1
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
2
|
Catalão CHR, da Costa LHA, Dos Santos JR, Alberici LC, Falconi-Sobrinho LL, Coimbra NC, Dominguini D, Dal-Pizzol F, Barichello T, Rocha MJA. Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 2024; 481:1585-1602. [PMID: 39466125 DOI: 10.1042/bcj20240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
Collapse
Affiliation(s)
- Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luis Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | | | - Norberto Cysne Coimbra
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria José Alves Rocha
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
3
|
Childs R, Karamacoska D, Lim CK, Steiner-Lim GZ. "Let's talk about sex, inflammaging, and cognition, baby": A meta-analysis and meta-regression of 106 case-control studies on mild cognitive impairment and Alzheimer's disease. Brain Behav Immun Health 2024; 40:100819. [PMID: 39161876 PMCID: PMC11331696 DOI: 10.1016/j.bbih.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024] Open
Abstract
Background Chronic inflammation is recognised as an important component of Alzheimer's disease (AD), yet its relationship with cognitive decline, sex-differences, and age is not well understood. This study investigated the relationship between inflammatory markers, cognition, sex, and age in individuals with mild cognitive impairment (MCI) and AD. Methods A systematic review was performed to identify case-control studies which measured cognitive function and inflammatory markers in serum, plasma, and cerebrospinal fluid in individuals with MCI or AD compared with healthy control (HC) participants. Meta-analysis was performed with Hedges' g calculated in a random effects model. Meta-regression was conducted using age, sex, and mini-mental status exam (MMSE) values. Results A total of 106 studies without a high risk of bias were included in the meta-analysis including 18,145 individuals: 5625 AD participants, 3907 MCI participants, and 8613 HC participants. Combined serum and plasma meta-analysis found that IL1β, IL6, IL8, IL18, CRP, and hsCRP were significantly raised in individuals with AD compared to HC. In CSF, YKL40, and MCP-1 were raised in AD compared to HC. YKL40 was also raised in MCI compared to HC. Meta-regression analysis highlighted several novel findings: MMSE was negatively correlated with IL6 and positively correlated with IL1α in AD, while in MCI studies, MMSE was negatively correlated with IL8 and TNFα. Meta-regression also revealed sex-specific differences in levels of IL1α, IL4, IL6, IL18, hsCRP, MCP-1, and YKL-40 across AD and MCI studies, and age was found to account for heterogeneity of CRP, MCP-1, and IL4 in MCI and AD. Conclusion Elevated levels of IL6 and YKL40 may reflect microglial inflammatory activity in both MCI and AD. Systemic inflammation may interact with the central nervous system, as poor cognitive function in individuals with AD and MCI was associated with higher levels of serum and plasma proinflammatory cytokines IL6 and TNFα. Moreover, variations of systemic inflammation between males and females may be modulated by sex-specific hormonal changes, such as declining oestrogen levels in females throughout the menopause transition. Longitudinal studies sampling a range of biospecimen types are needed to elucidate the nuances of the relationship between inflammation and cognition in individuals with MCI and AD, and understand how systemic and central inflammation differentially impact cognitive function.
Collapse
Affiliation(s)
- Ryan Childs
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana Karamacoska
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Chai K. Lim
- Faculty of Medicine, Health, and Human Sciences, Macquarie University, Macquarie Park NSW, 2190, Australia
| | | |
Collapse
|
4
|
Warmenhoven N, Sánchez‐Benavides G, González‐Escalante A, Milà‐Alomà M, Shekari M, López‐Martos D, Ortiz‐Romero P, Kollmorgen G, Quijano‐Rubio C, Minguillón C, Gispert JD, Vilor‐Tejedor N, Arenaza‐Urquijo E, Palpatzis E, Ashton NJ, Zetterberg H, Blennow K, Suárez‐Calvet M, Grau‐Rivera O. CSF glial biomarkers are associated with cognition in individuals at risk of Alzheimer's disease. Alzheimers Dement 2024; 20:5819-5832. [PMID: 39032119 PMCID: PMC11497712 DOI: 10.1002/alz.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION We examined whether baseline glial markers soluble triggering receptor expressed on myeloid cell 2 (sTREM2), chitinase 3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF), and plasma GFAP are associated with cognitive change in cognitively unimpaired (CU) individuals at risk of Alzheimer's disease (AD). METHODS A total of 353 CU (mean age 60.9 years) participants were included (mean follow-up time 3.28 years). Linear regression models with cognition as outcome were used. We also tested whether amyloid beta (Aβ) status modified these associations. RESULTS Higher baseline CSF sTREM2 was associated with a positive global cognition (Preclinical Alzheimer's Cognitive Composite) rate of change, and better memory and executive outcomes, independently of AD pathology. Higher baseline plasma GFAP was associated with a decline on attention rate of change. Stratified analyses by Aβ status showed that CSF sTREM2 and YKL-40 were positively associated with executive functioning in amyloid negative (Aβ-) individuals. DISCUSSION Our results suggest that a TREM2-mediated microglial response may be associated with better longitudinal cognitive performance. HIGHLIGHTS Higher cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cell 2 (sTREM2) relates to better longitudinal cognitive performance. The association between CSF sTREM2 and cognition is independent of Alzheimer's disease (AD) pathology. Targeting microglial reactivity may be a therapeutic strategy for AD prevention.
Collapse
Affiliation(s)
- Noëlle Warmenhoven
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Armand González‐Escalante
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Marta Milà‐Alomà
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - David López‐Martos
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Paula Ortiz‐Romero
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | | | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadridSpain
| | - Natalia Vilor‐Tejedor
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute for Science and TechnologyBarcelonaSpain
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamNetherlands
| | - Eider Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Eleni Palpatzis
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Nicholas J Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaSouth London and Maudsley NHS Foundation, Michael Rutter CentreLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | | |
Collapse
|
5
|
Holper S, Loveland P, Churilov L, Italiano D, Watson R, Yassi N. Blood Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-Analysis. Neurology 2024; 103:e209537. [PMID: 38986050 PMCID: PMC11314950 DOI: 10.1212/wnl.0000000000209537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroinflammation, particularly early astrocyte reactivity, is a significant driver of Alzheimer disease (AD) pathogenesis. It is unclear how the levels of astrocyte biomarkers change in patients across the AD continuum and which best reflect AD-related change. We performed a systematic review and meta-analysis of 3 blood astrocyte biomarkers (glial fibrillary acidic protein [GFAP], chitinase-3-like protein 1 [YKL-40], and S100B) in patients clinically diagnosed with AD. METHODS MEDLINE and Web of Science were searched on March 23, 2023, without restrictions on language, time, or study design, for studies reporting blood levels of the astrocyte biomarkers GFAP, YKL-40, or S100B in patients on the AD continuum (including those with mild cognitive impairment [MCI] and dementia) and a cognitively unimpaired (CU) control population. AD diagnosis was based on established diagnostic criteria and/or comprehensive multidisciplinary clinical consensus. Studies reporting indirect biomarker measures (e.g., levels of biomarker autoantibodies) were excluded. Risk of bias assessment was performed using the revised Quality Assessment of Diagnostic Accuracy Studies tool. Pooled effect sizes were determined using the Hedge g method with a random-effects model. The review was prospectively registered on PROSPERO (registration number CRD42023458305). RESULTS The search identified 1,186 studies; 36 met inclusion criteria (AD continuum n = 3,366, CU n = 4,115). No study was assessed to have a high risk of bias. Compared with CU individuals, patients on the AD continuum had higher GFAP and YKL-40 levels (GFAP effect size 1.15, 95% CI 0.94-1.36, p < 0.0001; YKL-40 effect size 0.38, 95% CI 0.28-0.49, p < 0.0001). Both biomarkers were elevated in more advanced clinical stages of the disease (i.e., in AD dementia compared with MCI due to AD: GFAP effect size 0.48, 95% CI 0.19-0.76, p = 0.0009; YKL-40 effect size 0.34, 95% CI 0.10-0.57, p = 0.0048). No significant differences in blood S100B levels were identified. DISCUSSION We demonstrated significant elevations in blood GFAP and YKL-40 levels in patients on the AD continuum compared with CU individuals. Furthermore, within the AD clinical spectrum, significant elevation correlated with more advanced disease stage. Our findings suggest that both biomarkers reflect AD-related pathology. Our findings are limited by the lack of cultural and linguistic diversity in the study populations meta-analyzed. Future meta-analyses using a biomarker-defined AD population are warranted.
