1
|
Tarhan M, Hartl T, Shchyglo O, Colitti-Klausnitzer J, Kuhla A, Breuer TM, Manahan-Vaughan D. Changes in hippocampal volume, synaptic plasticity and amylin sensitivity in an animal model of type 2 diabetes are associated with increased vulnerability to amyloid-beta in advancing age. Front Aging Neurosci 2024; 16:1373477. [PMID: 38974903 PMCID: PMC11224464 DOI: 10.3389/fnagi.2024.1373477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Type-2 diabetes (T2D) is a metabolic disorder that is considered a risk factor for Alzheimer's disease (AD). Cognitive impairment can arise due to hypoglycemia associated with T2D, and hyperamylinemia associated with insulin resistance can enhance AD pathology. We explored whether changes occur in the hippocampus in aging (6-12 months old) female V-Lep○b-/- transgenic (tg) mice, comprising an animal model of T2D. We also investigated whether an increase in vulnerability to Aβ (1-42), a known pathological hallmark of AD, is evident. Using magnetic resonance imaging we detected significant decreases in hippocampal brain volume in female tg-mice compared to wild-type (wt) littermates. Long-term potentiation (LTP) was impaired in tg compared to wt mice. Treatment of the hippocampus with Aβ (1-42) elicited a stronger debilitation of LTP in tg compared to wt mice. Treatment with an amylin antagonist (AC187) significantly enhanced LTP in wt and tg mice, and rescued LTP in Aβ (1-42)-treated tg mice. Taken together our data indicate that a T2D-like state results in an increased vulnerability of the hippocampus to the debilitating effects of Aβ (1-42) and that effects are mediated in part by changes in amylin receptor signaling.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Tim Hartl
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | | | - Angela Kuhla
- Rudolf Zenker Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Denise Manahan-Vaughan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| |
Collapse
|
2
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Wu C, Zhang S, Sun H, Li A, Hou F, Qi L, Liao H. STING inhibition suppresses microglia-mediated synapses engulfment and alleviates motor functional deficits after stroke. J Neuroinflammation 2024; 21:86. [PMID: 38584255 PMCID: PMC11000342 DOI: 10.1186/s12974-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.
Collapse
Affiliation(s)
- Chaoran Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shiwen Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ao Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Fengsheng Hou
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Long Qi
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Liao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
4
|
Daily KP, Badr A, Eltobgy M, Estfanous S, Whitham O, Tan MH, Carafice C, Krause K, McNamara A, Hamilton K, Houle S, Gupta S, Gupta GA, Madhu S, Fitzgerald J, Saadey AA, Laster B, Yan P, Webb A, Zhang X, Pietrzak M, Kokiko-Cochran ON, Ghoneim HE, Amer AO. DNA hypomethylation promotes the expression of CASPASE-4 which exacerbates inflammation and amyloid-β deposition in Alzheimer's disease. Alzheimers Res Ther 2024; 16:29. [PMID: 38326859 PMCID: PMC10851453 DOI: 10.1186/s13195-024-01390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release pro-inflammatory products such as IL-1β which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed reduced representation bisulfite sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed promotes the generation of IL-1β and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4 and CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-β (Aβ) and increased microglial production of IL-1β in 5xFAD mice. Utilizing RNA-sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1β from macrophages in response to cytosolic Aβ through cleavage of downstream effector Gasdermin D (GSDMD). Therefore, here we unravel the role for CASP11 and GSDMD in the generation of IL-1β in response to Aβ and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential DNA methylation in AD microglia contributes to the progression of AD pathobiology. Thus, we identify CASP4 as a potential target for immunotherapies for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Kylene P Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Michelle H Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrew McNamara
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Samuel Houle
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Spandan Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Gauruv A Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shruthi Madhu
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Abbey A Saadey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Wang Y, Gong Q, Pan H, Wang X, Yan C. Gardenia jasminoides J. Ellis extract attenuates memory impairment in rats with Alzheimer's disease by suppressing NLRP3 inflammasome. Brain Res 2024; 1824:148687. [PMID: 38000495 DOI: 10.1016/j.brainres.2023.148687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is characterized by degeneration of the central nervous system. Recently, many studies have emphasized the beneficial role of Gardenia jasminoides J. Ellis extract (GJ-4) in neuroprotection, which is considered a potential drug for treating AD. However, the mechanism underlying its neuroprotective effects is obscure. This research intended to analyze the effectiveness of GJ-4 to induce neuronal protective role on a rat model of neurotoxicity and probe the potential mechanism. An AD model was established by intraperitoneal injection of aluminum chloride (AlCl3). Then, AlCl3-induced rats were administered 25 mg/kg and 50 mg/kg of GJ-4 orally. This study indicated that GJ-4 (25 and 50 mg/kg) mitigated AD-like behaviors, as evidenced by enhanced ambulation frequency, rearing frequency, and time spent in the target quadrant and decreased grooming frequency, defecation frequency, and escape latency in AlCl3-challenged rats. Also, GJ-4 at 25 and 50 mg/kg exerted an anti-apoptosis effect in the hippocampus of AlCl3-treated rats. Furthermore, GJ-4 (25 and 50 mg/kg) exhibited an anti-inflammatory effect in the hippocampus by repressing the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, further inhibiting the activation of Caspase 1, ASC, IL-1β, and IL-18 in AD hippocampus. Altogether, GJ-4 mitigated AlCl3-triggered impairment of learning and memory in AD rats via repressing NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Qingmei Gong
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China.
