoacetate-induced osteoarthritis (OA) pain. Taken together, these data demonstrate that EB prevents ATP release in the spinal dorsal horn and reduces the ATP/purinergic receptor-induced activation of spinal microglia followed by a decline in algogenic substances, thereby relieving neuropathic pain in rats with SNL.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Jinpyo Hong
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Do Hyeong Gwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Sun Yeul Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Won-Hyung Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
46
|
Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, Zhao QW, Ma ZQ, Deng XY, Ma SP. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 2019; 16:95. [PMID: 31068207 PMCID: PMC6507025 DOI: 10.1186/s12974-019-1474-8] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Baicalin, which is isolated from Radix Scutellariae, possesses strong biological activities including an anti-inflammation property. Recent studies have shown that the anti-inflammatory effect of baicalin is linked to toll-like receptor 4 (TLR4), which participates in pathological changes of central nervous system diseases such as depression. In this study, we explored whether baicalin could produce antidepressant effects via regulation of TLR4 signaling in mice and attempted to elucidate the underlying mechanisms. Methods A chronic unpredictable mild stress (CUMS) mice model was performed to explore whether baicalin could produce antidepressant effects via the inhibition of neuroinflammation. To clarify the role of TLR4 in the anti-neuroinflammatory efficacy of baicalin, a lipopolysaccharide (LPS) was employed in mice to specially activate TLR4 and the behavioral changes were determined. Furthermore, we used LY294002 to examine the molecular mechanisms of baicalin in regulating the expression of TLR4 in vivo and in vitro using western blot, ELISA kits, and immunostaining. In the in vitro tests, the BV2 microglia cell lines and primary microglia cultures were pretreated with baicalin and LY292002 for 1 h and then stimulated 24 h with LPS. The primary microglial cells were transfected with the forkhead transcription factor forkhead box protein O 1 (FoxO1)-specific siRNA for 5 h and then co-stimulated with baicalin and LPS to investigate whether FoxO1 participated in the effect of baicalin on TLR4 expression. Results The administration of baicalin (especially 60 mg/kg) dramatically ameliorated CUMS-induced depressive-like symptoms; substantially decreased the levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the hippocampus; and significantly decreased the expression of TLR4. The activation of TLR4 by the LPS triggered neuroinflammation and evoked depressive-like behaviors in mice, which were also alleviated by the treatment with baicalin (60 mg/kg). Furthermore, the application of baicalin significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and FoxO1. The application of baicalin also promoted FoxO1 nuclear exclusion and contributed to the inhibition of the FoxO1 transactivation potential, which led to the downregulation of the expression of TLR4 in CUMS mice or LPS-treated BV2 cells and primary microglia cells. However, prophylactic treatment of LY294002 abolished the above effects of baicalin. In addition, we found that FoxO1 played a vital role in baicalin by regulating the TLR4 and TLR4-mediating neuroinflammation triggered by the LPS via knocking down the expression of FoxO1 in the primary microglia. Conclusion Collectively, these results demonstrate that baicalin ameliorated neuroinflammation-induced depressive-like behaviors through the inhibition of TLR4 expression via the PI3K/AKT/FoxO1 pathway. Electronic supplementary material The online version of this article (10.1186/s12974-019-1474-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ting Guo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Si-Qi Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Su
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Li-Xing Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhou-Ye Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Ru-Yi Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qin-Wen Zhao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhan-Qiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Xue-Yang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, Jiangsu, People's Republic of China. .,Qinba Traditional Chinese Medicine Resources Research and Development Center, AnKang University, AnKang, 725000, People's Republic of China.