Collapse
Affiliation(s)
- Sarah Holper
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Paula Loveland
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Leonid Churilov
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Dominic Italiano
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Rosie Watson
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Nawaf Yassi
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Wagemann O, Liu H, Wang G, Shi X, Bittner T, Scelsi MA, Farlow MR, Clifford DB, Supnet-Bell C, Santacruz AM, Aschenbrenner AJ, Hassenstab JJ, Benzinger TLS, Gordon BA, Coalier KA, Cruchaga C, Ibanez L, Perrin RJ, Xiong C, Li Y, Morris JC, Lah JJ, Berman SB, Roberson ED, van Dyck CH, Galasko D, Gauthier S, Hsiung GYR, Brooks WS, Pariente J, Mummery CJ, Day GS, Ringman JM, Mendez PC, St. George-Hyslop P, Fox NC, Suzuki K, Okhravi HR, Chhatwal J, Levin J, Jucker M, Sims JR, Holdridge KC, Proctor NK, Yaari R, Andersen SW, Mancini M, Llibre-Guerra J, Bateman RJ, McDade E. Downstream Biomarker Effects of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer Disease: The DIAN-TU-001 Randomized Clinical Trial. JAMA Neurol 2024; 81:582-593. [PMID: 38683602 PMCID: PMC11059071 DOI: 10.1001/jamaneurol.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024]
Abstract
Importance Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] β = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] β = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] β = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] β = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] β = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] β = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] β = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration ClinicalTrials.gov Identifier: NCT04623242.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Xinyu Shi
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | | | - Marzia A. Scelsi
- F. Hoffmann-La Roche Products Ltd, Welwyn Garden City, United Kingdom
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - David B. Clifford
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Charlene Supnet-Bell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Anna M. Santacruz
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Jason J. Hassenstab
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Brian A. Gordon
- Department of Radiology, Washington University in St Louis, St Louis, Missouri
| | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Laura Ibanez
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Richard J. Perrin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - James J. Lah
- Department of Neurology, School of Medicine Emory University, Atlanta, Georgia
| | - Sarah B. Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham
| | | | - Douglas Galasko
- Department of Neurology, University of California, San Diego
| | - Serge Gauthier
- Department of Neurology & Psychiatry, McGill University, Montréal, Québec, Canada
| | - Ging-Yuek R. Hsiung
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William S. Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Jérémie Pariente
- Department of Neurology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Catherine J. Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville
| | - John M. Ringman
- Department of Neurology, University of Southern California, Los Angeles
| | - Patricio Chrem Mendez
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | | | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hamid R. Okhravi
- Department of Geriatrics, Eastern Virginia Medical School, Norfolk
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | - Roy Yaari
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Jorge Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
7
|
Ham HJ, Lee YS, Koo JK, Yun J, Son DJ, Han SB, Hong JT. Inhibition of Amyloid-β (Aβ)-Induced Cognitive Impairment and Neuroinflammation in CHI3L1 Knockout Mice through Downregulation of ERK-PTX3 Pathway. Int J Mol Sci 2024; 25:5550. [PMID: 38791588 PMCID: PMC11122210 DOI: 10.3390/ijms25105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aβ infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aβ-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aβ infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| |
Collapse
|
8
|
Catalano AA, Yoon J, Fertuzinhos S, Reisert H, Walsh H, Kosana P, Wilson M, Gisslen M, Zetterberg H, Marra CM, Farhadian SF. Neurosyphilis is characterized by a compartmentalized and robust neuroimmune response but not by neuronal injury. MED 2024; 5:321-334.e3. [PMID: 38513660 PMCID: PMC11216317 DOI: 10.1016/j.medj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Neurosyphilis is increasing in prevalence but its pathophysiology remains incompletely understood. This study assessed for CNS-specific immune responses during neurosyphilis compared to syphilis without neurosyphilis and compared these immune profiles to those observed in other neuroinflammatory diseases. METHODS Participants with syphilis were categorized as having neurosyphilis if their cerebrospinal fluid (CSF)-venereal disease research laboratory (VDRL) test was reactive and as having syphilis without neurosyphilis if they had a non-reactive CSF-VDRL test and a white blood cell count <5/μL. Neurosyphilis and syphilis without neurosyphilis participants were matched by rapid plasma reagin titer and HIV status. CSF and plasma were assayed for markers of neuronal injury and glial and immune cell activation. Bulk RNA sequencing was performed on CSF cells, with results stratified by the presence of neurological symptoms. FINDINGS CSF neopterin and five CSF chemokines had levels significantly higher in individuals with neurosyphilis compared to those with syphilis without neurosyphilis, but no markers of neuronal injury or astrocyte activation were significantly elevated. The CSF transcriptome in neurosyphilis was characterized by genes involved in microglial activation and lipid metabolism and did not differ in asymptomatic versus symptomatic neurosyphilis cases. CONCLUSIONS The CNS immune response observed in neurosyphilis was comparable to other neuroinflammatory diseases and was present in individuals with neurosyphilis regardless of neurological symptoms, yet there was minimal evidence for neuronal or astrocyte injury. These findings support the need for larger studies of the CSF inflammatory response in asymptomatic neurosyphilis. FUNDING This work was funded by the National Institutes of Health, grants K23MH118999 (S.F.F.) and R01NS082120 (C.M.M.).
Collapse
Affiliation(s)
- Allison A Catalano
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA
| | - Jennifer Yoon
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Sofia Fertuzinhos
- Bioinformatics Support Hub, Cushing/Whitney Library, Yale School of Medicine, New Haven, CT, USA
| | - Hailey Reisert
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Walsh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Priya Kosana
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA
| | - Michael Wilson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina M Marra
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Shelli F Farhadian
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT, USA; Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
10
|
Zeng X, Cheung SKK, Shi M, Or PMY, Li Z, Liu JYH, Ho WLH, Liu T, Lu K, Rudd JA, Wang Y, Chan AM. Astrocyte-specific knockout of YKL-40/Chi3l1 reduces Aβ burden and restores memory functions in 5xFAD mice. J Neuroinflammation 2023; 20:290. [PMID: 38042775 PMCID: PMC10693711 DOI: 10.1186/s12974-023-02970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aβ1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aβ1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aβ1-42 peptides, increased rate of Aβ1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Zhining Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Kun Lu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China.
| |
Collapse
|
11
|
Zhou Y, Liu Z, Liu Y. The potential roles and mechanisms of Chitinase-3-like-1 in the pathogenesis of type 2-biased airway diseases. Clin Immunol 2023; 257:109856. [PMID: 38036279 DOI: 10.1016/j.clim.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The immune modulation in the epithelium is a protective feature of the epithelial function in the mucosal airways. Dysfunction of the epithelium can lead to chronic allergic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma. Chitinase-3-like-1 (CHI3L1) is a key modulator in the epithelium against irritants, pathogens, and allergens and is involved in cancers, autoimmune diseases, neurological disorders, and other chronic diseases. Induction of epithelial cell-derived CHI3L1 is also confirmed to be implicated in the pathogenesis of Th2-related airway diseases like CRSwNP, AR, and allergic asthma, triggering a cascade of subsequent inflammatory reactions leading to the disease development. The techniques that block the biological function of CHI3L1 include small interfering RNA, neutralizing antibodies, and microRNAs and these methods proved to be successful in preclinical and clinical investigation in cancers, autoimmune diseases, asthma, and chronic obstructive pulmonary disease. Therefore, treatment with CHI3L1-blocking methods could open up therapeutic options for allergic airway diseases. This review article discusses the role of epithelial cell-derived CHI3L1 in the development of CRSwNP, AR, and allergic asthma and examines the use of CHI3L1 as a potential therapeutic agent for allergic airway diseases.