| |
Collapse
|
6
|
Bortoletto AS, Parchem RJ. A pancreatic player in dementia: pathological role for islet amyloid polypeptide accumulation in the brain. Neural Regen Res 2023; 18:2141-2146. [PMID: 37056121 PMCID: PMC10328265 DOI: 10.4103/1673-5374.369095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Type 2 diabetes mellitus patients have a markedly higher risk of developing dementia. While multiple factors contribute to this predisposition, one of these involves the increased secretion of amylin, or islet amyloid polypeptide, that accompanies the pathophysiology of type 2 diabetes mellitus. Islet amyloid polypeptide accumulation has undoubtedly been implicated in various forms of dementia, including Alzheimer's disease and vascular dementia, but the exact mechanisms underlying islet amyloid polypeptide's causative role in dementia are unclear. In this review, we have summarized the literature supporting the various mechanisms by which islet amyloid polypeptide accumulation may cause neuronal damage, ultimately leading to the clinical symptoms of dementia. We discuss the evidence for islet amyloid polypeptide deposition in the brain, islet amyloid polypeptide interaction with other amyloids implicated in neurodegeneration, neuroinflammation caused by islet amyloid polypeptide deposition, vascular damage induced by islet amyloid polypeptide accumulation, and islet amyloid polypeptide-induced cytotoxicity. There are very few therapies approved for the treatment of dementia, and of these, clinical responses have been controversial at best. Therefore, investigating new, targetable pathways is vital for identifying novel therapeutic strategies for treating dementia. As such, we conclude this review by discussing islet amyloid polypeptide accumulation as a potential therapeutic target not only in treating type 2 diabetes mellitus but as a future target in treating or even preventing dementia associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Daily KP, Badr A, Eltobgy M, Estfanous S, Whitham O, Tan MH, Carafice C, Krause K, McNamara A, Hamilton K, Houle S, Gupta S, Gupta GA, Madhu S, Fitzgerald J, Saadey AA, Laster B, Yan P, Webb A, Zhang X, Pietrzak M, Kokiko-Cochran ON, Ghoneim HE, Amer AO. DNA hypomethylation promotes the expression of CASPASE-4 which exacerbates neuroinflammation and amyloid-β deposition in Alzheimer's disease The Ohio State University College of Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555526. [PMID: 37693600 PMCID: PMC10491177 DOI: 10.1101/2023.08.30.555526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer's Disease (AD) is the 6th leading cause of death in the US. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release proinflammatory products such as IL-1β which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed Reduced Representation Bisulfite Sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed, can be involved in generation of IL-1β and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4, CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-β (Aβ) and increased microglial production of IL-1β in 5xFAD mice. Utilizing RNA sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1β from macrophages in response to cytosolic Aβ through cleavage of downstream effector Gasdermin D (G SDMD). We describe a role for CASP11 and GSDMD in the generation of IL-1β in response to Aβ and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential methylation in AD microglia contributes to the progression of AD pathobiology, thus identifying CASP4 as a potential target for immunotherapies for the treatment of AD.
Collapse
Affiliation(s)
- Kylene P. Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michelle H. Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrew McNamara
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Houle
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Spandan Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Gauruv A. Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shruthi Madhu
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Abbey A. Saadey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, USA; Department of Internal Medicine, The Ohio State University, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Hazem E. Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
11
|
Yuan M, Wang D, Yang J, Lan H. The NLR family pyrin domain containing 3 inflammasome in the mechanism of electroacupuncture: Current status and future perspectives. Front Aging Neurosci 2022; 14:913881. [PMID: 36337711 PMCID: PMC9626972 DOI: 10.3389/fnagi.2022.913881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Electroacupuncture, which is the most widely used alternative medicine treatment, has been gradually recognized for its effectiveness; however, its mechanism of action is not fully understood. The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a thoroughly studied inflammasome that is closely associated with Alzheimer’s disease, spinal cord injury, and other diseases and plays an important role in the diagnosis and treatment of human immune system diseases. In recent years, some scholars have found that the NLRP3 inflammasome is a part of the mechanism of action of electroacupuncture, which has attracted further attention. In the current review, using “electroacupuncture” and “NLRP3 inflammasome” as keywords and based on the existing randomized controlled trials or clinical trials, we summarize the mechanisms of electroacupuncture targeting NLRP3 inflammasome in the treatment of different diseases and discuss how to optimize the electroacupuncture protocol to obtain thorough mechanisms of NLRP3 inflammasome in electroacupuncture and improve the level of evidence.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Jiaen Yang
- Department of TCM Rehabilitation Medicine, Affiliated Foshan Gaoming Hospital of Guangdong Medical University, Foshan, China
| | - Hai Lan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- *Correspondence: Hai Lan,
| |
Collapse
|
12
|