| |
Collapse
|
47
|
Dello Russo C, Cappoli N, Coletta I, Mezzogori D, Paciello F, Pozzoli G, Navarra P, Battaglia A. The human microglial HMC3 cell line: where do we stand? A systematic literature review. J Neuroinflammation 2018; 15:259. [PMID: 30200996 PMCID: PMC6131758 DOI: 10.1186/s12974-018-1288-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Microglia, unique myeloid cells residing in the brain parenchyma, represent the first line of immune defense within the central nervous system. In addition to their immune functions, microglial cells play an important role in other cerebral processes, including the regulation of synaptic architecture and neurogenesis. Chronic microglial activation is regarded as detrimental, and it is considered a pathogenic mechanism common to several neurological disorders. Microglial activation and function have been extensively studied in rodent experimental models, whereas the characterization of human cells has been limited due to the restricted availability of primary sources of human microglia. To overcome this problem, human immortalized microglial cell lines have been developed. The human microglial clone 3 cell line, HMC3, was established in 1995, through SV40-dependent immortalization of human embryonic microglial cells. It has been recently authenticated by the American Type Culture Collection (ATCC®) and distributed under the name of HMC3 (ATCC®CRL-3304). The HMC3 cells have been used in six research studies, two of which also indicated by ATCC® as reference articles. However, a more accurate literature revision suggests that clone 3 was initially distributed under the name of CHME3. In this regard, several studies have been published, thus contributing to a more extensive characterization of this cell line. Remarkably, the same cell line has been used in different laboratories with other denominations, i.e., CHME-5 cells and C13-NJ cells. In view of the fact that "being now authenticated by ATCC®" may imply a wider distribution of the cells, we aimed at reviewing data obtained with the human microglia cell line clone 3, making the readers aware of this complicated nomenclature. In addition, we also included original data, generated in our laboratory with the HMC3 (ATCC®CRL-3304) cells, providing information on the current state of the culture together with supplementary details on the culturing procedures to obtain and maintain viable cells.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy. .,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Natalia Cappoli
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy
| | - Isabella Coletta
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Rome, Italy
| | - Daniele Mezzogori
- Institute of Human Physiology, Università Cattolica del S. Cuore, Rome, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del S. Cuore, Rome, Italy
| | - Giacomo Pozzoli
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Università Cattolica del S. Cuore, L.go F Vito 1, 00168, Rome, Italy.,Pharmacology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Immunology Laboratory, Department of Oncological Gynecology, Università Cattolica del S. Cuore, Rome, Italy
| |
Collapse
|
48
|
Astakhova AA, Chistyakov DV, Sergeeva MG, Reiser G. Regulation of the ARE-binding proteins, TTP (tristetraprolin) and HuR (human antigen R), in inflammatory response in astrocytes. Neurochem Int 2018; 118:82-90. [DOI: 10.1016/j.neuint.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023]
|
49
|
He Y, Yao X, Taylor N, Bai Y, Lovenberg T, Bhattacharya A. RNA sequencing analysis reveals quiescent microglia isolation methods from postnatal mouse brains and limitations of BV2 cells. J Neuroinflammation 2018; 15:153. [PMID: 29788964 PMCID: PMC5964710 DOI: 10.1186/s12974-018-1195-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Background Microglia play key roles in neuron–glia interaction, neuroinflammation, neural repair, and neurotoxicity. Currently, various microglial in vitro models including primary microglia derived from distinct isolation methods and immortalized microglial cell lines are extensively used. However, the diversity of these existing models raises difficulty in parallel comparison across studies since microglia are sensitive to environmental changes, and thus, different models are likely to show widely varied responses to the same stimuli. To better understand the involvement of microglia in pathophysiological situations, it is critical to establish a reliable microglial model system. Methods With postnatal mouse brains, we isolated microglia using three general methods including shaking, mild trypsinization, and CD11b magnetic-associated cell sorting (MACS) and applied RNA sequencing to compare transcriptomes of the isolated cells. Additionally, we generated a genome-wide dataset by RNA sequencing of immortalized BV2 microglial cell line to compare with primary microglia. Furthermore, based on