Collapse
Affiliation(s)
- Yian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| |
Collapse
|
12
|
Neumann A, Ohlei O, Küçükali F, Bos IJ, Timsina J, Vos S, Prokopenko D, Tijms BM, Andreasson U, Blennow K, Vandenberghe R, Scheltens P, Teunissen CE, Engelborghs S, Frisoni GB, Blin O, Richardson JC, Bordet R, Lleó A, Alcolea D, Popp J, Marsh TW, Gorijala P, Clark C, Peyratout G, Martinez-Lage P, Tainta M, Dobson RJB, Legido-Quigley C, Van Broeckhoven C, Tanzi RE, Ten Kate M, Lill CM, Barkhof F, Cruchaga C, Lovestone S, Streffer J, Zetterberg H, Visser PJ, Sleegers K, Bertram L. Multivariate GWAS of Alzheimer's disease CSF biomarker profiles implies GRIN2D in synaptic functioning. Genome Med 2023; 15:79. [PMID: 37794492 PMCID: PMC10548686 DOI: 10.1186/s13073-023-01233-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.
Collapse
Affiliation(s)
- Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabelle J Bos
- Netherlands Institute for Health Services Research, Utrecht, Netherlands
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Stephanie Vos
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospital Leuven, Leuven, Belgium
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Universitair Ziekenhuis Brussel (UZ Brussel) and Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giovanni B Frisoni
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Oliver Blin
- Clinical Pharmacology & Pharmacovigilance Department, Marseille University Hospital, Marseille, France
| | | | - Régis Bordet
- Neuroscience & Cognition, CHU de Lille, University of Lille, Inserm, France
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zurich, Switzerland
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Thomas W Marsh
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zurich, Switzerland
| | - Gwendoline Peyratout
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
- Zumarraga Hospital, Osakidetza, Integrated Health Organization (OSI) Goierri-Urola Garia, Basque Country, Spain
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Boston, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Rudolph E Tanzi
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mara Ten Kate
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Simon Lovestone
- Janssen Medical Ltd, Wycombe, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Johannes Streffer
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- AC Immune SA, Lausanne, Switzerland
- Janssen R&D, LLC, Beerse, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Pieter Jelle Visser
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, Netherlands
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany.
- Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Paryani F, Kwon JS, Ng CW, Madden N, Ofori K, Tang A, Lu H, Li J, Mahajan A, Davidson SM, Basile A, McHugh C, Vonsattel JP, Hickman R, Zody M, Houseman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-OMIC analysis of Huntington disease reveals a neuroprotective astrocyte state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556867. [PMID: 37745577 PMCID: PMC10515780 DOI: 10.1101/2023.09.08.556867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined. Here, we employed a multi-omic approach including single nucleus RNAseq (snRNAseq), bulk RNAseq, lipidomics, HTT gene CAG repeat length measurements, and multiplexed immunofluorescence on post-mortem brain tissue from multiple brain regions of HD and control donors. We defined a signature of genes that is driven by CAG repeat length and found it enriched in astrocytic and microglial genes. Moreover, weighted gene correlation network analysis showed loss of connectivity of astrocytic and microglial modules in HD and identified modules that correlated with CAG-repeat length which further implicated inflammatory pathways and metabolism. We performed lipidomic analysis of HD and control brains and identified several lipid species that correlate with HD grade, including ceramides and very long chain fatty acids. Integration of lipidomics and bulk transcriptomics identified a consensus gene signature that correlates with HD grade and HD lipidomic abnormalities and implicated the unfolded protein response pathway. Because astrocytes are critical for brain lipid metabolism and play important roles in regulating inflammation, we analyzed our snRNAseq dataset with an emphasis on astrocyte pathology. We found two main astrocyte types that spanned multiple brain regions; these types correspond to protoplasmic astrocytes, and fibrous-like - CD44-positive, astrocytes. HD pathology was differentially associated with these cell types in a region-specific manner. One protoplasmic astrocyte cluster showed high expression of metallothionein genes, the depletion of this cluster positively correlated with the depletion of vulnerable medium spiny neurons in the caudate nucleus. We confirmed that metallothioneins were increased in cingulate HD astrocytes but were unchanged or even decreased in caudate astrocytes. We combined existing genome-wide association studies (GWAS) with a GWA study conducted on HD patients from the original Venezuelan cohort and identified a single-nucleotide polymorphism in the metallothionein gene locus associated with delayed age of onset. Functional studies found that metallothionein overexpressing astrocytes are better able to buffer glutamate and were neuroprotective of patient-derived directly reprogrammed HD MSNs as well as against rotenone-induced neuronal death in vitro. Finally, we found that metallothionein-overexpressing astrocytes increased the phagocytic activity of microglia in vitro and increased the expression of genes involved in fatty acid binding. Together, we identified an astrocytic phenotype that is regionally-enriched in less vulnerable brain regions that can be leveraged to protect neurons in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center
| | - Ji-Sun Kwon
- Washington University School of Medicine in St. Louis
| | - Chris W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Shawn M. Davidson
- Princeton University, Lewis-Sigler Institute for Integrative Genomics
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | | | - David E. Houseman
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - James E. Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Andrew S. Yoo
- Washington University School of Medicine in St. Louis
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| |
Collapse
|
14
|
Gao F, Li F, Wang J, Yu H, Li X, Chen H, Wang J, Qin D, Li Y, Liu S, Zhang X, Wang ZH. SERS-Based Optical Nanobiosensors for the Detection of Alzheimer's Disease. BIOSENSORS 2023; 13:880. [PMID: 37754114 PMCID: PMC10526933 DOI: 10.3390/bios13090880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, impacting millions worldwide. However, its complex neuropathologic features and heterogeneous pathophysiology present significant challenges for diagnosis and treatment. To address the urgent need for early AD diagnosis, this review focuses on surface-enhanced Raman scattering (SERS)-based biosensors, leveraging the excellent optical properties of nanomaterials to enhance detection performance. These highly sensitive and noninvasive biosensors offer opportunities for biomarker-driven clinical diagnostics and precision medicine. The review highlights various types of SERS-based biosensors targeting AD biomarkers, discussing their potential applications and contributions to AD diagnosis. Specific details about nanomaterials and targeted AD biomarkers are provided. Furthermore, the future research directions and challenges for improving AD marker detection using SERS sensors are outlined.