Yang Y, Wang L, Zhang C, Guo Y, Li J, Wu C, Jiao J, Zheng H. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chem Biol Drug Des 2022; 99:884-896. [PMID: 35313087 DOI: 10.1111/cbdd.14041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/11/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that can cause cognitive impairment. Ginsenoside Rg1 (Rg1) has a significant neuroprotective effect on animals with memory impairment. However, the mechanism of how Rg1 mediates the Wnt signaling pathway and improves cognitive function by regulating oxidative stress, apoptosis, and neuroinflammation is still unclear. In this study, the spatial memory ability of tree shrews was tested by Morris water maze, the expression levels of amyloid protein (Aβ1-42), ionized calcium-binding adapter molecule 1 (iba-1), nitrotyrosine (NT), and 8-hydroxyguanine (8-OHG) were detected by immunohistochemistry. Subsequently, the activity of catalase (CAT) and the glutathione peroxidase (GSH-Px) was, respectively, measured by the ammonium molybdate method and the 5,5'-dithiobis (2-nitrobenzoic acid). Furthermore, the malondialdehyde (MDA) concentration was determined by the thiobarbituric acid test. Finally, the expression levels of Beta-secretase (BACE1), superoxide dismutase (SOD), BCL2-Associated X (Bax), B-cell lymphoma-2 (Bcl-2), caspase-anti-apoptotic factor Cleaved-caspase-3 (Caspase-3), microtubule-associated proteins 2 (MAP2), Neuronal nuclear antigen (NeuN), as well as the phosphorylation of GSK-3β and β-catenin were detected by Western blot. This study implied that Rg1 reduced the phosphorylation of Tau protein, the deposition of Aβ1-42, and the expression of BACE1. It also showed that Rg1 increased the antioxidant activity of SOD, CAT, GPx, and instead reduced the oxidation products of NT, 8-OHG, and MDA, as wells as the inflammatory factor interleukin-1 and iba-1. It further showed that Rg1 increased the ratio of Bcl-2 to Bax and expression of neuronal markers MAP2 and NeuN, but instead reduced the expression of Caspase-3, GSK-3β, and β-catenin. In conclusion, by regulating the Wnt/GSK-3β/β-catenin signaling pathway, Rg1 of moderate and high dose could alleviate oxidative stress damage, improve neuroinflammation, protect neurons, finally improve the cognitive impairment of the AD tree shrew. This study provides theoretical basis for the Rg1 clinical application in AD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Caijun Zhang
- Experiment Center of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuqian Guo
- Affiliated Hospital of Medical Sergeant School, Army Medical University, Shijiazhuang, China
| | - Jintao Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Chao Wu
- Department of Pharmacy, Hefei Ion Medical Center, Hefei, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
14
|
Rees TA, Russo AF, O’Carroll SJ, Hay DL, Walker CS. CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Front Physiol 2022; 13:860037. [PMID: 35620595 PMCID: PMC9128745 DOI: 10.3389/fphys.2022.860037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30–40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78–80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Debbie L. Hay, ; Christopher S. Walker,
| |
Collapse
|
15
|
Mouse Microglial Calcitonin Receptor Knockout Impairs Hypothalamic Amylin Neuronal pSTAT3 Signaling but Lacks Major Metabolic Consequences. Metabolites 2022; 12:metabo12010051. [PMID: 35050175 PMCID: PMC8780059 DOI: 10.3390/metabo12010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Amylin and leptin synergistically interact in the arcuate nucleus of the hypothalamus (ARC) to control energy homeostasis. Our previous rodent studies suggested that amylin-induced interleukin-6 release from hypothalamic microglia may modulate leptin signaling in agouti-related peptide expressing neurons. To confirm the physiological relevance of this finding, the calcitonin receptor (CTR) subunit of the amylin receptor was selectively depleted in microglia by crossing tamoxifen (Tx) inducible Cx3cr1-CreERT2 mice with CTR-floxed mice. Unexpectedly, male mice with CTR-depleted microglia (KO) gained the least amount of weight of all groups regardless of diet. However, after correcting for the tamoxifen effect, there was no significant difference for body weight, fat mass or lean mass between genotypes. No alteration in glucose tolerance or insulin release was detected. However, male KO mice had a reduced respiratory quotient suggesting a preference for fat as a fuel when fed a high fat diet. Importantly, amylin-induced pSTAT3 was decreased in the ARC of KO mice but this was not reflected in a reduced anorectic response. On the other hand, KO mice seemed to be less responsive to leptin’s anorectic effect while displaying similar ARC pSTAT3 as Tx-control mice. Together, these data suggest that microglial amylin signaling is not a major player in the control of energy homeostasis in mice.
Collapse
|
16
|
Liu Y, Zhang H, Peng A, Cai X, Wang Y, Tang K, Wu X, Liang Y, Wang L, Li Z. PEG-PEI/siROCK2 inhibits Aβ42-induced microglial inflammation via NLRP3/caspase 1 pathway. Neuroreport 2022; 33:26-32. [PMID: 34874326 PMCID: PMC8719500 DOI: 10.1097/wnr.0000000000001752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES There is an urgent need to develop therapeutic strategies to improve the treatment outcome of Alzheimer's disease. The treatment strategy of gene therapy mediated by nanocarrier systems brings new hope for the treatment of Alzheimer's disease. ROCK2 is involved in various pathological processes of Alzheimer's disease and may be a potential target for the treatment of Alzheimer's disease. Our previous study indicated that PEG-PEI/siROCK2 [polyethyleneglycol-polyethyleneimine deliver ROCK2-siRNA, (PPSR)] prevented Aβ42-induced neurotoxicity and showed a promising prospect for the treatment of Alzheimer's disease. However, whether PPSR has an effect on the microglial inflammation in Alzheimer's disease is still unclear. MATERIALS AND METHODS 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was used to detect the cytotoxicity of PEG-PEI and PPSR in primary microglial cells. Real-time PCR and western blotting were used to assess the expression of ROCK2 and nucleotide oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/caspase 1 pathway in primary microglial cells. ELISA assay was used to measure the effect of PPSR on attenuating the lipopolysaccharide (LPS) + Aβ-induced increase in IL-1β. RESULTS PEG-PEI concentration less than 20 μg/ml and the N/P (molar ratio of PEG-PEI amino/siRNA phosphate) ratio of PPSR less than 50 showed no significant cytotoxicity in primary microglia cells. PPSR could effectively inhibit the expression of ROCK2 in primary microglial cells. A further study revealed that PPSR attenuates the LPS+Aβ-induced increase in IL-1β without affecting cell viability. In addition, we found that PPSR suppressed the Aβ-induced NLRP3/caspase 1 pathway in primary microglial cells. CONCLUSION PPSR inhibits Aβ42-induced microglial inflammation via NLRP3/caspase 1 pathway.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University
| | - Han Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Anping Peng
- Department of South Campus Clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Xiaodong Cai
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University
| | - YuZhou Wang
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University
| | - Ke Tang
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Limin Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, Guangdong, China
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
17
|
Inflammasome activation in neurodegenerative diseases. Essays Biochem 2021; 65:885-904. [PMID: 34846519 DOI: 10.1042/ebc20210021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid β and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.