the outcomes of transcriptional analysis, we compared cellular functions between primary microglia and BV2 cells including immune responses to LPS by quantitative RT-PCR and Luminex Multiplex Assay, TGFβ signaling probed by Western blot, and direct migration by chemotaxis assay. Results We found that although the yield and purity of microglia were comparable among the three isolation methods, mild trypsinization drove microglia in a relatively active state, evidenced by high amount of amoeboid microglia, enhanced expression of microglial activation genes, and suppression of microglial quiescent genes. In contrast, CD11b MACS was the most reliable and consistent method, and microglia isolated by this method maintained a relatively resting state. Transcriptional and functional analyses revealed that as compared to primary microglia, BV2 cells remain most of the immune functions such as responses to LPS but showed limited TGFβ signaling and chemotaxis upon chemoattractant C5a. Conclusions Collectively, we determined the optimal isolation methods for quiescent microglia and characterized the limitations of BV2 cells as an alternative of primary microglia. Considering transcriptional and functional differences, caution should be taken when extrapolating data from various microglial models. In addition, our RNA sequencing database serves as a valuable resource to provide novel insights for appropriate application of microglia as in vitro models. Electronic supplementary material The online version of this article (10.1186/s12974-018-1195-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingbo He
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Xiang Yao
- Janssen Research & Development, LLC., Discovery Sciences, San Diego, CA, USA
| | - Natalie Taylor
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yuchen Bai
- Janssen Research & Development, LLC., Discovery Sciences, Spring House, PA, USA
| | - Timothy Lovenberg
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC., Neuroscience Drug Discovery, 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
50
|
Xing C, Li W, Deng W, Ning M, Lo EH. A potential gliovascular mechanism for microglial activation: differential phenotypic switching of microglia by endothelium versus astrocytes. J Neuroinflammation 2018; 15:143. [PMID: 29764475 PMCID: PMC5952884 DOI: 10.1186/s12974-018-1189-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Activation of microglia can result in phenotypic and functional diversity. However, the pathways that trigger different states of microglial activation remain to be fully understood. Here, we hypothesized that after injury, astrocytes and endothelium may contribute to a gliovascular switch for microglial activation. METHODS Astrocytes or cerebral endothelial cells were subjected to oxygen glucose deprivation, then conditioned media were transferred to microglia. The release of TNFα, IL-1β, IL-10, and IGF-1 was measured using ELISA. Surface markers of CD11b, CD45, CD86, and MHC class II were detected by flow cytometry. mRNA expression of iNOS, CD86, CD206, Arginase1, and transcription factors was measured using real-time PCR. Microglial function including migration and phagocytosis was assessed. Dendritogenesis was determined by counting the number of primary dendrites, secondary dendrites, and dendritic ends in the neurons exposed to either endothelial- or astrocyte-activated microglia. RESULTS Exposure to conditioned media from oxygen-glucose-deprived cerebral endothelial cells or oxygen-glucose-deprived astrocytes activated microglia into different forms. The endothelium converted ramified microglia into amoeboid shapes; increased the release of TNFα, IL-1β, and IL-10; decreased IGF-1; upregulated iNOS expression; and inhibited microglial migration and phagocytosis. In contrast, astrocytes increased microglial production of IGF-1, upregulated CD206 expression, and enhanced microglial phagocytosis. These opposing effects of the endothelium versus astrocyte crosstalk partly mirror potentially deleterious versus potentially beneficial microglial phenotypes. Consistent with this idea, endothelial-activated microglia were neurotoxic, whereas astrocyte-activated microglia did not affect neuronal viability but instead promoted neuronal dendritogenesis. CONCLUSION These findings provide proof of concept that endothelial cells and astrocytes provide differing signals to microglia that influence their activation states and suggest that a gliovascular switch may be involved in the balance between beneficial versus deleterious microglial properties.
Collapse
Affiliation(s)
- Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA 02129 USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA 02129 USA
| | - Wenjun Deng
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - MingMing Ning
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, MGH East 149-2401, Charlestown, MA 02129 USA
| |
Collapse
|