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Madden N, Mei YZJ, Jakubiak K, Li J, Hargus G, Goldman JE, Al-Dalahmah O. The link between SARS-CoV-2 related microglial reactivity and astrocyte pathology in the inferior olivary nucleus. Front Neurosci 2023; 17:1198219. [PMID: 37483351 PMCID: PMC10359900 DOI: 10.3389/fnins.2023.1198219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The pathological involvement of the central nervous system in SARS-CoV2 (COVID-19) patients is established. The burden of pathology is most pronounced in the brain stem including the medulla oblongata. Hypoxic/ischemic damage is the most frequent neuropathologic abnormality. Other neuropathologic features include neuronophagia, microglial nodules, and hallmarks of neurodegenerative diseases: astrogliosis and microglial reactivity. It is still unknown if these pathologies are secondary to hypoxia versus a combination of inflammatory response combined with hypoxia. It is also unknown how astrocytes react to neuroinflammation in COVID-19, especially considering evidence supporting the neurotoxicity of certain astrocytic phenotypes. This study aims to define the link between astrocytic and microglial pathology in COVID-19 victims in the inferior olivary nucleus, which is one of the most severely affected brain regions in COVID-19, and establish whether COVID-19 pathology is driven by hypoxic damage. Here, we conducted neuropathologic assessments and multiplex-immunofluorescence studies on the medulla oblongata of 18 COVID-19, 10 pre-pandemic patients who died of acute respiratory distress syndrome (ARDS), and 7-8 control patients with no ARDS or COVID-19. The comparison of ARDS and COVID-19 allows us to identify whether the pathology in COVID-19 can be explained by hypoxia alone, which is common to both conditions. Our results showed increased olivary astrogliosis in ARDS and COVID-19. However, microglial density and microglial reactivity were increased only in COVID-19, in a region-specific manner. Also, olivary hilar astrocytes increased YKL-40 (CHI3L1) in COVID-19, but to a lesser extent than ARDS astrocytes. COVID-19 astrocytes also showed lower levels of Aquaporin-4 (AQP4), and Metallothionein-3 in subsets of COVID-19 brain regions. Cluster analysis on immunohistochemical attributes of astrocytes and microglia identified ARDS and COVID-19 clusters with correlations to clinical history and disease course. Our results indicate that olivary glial pathology and neuroinflammation in the COVID-19 cannot be explained solely by hypoxia and suggest that failure of astrocytes to upregulate the anti-inflammatory YKL-40 may contribute to the neuroinflammation. Notwithstanding the limitations of retrospective studies in establishing causality, our experimental design cannot adequately control for factors external to our design. Perturbative studies are needed to confirm the role of the above-described astrocytic phenotypes in neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
16
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
17
|
Malan L, van Wyk R, von Känel R, Ziemssen T, Vilser W, Nilsson PM, Magnusson M, Jujic A, Mak D, Steyn F, Malan NT. The chronic stress risk phenotype mirrored in the human retina as a neurodegenerative condition. Stress 2023:1-43. [PMID: 37154816 DOI: 10.1080/10253890.2023.2210687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A 3-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disc ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and 3-yr changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase 3-like-1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal-barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal-barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Collapse
Affiliation(s)
- Leoné Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| | - Roelof van Wyk
- Surgical Ophthalmologist; 85 Peter Mokaba Street, Potchefstroom, South Africa
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus; Technische Universität Dresden, Germany
| | - Walthard Vilser
- Institute of Biomedical Engineering and informatics; Technical University Ilmenau, Germany
- Department of Pediatrics and Adolescent Medicine, Section Neonatalogy; University Hospital, Jena, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
- Hypertension in Africa Research Team (HART); North-West University, Potchefstroom, South Africa
- Department of Cardiology; Skåne University Hospital, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Malmö Sweden
| | - Amra Jujic
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Daniel Mak
- Centre for Regenerative Medicine and Health; Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, People's Republic of China
| | - Faans Steyn
- Statistical Consultation Services; North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
18
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Montoliu-Gaya L, Alcolea D, Ashton NJ, Pegueroles J, Levin J, Bosch B, Lantero-Rodriguez J, Carmona-Iragui M, Wagemann O, Balasa M, Kac PR, Barroeta I, Lladó A, Brum WS, Videla L, Gonzalez-Ortiz F, Benejam B, Arranz Martínez JJ, Karikari TK, Nübling G, Bejanin A, Benedet AL, Blesa R, Lleó A, Blennow K, Sánchez-Valle R, Zetterberg H, Fortea J. Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study. EBioMedicine 2023; 90:104547. [PMID: 37002988 PMCID: PMC10070083 DOI: 10.1016/j.ebiom.2023.104547] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) is a marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. METHODS We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universität, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. FINDINGS This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymptomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF Aβ changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its concentrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. INTERPRETATION Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials. FUNDING AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, Alzheimer's Association, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's Society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens, Fundación Tatiana Pérez de Guzmán el Bueno & European Union's Horizon 2020 und Umwelteinflüssen auf die menschliche Gesundheit.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Olivia Wagemann
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Przemyslaw Radoslaw Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Javier José Arranz Martínez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.
| |
Collapse
|
20
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
21
|
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays Biochem 2023; 67:119-130. [PMID: 36449279 PMCID: PMC10011405 DOI: 10.1042/ebc20220079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| |
Collapse
|
22
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Musumeci G, Vecchio M, Li Volti G, Tibullo D, Broggi G, Caltabiano R, Ulivieri M, Kazakova M, Parenti R, Vicario N, Fazio F, Di Rosa M. Sex-dependent neuro-deconvolution analysis of Alzheimer's disease brain transcriptomes according to CHI3L1 expression levels. J Neuroimmunol 2022; 373:577977. [PMID: 36228382 DOI: 10.1016/j.jneuroim.2022.577977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Maria Kazakova
- Department of Medical Biology, Medical University, Plovdiv, 4002 Plovdiv, Bulgaria; Research Institute, Medical University-, Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
23
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
24
|
Ferrari-Souza JP, Ferreira PCL, Bellaver B, Tissot C, Wang YT, Leffa DT, Brum WS, Benedet AL, Ashton NJ, De Bastiani MA, Rocha A, Therriault J, Lussier FZ, Chamoun M, Servaes S, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Klunk WE, Tudorascu DL, Cohen AD, Villemagne VL, Gauthier S, Blennow K, Zetterberg H, Souza DO, Karikari TK, Zimmer ER, Rosa-Neto P, Pascoal TA. Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer's disease. Mol Psychiatry 2022; 27:4781-4789. [PMID: 35948658 PMCID: PMC9734046 DOI: 10.1038/s41380-022-01716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
Abstract
Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-β (Aβ) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aβ ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aβ-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aβ-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aβ and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aβ and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Douglas T Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andréia Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2022; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU “Policlinico-San Marco”, Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic ,Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,UK Dementia Research Institute at UCL, London, UK ,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
26
|