Collapse
|
18
|
Shi Q, Zheng YY, Wang L, Xue YD, Yang YL. Curcumin suppresses neuroinflammation to protect neurons by preventing NLRP3 inflammasome activation. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211058615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Nucleotide-binding and oligomerization domain like receptors protein 3 (NLRP3) inflammasome-mediated interleukin (IL)-1β secretion plays an important role in the progression of Alzheimer’s disease (AD). Curcumin has been shown to improve cognitive impairment and learning ability of AD mice by reducing IL-1β secretion. However, its exact mechanism of action remains unclear. In the present study, we explored the relationship between the neuroprotective effect of curcumin and activation of the NLRP3 inflammasome pathway. Methods BV2 cells were primed with 500 ng/mL lipopolysaccharide (LPS) for 4 h and subsequently treated with 50 μM Aβ25-35 for 24 h or pretreated with 2.5–10 μM curcumin for 4 h and exposed to 50 μM Aβ25-35 for 24 h. The effects of curcumin and Aβ25-35 were assessed by the CCK8 assay. ELISA was used for the detection of IL-1β, IL-6, and tumor necrosis factor (TNF)-α levels in the supernatant of the cell culture medium. The viability of SH-SY5Y cells, which were incubated with conditioned medium (CM) was assessed using the CCK8 assay. The percentage of apoptotic SH-SY5Y cells incubated with CM was assessed using Annexin V-FITC/PI staining flow cytometry analysis. The expression levels of NLRP3, caspase-1 and IL-1β were observed by western blot and immunofluorescence staining analyses; the mRNA levels of nlrp3, caspase-1 and IL-1β were analyzed using qRT-PCR. Results Low (2.5 μM), medium (5 μM), and high (10 μM) concentrations of curcumin and 50 μM Aβ25-35 were used to perform the experiments in the present study. Curcumin attenuated the IL-1β, IL-6, and TNF-α release and increased SH-SY5Y cell activity, while decreasing the apoptotic percentage of SH-SY5Y cells using Aβ25-35 for cell stimulation ( p < 0.05). Furthermore, curcumin inhibited the expression of NLRP3, caspase-1 and IL-1β and nlrp3 in BV-2 cells ( p < 0.05), However, curcumin did not affect the expression levels of caspase-1 and IL-1β ( p > 0.05) Conclusion Overall, the data indicated that curcumin is a promising neuroprotective agent for suppressing neuroinflammation by inhibiting the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Qiang Shi
- Yan'an University Affiliated Hospital, Yan'an, China
| | | | - Le Wang
- Yan'an University Affiliated Hospital, Yan'an, China
| | - Yi-dong Xue
- Yan'an University Affiliated Hospital, Yan'an, China
| | | |
Collapse
|
19
|
Patel A, Kimura R, Fu W, Soudy R, MacTavish D, Westaway D, Yang J, Davey RA, Zajac JD, Jhamandas JH. Genetic Depletion of Amylin/Calcitonin Receptors Improves Memory and Learning in Transgenic Alzheimer's Disease Mouse Models. Mol Neurobiol 2021; 58:5369-5382. [PMID: 34312771 PMCID: PMC8497456 DOI: 10.1007/s12035-021-02490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Based upon its interactions with amyloid β peptide (Aβ), the amylin receptor, a class B G protein-coupled receptor (GPCR), is a potential modulator of Alzheimer's disease (AD) pathogenesis. However, past pharmacological approaches have failed to resolve whether activation or blockade of this receptor would have greater therapeutic benefit. To address this issue, we generated compound mice expressing a human amyloid precursor protein gene with familial AD mutations in combination with deficiency of amylin receptors produced by hemizygosity for the critical calcitonin receptor subunit of this heterodimeric GPCR. These compound transgenic AD mice demonstrated attenuated responses to human amylin- and Aβ-induced depression of hippocampal long-term potentiation (LTP) in keeping with the genetic depletion of amylin receptors. Both the LTP responses and spatial memory (as measured with Morris water maze) in these mice were improved compared to AD mouse controls and, importantly, a reduction in both the amyloid plaque burden and markers of neuroinflammation was observed. Our data support the notion of further development of antagonists of the amylin receptor as AD-modifying therapies.
Collapse
Affiliation(s)
- Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ryoichi Kimura
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi , 756-0884, Japan
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Jing Yang
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Rachel A Davey
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jeffrey D Zajac
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jack H Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
20
|
Gao Y, Li B, Liu H, Tian Y, Gu C, Du X, Bu R, Gao J, Liu Y, Li G. Cistanche deserticola polysaccharides alleviate cognitive decline in aging model mice by restoring the gut microbiota-brain axis. Aging (Albany NY) 2021; 13:15320-15335. [PMID: 34081627 PMCID: PMC8221331 DOI: 10.18632/aging.203090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/13/2021] [Indexed: 12/16/2022]
Abstract
Recent evidence suggests alterations in the gut microbiota-brain axis may drive cognitive impairment with aging. In the present study, we observed that prolonged administration of D-galactose to mice induced cognitive decline, gut microbial dysbiosis, peripheral inflammation, and oxidative stress. In this model of age-related cognitive decline, Cistanche deserticola polysaccharides (CDPS) improved cognitive function in D-galactose-treated mice by restoring gut microbial homeostasis, thereby reducing oxidative stress and peripheral inflammation. The beneficial effects of CDPS in these aging model mice were abolished through ablation of gut microbiota with antibiotics or immunosuppression with cyclophosphamide. Serum metabolomic profiling showed that levels of creatinine, valine, L-methionine, o-Toluidine, N-ethylaniline, uric acid and proline were all altered in the aging model mice, but were restored by CDPS. These findings demonstrated that CDPS improves cognitive function in a D-galactose-induced aging model in mice by restoring homeostasis of the gut microbiota-brain axis, which alleviated an amino acid imbalance, peripheral inflammation, and oxidative stress. CDPS thus shows therapeutic potential for patients with memory and learning disorders, especially those related to gut microbial dysbiosis.
Collapse
Affiliation(s)
- Yuan Gao
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Bing Li
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Hong Liu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Yajuan Tian
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Chao Gu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaoli Du
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Ren Bu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Jie Gao
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Yang Liu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Gang Li
- Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
21
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
22
|
Chen MH, Wang TJ, Chen LJ, Jiang MY, Wang YJ, Tseng GF, Chen JR. The effects of astaxanthin treatment on a rat model of Alzheimer's disease. Brain Res Bull 2021; 172:151-163. [PMID: 33932491 DOI: 10.1016/j.brainresbull.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/03/2021] [Accepted: 04/25/2021] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and dementia, could be a consequence of the abnormalities of cortical milieu, such as oxidative stress, inflammation, and/or accompanied with the aggregation of β-amyloid. The majority of AD patients are sporadic, late-onset AD, which predominantly occurs over 65 years of age. Our results revealed that the ferrous amyloid buthionine (FAB)-infused sporadic AD-like model showed deficits in spatial learning and memory and with apparent loss of choline acetyltransferase (ChAT) expression in medial septal (MS) nucleus. In hippocampal CA1 region, the loss of pyramidal neurons was accompanied with cholinergic fiber loss and neuroinflammatory responses including glial reaction and enhanced expression of inducible nitric oxide synthase (iNOS). Surviving hippocampal CA1 pyramidal neurons showed the reduction of dendritic spines as well. Astaxanthin (ATX), a potent antioxidant, reported to improve the outcome of oxidative-stress-related diseases. The ATX treatment in FAB-infused rats decreased neuroinflammation and restored the ChAT + fibers in hippocampal CA1 region and the ChAT expression in MS nucleus. It also partly recovered the spine loss on hippocampal CA1 pyramidal neurons and ameliorated the behavioral deficits in AD-like rats. From these data, we believed that the ATX can be a potential option for slowing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Ying Jiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| | - Jeng-Rung Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
23
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 2021; 138:111428. [PMID: 33667787 DOI: 10.1016/j.biopha.2021.111428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
In an ageing society, neurodegenerative diseases have attracted attention because of their high incidence worldwide. Despite extensive research, there is a lack of conclusive insights into the pathogenesis of neurodegenerative diseases, which limit the strategies for symptomatic treatment. Therefore, better elucidation of the molecular mechanisms involved in neurodegenerative diseases can provide an important theoretical basis for the discovery of new and effective prevention and treatment methods. The innate immune system is activated during the ageing process and in response to neurodegenerative diseases. Inflammasomes are multiprotein complexes that play an important role in the activation of the innate immune system. They mediate inflammatory reactions and pyroptosis, which are closely involved in neurodegeneration. There are different types of inflammasomes, although the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is the most common inflammasome; NLRP3 plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we will discuss the mechanisms that are involved in the activation of the NLRP3 inflammasome and its crucial role in the pathology of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. We will also review various treatments that target the NLRP3 inflammasome pathway and alleviate neuroinflammation. Finally, we will summarize the novel treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang 050051, PR China.
| |
Collapse
|
24
|
The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2021; 11:4910. [PMID: 33649346 PMCID: PMC7921388 DOI: 10.1038/s41598-021-83998-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are affected in Alzheimer’s disease (AD) and interact with amyloid-beta (Aβ) plaques. Apart from memory loss, depression is common in patients with AD. Electroconvulsive therapy (ECT) is an anti-depressive treatment that may stimulate microglia, induce neuroinflammation and alter the levels of soluble Aβ, but the effects of ECT on microglia and Aβ aggregation in AD are not known. We investigated the short- and long-term effects of ECT on neuroinflammation and Aβ accumulation. 5xFAD mice received either electroconvulsive stimulation (ECS n = 26) or sham treatment (n = 25) for 3 weeks. Microglia and Aβ were analyzed in samples collected 24 h, 5 weeks, or 9 weeks after the last treatment. Aβ plaques and microglia were quantified using immunohistochemistry. The concentration of soluble Aβ and cytokines was quantified using ELISA and levels of Aβ aggregates were measured with Western Blot. Microglial phagocytosis of Aβ in the hippocampus was evaluated by flow cytometry in Methoxy-X04 injected mice 24 h following the last ECS treatment. Y-maze and Elevated plus maze were performed to study behavior after 5 weeks. We could not detect any significant short- or long-term effects of ECS on Aβ pathology or neuroinflammation, but ECS reduced abnormal behavior in the Elevated Plus maze.
Collapse
|
25
|
Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020; 30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
A novel series of deoxyvasicinone-tetrahydro-beta-carboline hybrids were synthesized and evaluated as acetylcholinesterase (AChE) and β-amyloid peptide (Aβ) aggregation inhibitors for the treatment of Alzheimer's disease. The results revealed that the derivatives had multifunctional profiles, including AChE inhibition, Aβ1-42 aggregation inhibition, and neuroprotective properties. Inspiringly, hybrids 8b and 8d displayed excellent inhibitory activities against hAChE (IC50 = 0.93 and 1.08 nM, respectively) and Aβ1-42 self-aggregation (IC50 = 19.71 and 2.05 μM, respectively). In addition, 8b and 8d showed low cytotoxicity and good neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; College of Science, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xinyu Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Meng Ma
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Huili Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
26
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
27
|
Servizi S, Corrigan RR, Casadesus G. The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:1345-1355. [PMID: 32188374 PMCID: PMC10088426 DOI: 10.2174/1381612826666200318151146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Type II Diabetes (T2D) is a major risk factor for Alzheimer's Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin's ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin's signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone's signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Spencer Servizi
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Rachel R Corrigan
- School of Biomedical Sciences, Kent State University, Ohio, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Ohio, United States.,Department of Biological Sciences, Kent State University, Ohio, United States
| |
Collapse
|
28
|
The MAO Inhibitor Tranylcypromine Alters LPS- and Aβ-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD. Cells 2020; 9:cells9091982. [PMID: 32872335 PMCID: PMC7563969 DOI: 10.3390/cells9091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidase (MAO) has been implicated in neuroinflammation, and therapies targeting MAO are of interest for neurodegenerative diseases. The small-molecule drug tranylcypromine, an inhibitor of MAO, is currently used as an antidepressant and in the treatment of cancer. However, whether tranylcypromine can regulate LPS- and/or Aβ-induced neuroinflammation in the brain has not been well-studied. In the present study, we found that tranylcypromine selectively altered LPS-induced proinflammatory cytokine levels in BV2 microglial cells but not primary astrocytes. In addition, tranylcypromine modulated LPS-mediated TLR4/ERK/STAT3 signaling to alter neuroinflammatory responses in BV2 microglial cells. Importantly, tranylcypromine significantly reduced microglial activation as well as proinflammatory cytokine levels in LPS-injected wild-type mice. Moreover, injection of tranylcypromine in 5xFAD mice (a mouse model of AD) significantly decreased microglial activation but had smaller effects on astrocyte activation. Taken together, our results suggest that tranylcypromine can suppress LPS- and Aβ-induced neuroinflammatory responses in vitro and in vivo.