Hok-A-Hin YS, Hoozemans JJM, Hu WT, Wouters D, Howell JC, Rábano A, van der Flier WM, Pijnenburg YAL, Teunissen CE, Del Campo M. YKL-40 changes are not detected in post-mortem brain of patients with Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther 2022; 14:100. [PMID: 35879733 PMCID: PMC9310415 DOI: 10.1186/s13195-022-01039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Background YKL-40 (Chitinase 3-like I) is increased in CSF of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) patients and is therefore considered a potential neuroinflammatory biomarker. Whether changed YKL-40 levels in the CSF reflect dysregulation of YKL-40 in the brain is not completely understood yet. We aimed to extensively analyze YKL-40 levels in the brain of AD and different FTLD pathological subtypes. The direct relationship between YKL-40 levels in post-mortem brain and ante-mortem CSF was examined in a small set of paired brain-CSF samples. Method YKL-40 was analyzed in post-mortem temporal and frontal cortex of non-demented controls and patients with AD and FTLD (including FTLD-Tau and FTLD-TDP) pathology by immunohistochemistry (temporal cortex: 51 controls and 56 AD and frontal cortex: 7 controls and 24 FTLD patients), western blot (frontal cortex: 14 controls, 5 AD and 67 FTLD patients), or ELISA (temporal cortex: 11 controls and 7 AD and frontal cortex: 14 controls, 5 AD and 67 FTLD patients). YKL-40 levels were also measured in paired post-mortem brain and ante-mortem CSF samples from dementia patients (n = 9, time-interval collection: 1.4 years) by ELISA. Results We observed that YKL-40 post-mortem brain levels were similar between AD, FTLD, and controls as shown by immunohistochemistry, western blot, and ELISA. Interestingly, strong YKL-40 immunoreactivity was observed in AD cases with cerebral amyloid angiopathy (CAA; n = 6). In paired CSF-brain samples, YKL-40 concentration was 8-times higher in CSF compared to brain. Conclusion Our data suggest that CSF YKL-40 changes may not reflect YKL-40 changes within AD and FTLD pathological brain areas. The YKL-40 reactivity associated with classical CAA hallmarks indicates a possible relationship between YKL-40, neuroinflammation, and vascular pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01039-y.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - William T Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Dorine Wouters
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jennifer C Howell
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Wiesje M van der Flier
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
27
|
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1164. [PMID: 35534236 PMCID: PMC9128043 DOI: 10.1212/nxi.0000000000001164] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is an autoimmune disease confined in the CNS, and its course is frequently subtle and variable. Therefore, predictive biomarkers are needed. In this scenario, we conducted a systematic review and meta-analysis to evaluate the reliability of chitinase 3-like 1 as a biomarker of MS. METHODS Research through the main scientific databases (PubMed, Scopus, Web of Science, and Cochrane Library) published from January 2010 to December 2020 was performed using the following keywords: "chitinase 3-like 1 and multiple sclerosis" and "YKL40 and multiple sclerosis." Articles were selected according to the 2020 updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by 2 authors independently, and data were extracted; 20 of the 90 studies screened were included in the meta-analysis. The main efficacy measure was represented by the standardized mean difference of CSF and blood CHI3L1 levels; Review Manager version 5.4 and R software applications were used for analysis. RESULTS Higher levels of CHI3L1 were found in CSF of 673 patients with MS compared with 336 healthy controls (size-weighted mean difference [SMD] 50.88; 95% CI = 44.98-56.79; p < 0.00001) and in 461 patients with MS than 283 patients with clinically isolated syndrome (CIS) (SMD 28.18; 95% CI = 23.59-32.76; p < 0.00001). Mean CSF CHI3L1 levels were significantly higher in 561 converting than 445 nonconverting CIS (SMD 30.6; 95% CI = 28.31-32.93; p < 0.00001). CSF CHI3L1 levels were significantly higher in patients with primary progressive MS (PPMS) than in patients with relapsing-remitting MS (RRMS) (SMD 43.15; 95% CI = 24.41-61.90; p < 0.00001) and in patients with secondary progressive MS (SMD 41.86 with 95% CI = 32.39-51.33; p < 0.00001). CSF CHI3L1 levels in 407 patients with MS during remission phase of disease were significantly higher than those in 395 patients with MS with acute relapse (SMD 10.48; 95% CI = 08.51-12.44; p < 0.00001). The performances of CHI3L1 in blood for differentiating patients with MS from healthy controls were not significant (SMD 0.48; 95% CI = -1.18 to 2.14; p: 0.57). DISCUSSION CSF levels of CHI3L1 have a strong correlation with the MS pathologic course, in particular with the mechanism of progression of the disease; it helps to distinguish the PPMS from the RRMS. The potential role of CHI3L1 in serum needs to be further studied in the future.
Collapse
Affiliation(s)
- Stefano Floro
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Tiziana Carandini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Anna Margherita Pietroboni
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Milena Alessandra De Riz
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Elio Scarpini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Daniela Galimberti
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| |
Collapse
|
28
|
Teitsdottir UD, Darreh-Shori T, Lund SH, Jonsdottir MK, Snaedal J, Petersen PH. Phenotypic Displays of Cholinergic Enzymes Associate With Markers of Inflammation, Neurofibrillary Tangles, and Neurodegeneration in Pre- and Early Symptomatic Dementia Subjects. Front Aging Neurosci 2022; 14:876019. [PMID: 35693340 PMCID: PMC9178195 DOI: 10.3389/fnagi.2022.876019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cholinergic drugs are the most commonly used drugs for the treatment of Alzheimer’s disease (AD). Therefore, a better understanding of the cholinergic system and its relation to both AD-related biomarkers and cognitive functions is of high importance. Objectives To evaluate the relationships of cerebrospinal fluid (CSF) cholinergic enzymes with markers of amyloidosis, neurodegeneration, neurofibrillary tangles, inflammation and performance on verbal episodic memory in a memory clinic cohort. Methods In this cross-sectional study, 46 cholinergic drug-free subjects (median age = 71, 54% female, median MMSE = 28) were recruited from an Icelandic memory clinic cohort targeting early stages of cognitive impairment. Enzyme activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was measured in CSF as well as levels of amyloid-β1–42 (Aβ42), phosphorylated tau (P-tau), total-tau (T-tau), neurofilament light (NFL), YKL-40, S100 calcium-binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Verbal episodic memory was assessed with the Rey Auditory Verbal Learning (RAVLT) and Story tests. Results No significant relationships were found between CSF Aβ42 levels and AChE or BuChE activity (p > 0.05). In contrast, T-tau (r = 0.46, p = 0.001) and P-tau (r = 0.45, p = 0.002) levels correlated significantly with AChE activity. Although neurodegeneration markers T-tau and NFL did correlate with each other (r = 0.59, p < 0.001), NFL did not correlate with AChE (r = 0.25, p = 0.09) or BuChE (r = 0.27, p = 0.06). Inflammation markers S100B and YKL-40 both correlated significantly with AChE (S100B: r = 0.43, p = 0.003; YKL-40: r = 0.32, p = 0.03) and BuChE (S100B: r = 0.47, p < 0.001; YKL-40: r = 0.38, p = 0.009) activity. A weak correlation was detected between AChE activity and the composite score reflecting verbal episodic memory (r = −0.34, p = 0.02). LASSO regression analyses with a stability approach were performed for the selection of a set of measures best predicting cholinergic activity and verbal episodic memory score. S100B was the predictor with the highest model selection frequency for both AChE (68%) and BuChE (73%) activity. Age (91%) was the most reliable predictor for verbal episodic memory, with selection frequency of both cholinergic enzymes below 10%. Conclusions Results indicate a relationship between higher activity of the ACh-degrading cholinergic enzymes with increased neurodegeneration, neurofibrillary tangles and inflammation in the stages of pre- and early symptomatic dementia, independent of CSF Aβ42 levels.