Collapse
|
29
|
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, Zhang Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY) 2020; 11:3463-3486. [PMID: 31160541 PMCID: PMC6594795 DOI: 10.18632/aging.101990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mounting evidence points to alterations in the gut microbiota-neuroendocrine immunomodulation (NIM) network that might drive Alzheimer’s Disease (AD) pathology. In previous studies, we found that Liuwei Dihuang decoction (LW) had beneficial effects on the cognitive impairments and gastrointestinal microbiota dysbiosis in an AD mouse model. In particular, CA-30 is an oligosaccharide fraction derived from LW. We sought to determine the effects of CA-30 on the composition and function of the intestinal microbiome in the senescence-accelerated mouse prone 8 (SAMP8) mouse strain, an AD mouse model. Treatment with CA-30 delayed aging processes, ameliorated cognition in SAMP8 mice. Moreover, CA-30 ameliorated abnormal NIM network in SAMP8 mice. In addition, we found that CA-30 mainly altered the abundance of four genera and 10 newborn genera. Advantageous changes in carbohydrate-active enzymes of SAMP8 mice following CA-30 treatment, especially GH85, were also noted. We further found that seven genera were significantly correlated with the NIM network and cognitive performance. CA-30 influenced the relative abundance of these intestinal microbiomes in SAMP8 mice and restored them to SAMR1 mouse levels. CA-30 ameliorated the intestinal microbiome, rebalanced the NIM network, improved the AD-like cognitive impairments in SAMP8 mice, and can thus be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jianhui Wang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xi Lei
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zongjie Xie
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
30
|
Macelignan inhibits the inflammatory response of microglia and regulates neuronal survival. J Neuroimmunol 2019; 339:577123. [PMID: 31838278 DOI: 10.1016/j.jneuroim.2019.577123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is an important pathological process of neurodegenerative diseases, and microglial contributes to chronic inflammation and neuronal loss in progressive neurodegenerative. Therefore, regulating the inflammatory response of microglia could lead to the discovery of promising treatments for neurodegenerative diseases. In this study, we investigated the effects of the nutmeg plant seed extract, macelignan, on the inflammatory response of microglia and neuronal cell survival. We detected NO and iNOS using the Griess test and Western blotting. We measured phosphoinositide 3 kinase (PI3K)/Akt expression by Western blotting. The release of NO and inflammatory cytokines and the expression of iNOS decreased in a concentration-dependent manner, with an increase in macelignan concentration. PI3K/Akt phosphorylation levels decreased in a dose-dependent manner in lipopolysaccharide (LPS)-activated microglial cells after exposure to macelignan. We also demonstrated that macelignan improved HT22 cell viability, following exposure to a microglial-conditioned medium. Furthermore, macelignan inhibited microglial cell near neurons treated with a hypoxic conditioned medium. Finally, macelignan treatment reduced the expression of p27 and cyclin D1 in neurons cultured in an LPS-activated microglia-conditioned medium. Therefore, these results imply that macelignan can inhibit the inflammatory response of microglia and regulate neuronal survival through the PI3K/Akt pathway.
Collapse
|
31
|
Pan H, Qiu H, Zhang K, Zhang P, Liang W, Yang M, Mou C, Lin M, He M, Xiao X, Zhang D, Wang H, Liu F, Li Y, Jin H, Yan X, Liang H, Cui W. Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer's Disease: in Vitro and in Vivo Evidence. ACS Chem Neurosci 2019; 10:4741-4756. [PMID: 31639294 DOI: 10.1021/acschemneuro.9b00503] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and impaired cognitive functions. Fascaplysin is a β-carboline alkaloid isolated from marine sponge Fascaplysinopsis bergquist in 1988. Previous studies have shown that fascaplysin might act on acetylcholinesterase and β-amyloid (Aβ) to produce anti-AD properties. In this study, a series of fascaplysin derivatives were synthesized. The cholinesterase inhibition activities, the neuronal protective effects, and the toxicities of these compounds were evaluated in vitro. Compounds 2a and 2b, the two most powerful compounds in vitro, were further selected to evaluate their cognitive-enhancing effects in animals. Both 2a and 2b could ameliorate cognitive dysfunction induced by scopolamine or Aβ oligomers without affecting locomotor functions in mice. We also found that 2a and 2b could prevent cholinergic dysfunctions, decrease pro-inflammatory cytokine expression, and inhibit Aβ-induced tau hyperphosphorylation in vivo. Most importantly, pharmacodynamics studies suggested that 2b could penetrate the blood-brain barrier and be retained in the central nervous system. All these results suggested that fascaplysin derivatives are potent multitarget agents against AD and might be clinical useful for AD treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongda Qiu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Panpan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Weida Liang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mengxiang Yang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Miaoman Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ming He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Difan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongmei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
32
|
Aftabizadeh M, Tatarek-Nossol M, Andreetto E, El Bounkari O, Kipp M, Beyer C, Latz E, Bernhagen J, Kapurniotu A. Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chem Neurosci 2019; 10:3703-3717. [PMID: 31295403 DOI: 10.1021/acschemneuro.9b00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation in the brain and pancreas is linked to cell degeneration and pathogenesis of both Alzheimer's disease (AD) and type 2 diabetes (T2D). Inflammatory cascades in both tissues are triggered by the uptake of β-amyloid peptide (Aβ) or islet amyloid polypeptide (IAPP) aggregates by microglial cells (AD) or macrophages (T2D) and their insufficient lysosomal degradation. This results in lysosomal damage, caspase-1/NLRP3 inflammasome activation and release of interleukin-1β (IL-1β), a key proinflammatory cytokine in both diseases. Here we show that the inflammatory processes mediated by Aβ and IAPP aggregates in microglial cells and macrophages are blocked by IAPP-GI, a nonamyloidogenic IAPP mimic, which forms high-affinity soluble and nonfibrillar hetero-oligomers with both polypeptides. In contrast to fibrillar Aβ aggregates, nonfibrillar Aβ/IAPP-GI or Aβ/IAPP hetero-oligomers become rapidly internalized by microglial cells and targeted to lysosomes where Aβ is fully degraded. Internalization occurs via IAPP receptor-mediated endocytosis. Moreover, in contrast to IAPP aggregates, IAPP/IAPP-GI hetero-oligomers become rapidly internalized and degraded in the lysosomal compartments of macrophages. Our findings uncover a previously unknown function for the IAPP/Aβ cross-amyloid interaction and suggest that conversion of Aβ or IAPP into lysosome-targeted and easily degradable hetero-oligomers by heteroassociation with IAPP mimics could become a promising approach to specifically prevent amyloid-mediated inflammation in AD, T2D, or both diseases.
Collapse
Affiliation(s)
- Maryam Aftabizadeh
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
- Cancer Immunotherapeutics and Tumor Immunology, City of Hope Medical Center Duarte, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | - Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Omar El Bounkari
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, United States
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
33
|
Li LJ, Zheng JC, Kang R, Yan JQ. Targeting Trim69 alleviates high fat diet (HFD)-induced hippocampal injury in mice by inhibiting apoptosis and inflammation through ASK1 inactivation. Biochem Biophys Res Commun 2019; 515:658-664. [DOI: 10.1016/j.bbrc.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
|
34
|
Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model. Sci Rep 2019; 9:10942. [PMID: 31358858 PMCID: PMC6662706 DOI: 10.1038/s41598-019-47255-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence supports involvement of amylin and the amylin receptor in the pathogenesis of Alzheimer’s disease (AD). We have previously shown that amylin receptor antagonist, AC253, improves spatial memory in AD mouse models. Herein, we generated and screened a peptide library and identified two short sequence amylin peptides (12–14 aa) that are proteolytically stable, brain penetrant when administered intraperitoneally, neuroprotective against Aβ toxicity and restore diminished levels of hippocampal long term potentiation in AD mice. Systemic administration of the peptides for five weeks in aged 5XFAD mice improved spatial memory, reduced amyloid plaque burden, and neuroinflammation. The common residue SQELHRLQTY within the peptides is an essential sequence for preservation of the beneficial effects of the fragments that we report here and constitutes a new pharmacological target. These findings suggest that the amylin receptor antagonism may represent a novel therapy for AD.
Collapse
|
35
|
Zhang X, Ye P, Wang D, Liu Y, Cao L, Wang Y, Xu Y, Zhu C. Involvement of RhoA/ROCK Signaling in Aβ-Induced Chemotaxis, Cytotoxicity and Inflammatory Response of Microglial BV2 Cells. Cell Mol Neurobiol 2019; 39:637-650. [PMID: 30852720 DOI: 10.1007/s10571-019-00668-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Reactive microglia clustering around amyloid plaques in brain is a histopathological feature of Alzheimer's disease (AD) and reflects the contribution of neuroinflammation in AD pathogenesis. β-Amyloid peptide (Aβ) has been shown to induce a range of microglial responses including chemotaxis, cytotoxicity and inflammation, but the underlying mechanism is poorly understood. Considering the fundamental role of RhoA/ROCK signaling in cell migration and its broad implication in AD and neuroinflammation, we hypothesized that RhoA/ROCK signaling might be involved in Aβ-induced microglial responses. From in vivo mouse models including APP/PS1 transgene and fibrillar Aβ stereotactic injection, we observed the elevated expression level of RhoA in reactive microglia. Through a series in vitro cell migration, cytotoxicity and biochemistry assays, we found that RhoA/ROCK signaling plays an essential role in Aβ-induced responses of microglial BV2 cells. Small molecular agents Fasudil and Y27632 showed prominent beneficial effects, which implies the therapeutic potential of RhoA/ROCK signaling inhibitors in AD treatment.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Piao Ye
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Dandan Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yunsheng Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Lan Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yancong Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yuxia Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China.
| | - Cuiqing Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
36
|
Rebenkova MS, Gombozhapova AE, Rogovskaya YV, Ryabov VV, Kzhyshkowska YG, Kim BE, Prohorova YA. [Dynamics of brain CD68+ and stabilin-1+ macrophage infiltration in patients with myocardial infarction]. ACTA ACUST UNITED AC 2019; 59:44-50. [PMID: 31131759 DOI: 10.18087/cardio.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022]
Abstract
Te aim of the study was to evaluate the temporal dynamics of brain CD68+ and stabilin-1+ macrophage infltration in patients with fatal myocardial infarction (MI) type 1. MATERIALS AND METHODS Te study included 31 patients with fatal MI type I. Te control group comprised 10 patients of 18-40 age group who died from injuries incompatible with life. Patients with MI were divided into two groups. Group 1 comprised patients who died during the frst 72 hours of MI, group 2 comprised patients who died on days 4‒28. Macrophage infltration in the brain was assessed by immunohistochemical analysis. We used CD68 as a marker for the cells of the macrophage lineage and stabilin-1 as an M2-like macrophage biomarker. RESULTS In group 1 the number of brain CD68+ macrophages was signifcantly higher than in the control group. In group 2 the intensity of brain CD68+ cells infltration was lower than in group 1 and higher than in the control group. Tere was a small amount of stabilin-1+ macrophages in the brain of healthy people, as well as of patients who died from MI. Tere were no signifcant differences in the number of stabilin-1+ cells between group 1 and group 2. Correlation analysis revealed the presence of positive correlation between the number of CD68 + macrophages in the infarct, peri-infarct, and non-infarct areas of the myocardium and the number of CD68+ macrophages in the brain in patients with MI. Tere were not correlations between the number of CD68 + and stabilin-1+ cells and the presence of diabetes mellitus, history of stroke, history of MI, and pre-infarction angina. CONCLUSION Te number of brain CD68+ macrophages signifcantly increased during the frst three days of MI. Te number of brain stabilin-1+ macrophages did not increase and did not differ from the control values. We observed a positive correlation between the number of CD68+ macrophages in the brain and myocardium.