Collapse
Affiliation(s)
- Unnur D. Teitsdottir
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
- *Correspondence: Unnur D. Teitsdottir
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| | | | - Maria K. Jonsdottir
- Department of Psychology, Reykjavik University, Reykjavik, Iceland
- Department of Psychiatry, Landspitali-National University Hospital, Reykjavik, Iceland
| | - Jon Snaedal
- Memory Clinic, Department of Geriatric Medicine, Landspitali-National University Hospital, Reykjavik, Iceland
| | - Petur H. Petersen
- Faculty of Medicine, Department of Anatomy, Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
29
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
30
|
Liu P, Wang Y, Sun Y, Peng G. Neuroinflammation as a Potential Therapeutic Target in Alzheimer’s Disease. Clin Interv Aging 2022; 17:665-674. [PMID: 35520949 PMCID: PMC9064449 DOI: 10.2147/cia.s357558] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Although amyloid-β (Aβ) peptide accumulation is considered as a key early event in the pathogenesis of Alzheimer’s disease (AD), the precise pathophysiology of this deadly illness remains unclear and no effective remedies capable of inhibiting disease progression have been discovered. In addition to deposition of extracellular Aβ plaques and intracellular neurofibrillary tangles, neuroinflammation has been identified as the third core characteristic crucial in the pathogenesis of AD. More and more evidence from laboratory and clinical studies have suggested that anti-inflammatory treatments could defer or prevent the occurrence of AD. In this review, we will discuss multifaceted evidence of neuroinflammation presented in AD and the newly emerged anti-inflammatory targets both in pre-clinical and clinical AD.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yunyun Wang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Neurology, Shengzhou People’s Hospital, Shaoxing, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Guoping Peng, Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, People’s Republic of China, Tel +86 13588150613, Email
| |
Collapse
|
31
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
32
|
Ham HJ, Lee YS, Lee HP, Ham YW, Yun J, Han SB, Hong JT. G721-0282 Exerts Anxiolytic-Like Effects on Chronic Unpredictable Mild Stress in Mice Through Inhibition of Chitinase-3-Like 1-Mediated Neuroinflammation. Front Cell Neurosci 2022; 16:793835. [PMID: 35345530 PMCID: PMC8957088 DOI: 10.3389/fncel.2022.793835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic stress is thought to be a major contributor to the onset of mental disorders such as anxiety disorders. Several studies have demonstrated a correlation between anxiety state and neuroinflammation, but the detailed mechanism is unclear. Chitinase-3-like 1 (CHI3L1) is expressed in several chronic inflammatorily damaged tissues and is well known to play a major role in mediating inflammatory responses. In the present study, we investigated the anxiolytic-like effect of N-Allyl-2-[(6-butyl-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl)sulfanyl]acetamide (G721-0282), an inhibitor of CHI3L1, on mice treated with chronic unpredictable mild stress (CUMS), as well as the mechanism of its action. We examined the anxiolytic-like effect of G721-0282 by conducting several behavioral tests with oral administration of G721-0282 to CUMS-treated BALB/c male mice. We found that administration of G721-0282 relieves CUMS-induced anxiety. Anxiolytic-like effects of G721-0282 have been shown to be associated with decreased expressions of CUMS-induced inflammatory proteins and cytokines in the hippocampus. The CUMS-elevated levels of CHI3L1 and IGFBP3 were inhibited by treatment with G721-0282 in vivo and in vitro. However, CHI3L1 deficiency abolished the anti-inflammatory effects of G721-0282 in microglial BV-2 cells. These results suggest that G721-0282 could lower CUMS-induced anxiety like behaviors by regulating IGFBP3-mediated neuroinflammation via inhibition of CHI3L1.
Collapse
Affiliation(s)
- Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, Orem, UT, United States
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Jin Tae Hong,
| |
Collapse
|
33
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
34
|
Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci 2022; 16:824888. [PMID: 35250459 PMCID: PMC8888691 DOI: 10.3389/fnins.2022.824888] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia and astrocytes play essential roles in the central nervous system contributing to many functions including homeostasis, immune response, blood-brain barrier maintenance and synaptic support. Evidence has emerged from experimental models of glial communication that microglia and astrocytes influence and coordinate each other and their effects on the brain environment. However, due to the difference in glial cells between humans and rodents, it is essential to confirm the relevance of these findings in human brains. Here, we aim to review the current knowledge on microglia-astrocyte crosstalk in humans, exploring novel methodological techniques used in health and disease conditions. This will include an in-depth look at cell culture and iPSCs, post-mortem studies, imaging and fluid biomarkers, genetics and transcriptomic data. In this review, we will discuss the advantages and limitations of these methods, highlighting the understanding these methods have brought the field on these cells communicative abilities, and the knowledge gaps that remain.
Collapse
Affiliation(s)
| | | | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
35
|
Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer's disease. Acta Neuropathol 2022; 144:843-859. [PMID: 35895141 PMCID: PMC9547798 DOI: 10.1007/s00401-022-02469-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/26/2023]
Abstract
Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aβ plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-β. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-β positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.
Collapse
|
36
|
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS - understanding various aspects of the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2021; 19:16-31. [PMID: 34856902 PMCID: PMC9127729 DOI: 10.2174/1567205018666211202143935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok. Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok. Poland
| | | |
Collapse
|
37
|
Hong S, Dobricic V, Ohlei O, Bos I, Vos SJB, Prokopenko D, Tijms BM, Andreasson U, Blennow K, Vandenberghe R, Gabel S, Scheltens P, Teunissen CE, Engelborghs S, Frisoni G, Blin O, Richardson JC, Bordet R, Lleó A, Alcolea D, Popp J, Clark C, Peyratout G, Martinez-Lage P, Tainta M, Dobson RJB, Legido-Quigley C, Sleegers K, Van Broeckhoven C, Tanzi RE, Ten Kate M, Wittig M, Franke A, Lill CM, Barkhof F, Lovestone S, Streffer J, Zetterberg H, Visser PJ, Bertram L. TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels. Alzheimers Dement 2021; 17:1628-1640. [PMID: 33991015 DOI: 10.1002/alz.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. METHODS We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. RESULTS We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. DISCUSSION Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.
Collapse
Affiliation(s)
- Shengjun Hong
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospital Leuven, Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giovanni Frisoni
- University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- AIX Marseille University, INS, Ap-hm, Marseille, France
| | | | - Regis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| | - Alberto Lleó
- Memory Unit, Neurology Department. Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department. Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Julius Popp
- Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zürich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christopher Clark
- Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zürich, Switzerland
| | - Gwendoline Peyratout
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Mikel Tainta
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark and Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rudolph E Tanzi
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mara Ten Kate
- Alzheimer Center and Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Frederik Barkhof
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Translational Medicine Neuroscience, UCB Biopharma SPRL, Braine l'Alleud, Belgium
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Instutet, Stockholm, Sweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
39
|
Dichev V, Kazakova M, Sarafian V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev Neurosci 2021; 31:539-553. [PMID: 32045356 DOI: 10.1515/revneuro-2019-0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases comprise a large number of disorders with high impact on human health. Neurodegenerative processes are caused by various etiological factors and differ in their clinical presentation. Neuroinflammation is widely discussed as both a cause and a consequence in the manifestation of these disorders. The interplay between the two entities is considered as a major contributor to the ongoing disease progression. An attentive search and implementation of new and reliable markers specific for the processes of inflammation and degeneration is still needed. YKL-40 is a secreted glycoprotein produced by activated glial cells during neuroinflammation. Neuron-specific enolase (NSE), expressed mainly by neuronal cells, is a long-standing marker for neuronal damage. The aim of this review is to summarize, clarify, and evaluate the potential significance and relationship between YKL-40 and NSE as biomarkers in the monitoring and prognosis of a set of neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. YKL-40 appears to be a more reliable biomarker in neurological diseases than NSE. The more prominent expression pattern of YKL-40 could be explained with the more obvious involvement of glial cells in pathological processes accompanying each neurodegenerative disease, whereas reduced NSE levels are likely related to low metabolic activity and increased death of neurons.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
40
|
De Kort AM, Kuiperij HB, Alcolea D, Kersten I, Versleijen AAM, Greenberg SM, Stoops E, Schreuder FHBM, Klijn CJM, Lleó A, Claassen JAHR, Verbeek MM. Cerebrospinal fluid levels of the neurotrophic factor neuroleukin are increased in early Alzheimer's disease, but not in cerebral amyloid angiopathy. ALZHEIMERS RESEARCH & THERAPY 2021; 13:160. [PMID: 34560885 PMCID: PMC8464117 DOI: 10.1186/s13195-021-00899-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 03/14/2023]
Abstract
Background Neuroleukin (NLK) is a protein with neurotrophic properties and is present in a proportion of senile plaques and amyloid laden vessels. It has been suggested that NLK is part of a neuroprotective response to amyloid β-induced cell death. The aim of our study was to investigate the value of cerebrospinal fluid (CSF) NLK levels as a biomarker of vascular amyloid deposition in patients with cerebral amyloid angiopathy (CAA) and in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD). Methods CSF NLK levels were quantified by ELISA in CAA patients (n = 25) and controls (n = 27) and in two independent samples of aMCI patients, AD patients, and controls: (1) From the Radboud University Medical Center (Nijmegen), we included n = 19 aMCI patients, n = 40 AD patients, and n = 32 controls. (2) From the Hospital of Sant Pau (Barcelona), we included n = 33 aMCI patients, n = 17 AD patients, and n = 50 controls. Results CSF NLK levels were similar in CAA patients and controls (p = 0.95). However, we found an elevated CSF concentration of NLK in aMCI (p < 0.0001) and AD patients (p < 0.0001) compared to controls in both samples sets. In addition, we found a correlation of CSF NLK with CSF YKL-40 (age-adjusted-spearman-rank-coefficient = 0.82, p < 0.0001) in aMCI/AD patients, a well-known glial marker of neuro-inflammation. Conclusions We found that CSF NLK levels are elevated in aMCI and AD patients compared to controls, but are not increased in CAA patients. CSF NLK levels may be related to an increased neuroinflammatory state in early stages of AD, given its association with YKL-40.
Collapse
Affiliation(s)
- Anna M De Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Floris H B M Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Increased YKL-40 but Not C-Reactive Protein Levels in Patients with Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9091094. [PMID: 34572280 PMCID: PMC8467854 DOI: 10.3390/biomedicines9091094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is a common feature in Alzheimer’s (AD) and Parkinson’s (PD) disease. In the last few decades, a testable hypothesis was proposed that protein-unfolding events might occur due to neuroinflammatory cascades involving alterations in the crosstalk between glial cells and neurons. Here, we tried to clarify the pattern of two of the most promising biomarkers of neuroinflammation in cerebrospinal fluid (CSF) in AD and PD. This study included cognitively unimpaired elderly patients, patients with mild cognitive impairment, patients with AD dementia, and patients with PD. CSF samples were analyzed for YKL-40 and C-reactive protein (CRP). We found that CSF YKL-40 levels were significantly increased only in dementia stages of AD. Additionally, increased YKL-40 levels were found in the cerebral orbitofrontal cortex from AD patients in agreement with augmented astrogliosis. Our study confirms that these biomarkers of neuroinflammation are differently detected in CSF from AD and PD patients.
Collapse
|
42
|
García-Foncillas J, Argente J, Bujanda L, Cardona V, Casanova B, Fernández-Montes A, Horcajadas JA, Iñiguez A, Ortiz A, Pablos JL, Pérez Gómez MV. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 2021; 25:563-576. [PMID: 34331269 DOI: 10.1007/s40291-021-00544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/11/2022]
Abstract
Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Department of Oncology, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain. .,Medical Oncology Department, University Hospital Fundación Jiménez Díaz-Universidad Autonoma de Madrid, Madrid, Spain.
| | - Jesús Argente
- Department of Endocrinology, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain.,Department of Pediatrics, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Victoria Cardona
- Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain.,ARADyAL Research Network, Barcelona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.,Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Fernández-Montes
- Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Andrés Iñiguez
- Department of Cardiology, Hospital Álvaro Cunqueiro-Complejo Hospitalario Universitario, Vigo, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
43
|
Montal V, Barroeta I, Bejanin A, Pegueroles J, Carmona-Iragui M, Altuna M, Benejam B, Videla L, Fernández S, Padilla C, Aranha MR, Iulita MF, Vidal-Piñeiro D, Alcolea D, Blesa R, Lleó A, Fortea J. Metabolite Signature of Alzheimer's Disease in Adults with Down Syndrome. Ann Neurol 2021; 90:407-416. [PMID: 34309066 DOI: 10.1002/ana.26178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the Alzheimer's disease metabolite signature through magnetic resonance spectroscopy in adults with Down syndrome and its relation with Alzheimer's disease biomarkers and cortical thickness. METHODS We included 118 adults with Down syndrome from the Down Alzheimer Barcelona Imaging Initiative and 71 euploid healthy controls from the Sant Pau Initiative on Neurodegeneration cohort. We measured the levels of myo-inositol (a marker of neuroinflammation) and N-acetyl-aspartate (a marker of neuronal integrity) in the precuneus using magnetic resonance spectroscopy. We investigated the changes with age and along the disease continuum (asymptomatic, prodromal Alzheimer's disease, and Alzheimer's disease dementia stages). We assessed the relationship between these metabolites and Aβ42 /Aβ40 ratio, phosphorylated tau-181, neurofilament light (NfL), and YKL-40 cerebrospinal fluid levels as well as amyloid positron emission tomography uptake using Spearman correlations controlling for multiple comparisons. Finally, we computed the relationship between cortical thickness and metabolite levels using Freesurfer. RESULTS Asymptomatic adults with Down syndrome had a 27.5% increase in the levels of myo-inositol, but equal levels of N-acetyl-aspartate compared to euploid healthy controls. With disease progression, myo-inositol levels increased, whereas N-acetyl-aspartate levels decreased in symptomatic stages of the disease. Myo-inositol was associated with amyloid, tau, and neurodegeneration markers, mainly at symptomatic stages of the disease, whereas N-acetyl-aspartate was related to neurodegeneration biomarkers in symptomatic stages. Both metabolites were significantly associated with cortical thinning, mainly in symptomatic participants. INTERPRETATION Magnetic resonance spectroscopy detects Alzheimer's disease related inflammation and neurodegeneration, and could be a good noninvasive disease-stage biomarker in Down syndrome. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Susana Fernández
- Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Concepcion Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mateus Rozalem Aranha
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Didac Vidal-Piñeiro
- Department of Psychology, Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center. Fundació Catalana Síndrome de Down, Barcelona, Spain
| | | |
Collapse
|
44
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
45
|
Peng Q, Zhang Z. The fluid biomarkers of Alzheimer’s disease. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
46
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
47
|
Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, Nadarajah CJ, Xiong DD, Guo C, Cammack AJ, Elias JA, Zhang J, Cruchaga C, Musiek ES. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer's disease pathogenesis. Sci Transl Med 2021; 12:12/574/eaax3519. [PMID: 33328329 DOI: 10.1126/scitranslmed.aax3519] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/21/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Regulation of glial activation and neuroinflammation are critical factors in the pathogenesis of Alzheimer's disease (AD). YKL-40, a primarily astrocytic protein encoded by the gene Chi3l1, is a widely studied cerebrospinal fluid biomarker that increases with aging and early in AD. However, the function of Chi3l1/YKL-40 in AD is unknown. In a cohort of patients with AD, we observed that a variant in the human CHI3L1 gene, which results in decreased CSF YKL-40 expression, was associated with slower AD progression. At baseline, Chi3l1 deletion in mice had no effect on astrocyte activation while modestly promoting microglial activation. In a mouse APP/PS1 model of AD, Chi3l1 deletion decreased amyloid plaque burden and increased periplaque expression of the microglial lysosomal marker CD68, suggesting that Chi3l1 may suppress glial phagocytic activation and promote amyloid accumulation. Accordingly, Chi3l1 knockdown increased phagocytosis of zymosan particles and of β-amyloid peptide in both astrocytes and microglia in vitro. We further observed that expression of Chi3l1 is regulated by the circadian clock, as deletion of the core clock proteins BMAL1 or CLOCK/NPAS2 strongly suppresses basal Chi3l1 expression, whereas deletion of the negative clock regulators PER1/PER2 increased Chi3l1 expression. Basal Chi3l1 mRNA was nonrhythmic because of a long mRNA half-life in astrocytes. However, inflammatory induction of Chi3l1 was gated by the clock. Our findings reveal Chi3l1/YKL-40 as a modulator of glial phagocytic activation and AD pathogenesis in both mice and humans and suggest that the astrocyte circadian clock regulates inflammatory Chi3l1 induction.