Collapse
Affiliation(s)
- M S Rebenkova
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - A E Gombozhapova
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - Yu V Rogovskaya
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - V V Ryabov
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University; Siberian State Medical University
| | | | - B E Kim
- National Research Tomsk State University
| | | |
Collapse
|
37
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
38
|
Fe 3+ Facilitates Endocytic Internalization of Extracellular Aβ 1-42 and Enhances Aβ 1-42-Induced Caspase-3/Caspase-4 Activation and Neuronal Cell Death. Mol Neurobiol 2018; 56:4812-4819. [PMID: 30402707 DOI: 10.1007/s12035-018-1408-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Amyloid β (Aβ) peptide is a critical causative factor in Alzheimer's disease (AD) and of a variety of fragmented Aβ peptides Aβ1-42 thought to exhibit the most neurotoxic effect. The present study investigated the effects of Fe3+ on Aβ1-42 internalization and Aβ1-42-induced caspase activation and neurotoxicity using mouse hippocampal slices and cultured PC-12 cells. Extracellularly applied Aβ1-42 increased the cell-associated Aβ1-42 levels in a concentration-dependent manner, and the effect was enhanced by adding Fe3+. Fe3+-induced enhancement of the cell-associated Aβ1-42 levels was significantly inhibited by the endocytosis inhibitors dynasore and methyl-β-cyclodextrin. Aβ1-42 reduced PC-12 cell viability in a concentration-dependent manner, and further reduction of the cell viability was obtained with Fe3+. Aβ1-42-induced reduction of cell viability was not affected by A187, an antagonist of amylin-3 receptor. Aβ1-42 activated caspase-3, caspase-4, and caspase-8 to a variety of degrees and Fe3+ further enhanced Aβ1-42-induced activation of caspase-3 and caspase-4. Taken together, these results indicate that Fe3+ accelerates endocytic internalization of extracellular Aβ1-42, enhances Aβ1-42-induced caspase-3/caspase-4 activation, and promotes Aβ1-42-induced neuronal cell death, regardless of amylin receptor.
Collapse
|
39
|
Shao BZ, Cao Q, Liu C. Targeting NLRP3 Inflammasome in the Treatment of CNS Diseases. Front Mol Neurosci 2018; 11:320. [PMID: 30233319 PMCID: PMC6131647 DOI: 10.3389/fnmol.2018.00320] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) is one of the largest killers of people’s health all over the world. The overactivation of the immune and inflammatory responses is considered as an important factor, contributing to the pathogenesis and progression of CNS disorders. Among all kinds of immune and inflammatory reaction, the inflammasome, a complex of proteins, has been drawn increasingly attention to by researchers. The initiation and activation of the inflammasome is involved in the onset of various kinds of diseases. The NLRP3 inflammasome, the most studied member of the inflammasome, is closely associated with many kinds of CNS disorders. Here in this review, the roles of the NLRP3 inflammasome in the pathogenesis and progression of several well-known CNS diseases would be discussed, including cerebrovascular diseases, neurodegenerative diseases, multiple sclerosis, depression as well as other CNS disorders. In addition, several therapeutic strategies targeting on the NLRP3 inflammasome for the treatment of CNS disorders would be described in this review.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Qi Cao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
40
|
Li Q, Chen L, Liu X, Li X, Cao Y, Bai Y, Qi F. Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. J Cell Biochem 2018; 119:7053-7062. [PMID: 29737568 DOI: 10.1002/jcb.27023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Neuroinflammation has been known as an important pathogenetic contributor of Alzheimer's disease (AD). Pterostilbene is a natural compound which has neuroprotective activity. However, the effect of pterostilbene on amyloid-β (Aβ)-induced neuroinflammation has not been clarified. The aim of the present study was to investigate the effect of pterostilbene on Aβ-induced neuroinflammation in microglia. The results indicated that pterostilbene attenuated Aβ1-42 -induced cytotoxicity of BV-2 cells. Aβ1-42 induced NO production and iNOS mRNA and protein expression, while pterostilbene inhibited the induction. The expression and secretion levels of IL-6, IL-1β, and TNF-α were enhanced by Aβ1-42 treatment, whereas pterostilbene decreased them. Aβ1-42 activated NLRP3/caspase-1 inflammasome, which was inactivated by pterostilbene. In addition, the inhibitor of caspase-1 Z-YVAD-FMK attenuated the Aβ1-42 -induced neuroinflammation in BV-2 cells. In conclusion, pterostilbene attenuated the neuroinflammatory response induced by Aβ1-42 in microglia through inhibiting the NLRP3/caspase-1 inflammasome pathway, indicating that pterostilbene might be an effective therapy for AD.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xuewen Liu
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yue Cao
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yang Bai
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Fengjiao Qi
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
41
|
Inhibitive Effect of Resveratrol on the Inflammation in Cultured Astrocytes and Microglia Induced by Aβ1–42. Neuroscience 2018; 379:390-404. [DOI: 10.1016/j.neuroscience.2018.03.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/17/2018] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
|
42
|
Bruce KD, Gorkhali S, Given K, Coates AM, Boyle KE, Macklin WB, Eckel RH. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Front Mol Neurosci 2018; 11:57. [PMID: 29599706 PMCID: PMC5862862 DOI: 10.3389/fnmol.2018.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Severe demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), can be devastating for many young lives. To date, the factors resulting in poor remyelination and repair are not well understood, and reparative therapies that benefit MS patients have yet to be developed. We have previously shown that the activity and abundance of Lipoprotein Lipase (LPL)—the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoproteins—is increased in Schwann cells and macrophages following nerve crush injury in the peripheral nervous system (PNS), suggesting that LPL may help scavenge myelin-derived lipids. We hypothesized that LPL may play a similar role in the CNS. To test this, mice were immunized with MOG35–55 peptide to induce experimental allergic encephalomyelitis (EAE). LPL activity was increased (p < 0.05) in the brain at 30 days post-injection, coinciding with partial remission of clinical symptoms. Furthermore, LPL abundance and activity was up-regulated (p < 0.05) at the transition between de- and re-myelination in lysolecithin-treated ex vivo cerebellar slices. Since microglia are the key immune effector cells of the CNS we determined the role of LPL in microglia. Lipid uptake was decreased (p < 0.001) in LPL-deficient BV-2 microglial cells compared to WT. In addition, LPL-deficient cells showed dramatically reduced expression of anti-inflammatory markers, YM1 (−22 fold, p < 0.001), and arginase 1 (Arg1; −265 fold, p < 0.001) and increased expression of pro-inflammatory markers, such as iNOS compared to WT cells (+53 fold, p < 0.001). This suggests that LPL is a feature of reparative microglia, further supported by the metabolic and inflammatory profile of LPL-deficient microglia. Taken together, our data strongly suggest that LPL expression is a novel feature of a microglial phenotype that supports remyelination and repair through the clearance of lipid debris. This mechanism may be exploited to develop future reparative therapies for MS and primary neurodegenerative disorders (Alzheimer’s disease (AD) and Parkinson’s disease).
Collapse
Affiliation(s)
- Kimberley D Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Katherine Given
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alison M Coates
- School of Health Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Kristen E Boyle
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|