Collapse
Affiliation(s)
- Brian V Lananna
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Celia A McKee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melvin W King
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie M Dimitry
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fabiana H G Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Collin J Nadarajah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Xiong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chun Guo
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jack A Elias
- Division of Medicine and Biological Sciences, Brown University, Providence, RI 02903, USA
| | - Jinsong Zhang
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Knight Alzheimer's Disease Research Center and Hope Center for Neurological Disease, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Knight Alzheimer's Disease Research Center and Hope Center for Neurological Disease, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
48
|
Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, Pellerin L, Rosa-Neto P, Leffa DT, Zimmer ER. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology 2021; 96:e2944-e2955. [PMID: 33952650 DOI: 10.1212/wnl.0000000000012109] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform a systematic review and meta-analysis to determine whether fluid and imaging astrocyte biomarkers are altered in Alzheimer disease (AD). METHODS PubMed and Web of Science databases were searched for articles reporting fluid or imaging astrocyte biomarkers in AD. Pooled effect sizes were determined with standardized mean differences (SMDs) using the Hedge G method with random effects to determine biomarker performance. Adapted questions from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42020192304). RESULTS The initial search identified 1,425 articles. After exclusion criteria were applied, 33 articles (a total of 3,204 individuals) measuring levels of glial fibrillary acidic protein (GFAP), S100B, chitinase-3-like protein 1 (YKL-40), and aquaporin 4 in the blood and CSF, as well as monoamine oxidase-B indexed by PET 11C-deuterium-l-deprenyl, were included. GFAP (SMD 0.94, 95% confidence interval [CI] 0.71-1.18) and YKL-40 (SMD 0.76, 95% CI 0.63-0.89) levels in the CSF and S100B levels in the blood (SMD 2.91, 95% CI 1.01-4.8) were found to be significantly increased in patients with AD. CONCLUSIONS Despite significant progress, applications of astrocyte biomarkers in AD remain in their early days. This meta-analysis demonstrated that astrocyte biomarkers are consistently altered in AD and supports further investigation for their inclusion in the AD clinical research framework for observational and interventional studies.
Collapse
Affiliation(s)
- Bruna Bellaver
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - João Pedro Ferrari-Souza
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Lucas Uglione da Ros
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Stephen F Carter
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Elena Rodriguez-Vieitez
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Agneta Nordberg
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Luc Pellerin
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Douglas Teixeira Leffa
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Eduardo R Zimmer
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
49
|
Bin Y, Liu Y, Jiang S, Peng H. Elevated YKL-40 serum levels may contribute to wet age-related macular degeneration via the ERK1/2 pathway. FEBS Open Bio 2021; 11:2933-2942. [PMID: 34110111 PMCID: PMC8564338 DOI: 10.1002/2211-5463.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Choroidal neovascularization (CNV) is a key characteristic of wet age-related macular degeneration (AMD) that can lead to severe vision loss in the elderly. Anti-VEGF therapy is currently the premier strategy for wet AMD, but it has limited efficacy. Previous studies have shown that chitinase-3-like-1 (YKL-40) can promote microangiogenesis and inflammation, but its effect on CNV formation has not yet been studied. Here, we investigated the potential role of YKL-40 in wet AMD and the underlying mechanism(s). We report that the serum expression of YKL-40 in wet AMD patients was significantly higher than that in control patients and was positively correlated with VEGF expression, indicating that YKL-40 may participate in the development of wet AMD. In addition, YKL-40 and VEGF expression levels were observed to be increased and the ERK1/2 pathway activated in the neuroretinal (NR) and RPE/choroid tissues of mice with laser-induced CNV. The YKL-40 and phosphorylated protein levels of the ERK1/2 pathway were decreased after intravitreal injection with an anti-YKL-40 antibody, suggesting that anti-YKL-40 could inhibit the activation of the ERK1/2 pathway. These results indicate that YKL-40 may serve as a novel target for the diagnosis and treatment of wet AMD.
Collapse
Affiliation(s)
- Yue Bin
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| | - Yanyao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| | - Shaoqiu Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Peng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| |
Collapse
|
50
|
Thordardottir S, Almkvist O, Johansson C, Zetterberg H, Blennow K, Graff C. Cerebrospinal Fluid YKL-40 and Neurogranin in Familial Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2021; 76:941-953. [PMID: 32568193 PMCID: PMC7505010 DOI: 10.3233/jad-191261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND YKL-40 and neurogranin are promising additional cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) which reflect different underlying disease mechanisms. OBJECTIVE To compare the levels of CSF YKL-40 and neurogranin between asymptomatic carriers of familial AD (FAD) mutations (MC) and non-carriers (NC) from the same families. Another objective was to assess changes in YKL-40 and neurogranin, from the presymptomatic to clinical phase of FAD. METHODS YKL-40 and neurogranin, as well as Aβ42, total tau-protein, and phospho-tau, were measured in the CSF of 14 individuals carrying one of three FAD mutations, APPswe (p.KM670/671NL), APParc (p.E693G), and PSEN1 (p.H163Y), as well as in 17 NC from the same families. Five of the MC developed mild cognitive impairment (MCI) during follow-up. RESULTS In this pilot study, there was no difference in either CSF YKL-40 or neurogranin when comparing the presymptomatic MC to the NC. YKL-40 correlated positively with expected years to symptom onset and to age in both the MC and the NC, while neurogranin had no correlation to either variable in either of the groups. A subgroup of the participants underwent more than one CSF sampling in which half of the MC developed MCI during follow-up. The longitudinal data showed an increase in YKL-40 levels in the MC as the expected symptom onset approached. Neurogranin remained stable over time in both the MC and the NC. CONCLUSION These findings support a positive correlation between progression from presymptomatic to symptomatic AD and levels of CSF YKL-40, but not neurogranin.
Collapse
Affiliation(s)
- Steinunn Thordardottir
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Ove Almkvist
- Department of NVS, Karolinska Institutet, Center for Alzheimer Research, Division of Clinical Geriatrics, Huddinge, Sweden
| | - Charlotte Johansson
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UCL Insitute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Caroline Graff
- Department of NVS, Karolinska Institutet, Division of Neurogeriatrics, Center for Alzheimer Disease Research, Solna, Sweden.,Theme Aging, Karolinska University Hospital Huddinge, Unit for Hereditary Dementias, Solna, Sweden
| |
Collapse
|