1
|
Zheng J, Baimoukhametova D, Lebel C, Bains JS, Kurrasch DM. Hypothalamic vasopressin sex differentiation is observed by embryonic day 15 in mice and is disrupted by the xenoestrogen bisphenol A. Proc Natl Acad Sci U S A 2024; 121:e2313207121. [PMID: 38753512 PMCID: PMC11126957 DOI: 10.1073/pnas.2313207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| | - Dinara Baimoukhametova
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
| | - Jaideep S. Bains
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Department of Physiology and Pharmacology, University of Calgary, CalgaryT2N 1N4, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, CalgaryT2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, CalgaryT2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, CalgaryT2N 1N4, Canada
| |
Collapse
|
2
|
Kim SJ, Affan RO, Frostig H, Scott BB, Alexander AS. Advances in cellular resolution microscopy for brain imaging in rats. NEUROPHOTONICS 2023; 10:044304. [PMID: 38076724 PMCID: PMC10704261 DOI: 10.1117/1.nph.10.4.044304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 02/12/2024]
Abstract
Rats are used in neuroscience research because of their physiological similarities with humans and accessibility as model organisms, trainability, and behavioral repertoire. In particular, rats perform a wide range of sophisticated social, cognitive, motor, and learning behaviors within the contexts of both naturalistic and laboratory environments. Further progress in neuroscience can be facilitated by using advanced imaging methods to measure the complex neural and physiological processes during behavior in rats. However, compared with the mouse, the rat nervous system offers a set of challenges, such as larger brain size, decreased neuron density, and difficulty with head restraint. Here, we review recent advances in in vivo imaging techniques in rats with a special focus on open-source solutions for calcium imaging. Finally, we provide suggestions for both users and developers of in vivo imaging systems for rats.
Collapse
Affiliation(s)
- Su Jin Kim
- Johns Hopkins University, Department of Psychological and Brain Sciences, Baltimore, Maryland, United States
| | - Rifqi O. Affan
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Graduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Hadas Frostig
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - Benjamin B. Scott
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center and Photonics Center, Boston, Massachusetts, United States
| | - Andrew S. Alexander
- University of California Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
3
|
Paolino A, Haines EH, Bailey EJ, Black DA, Moey C, García-Moreno F, Richards LJ, Suárez R, Fenlon LR. Non-uniform temporal scaling of developmental processes in the mammalian cortex. Nat Commun 2023; 14:5950. [PMID: 37741828 PMCID: PMC10517946 DOI: 10.1038/s41467-023-41652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The time that it takes the brain to develop is highly variable across animals. Although staging systems equate major developmental milestones between mammalian species, it remains unclear how distinct processes of cortical development scale within these timeframes. Here, we compare the timing of cortical development in two mammals of similar size but different developmental pace: eutherian mice and marsupial fat-tailed dunnarts. Our results reveal that the temporal relationship between cell birth and laminar specification aligns to equivalent stages between these species, but that migration and axon extension do not scale uniformly according to the developmental stages, and are relatively more advanced in dunnarts. We identify a lack of basal intermediate progenitor cells in dunnarts that likely contributes in part to this timing difference. These findings demonstrate temporal limitations and differential plasticity of cortical developmental processes between similarly sized Therians and provide insight into subtle temporal changes that may have contributed to the early diversification of the mammalian brain.
Collapse
Affiliation(s)
- Annalisa Paolino
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Elizabeth H Haines
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Evan J Bailey
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Dylan A Black
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Ching Moey
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Linda J Richards
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- Washington University in St Louis School of Medicine, Department of Neuroscience, St Louis, MO, 63108, USA
| | - Rodrigo Suárez
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
| | - Laura R Fenlon
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Live-cell imaging of microglial interactions with radial glia in transgenic embryonic mouse brains using slice culture. STAR Protoc 2021; 2:100670. [PMID: 34382012 PMCID: PMC8339326 DOI: 10.1016/j.xpro.2021.100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial dynamics and interactions with nearby radial glia can be visualized in real time in embryonic mouse brain tissue using time-lapse imaging in slice culture. This live-cell imaging protocol can be used to study the morphology and activities of a number of cell types across a variety of brain regions and developmental time points. The advantage of this brain slice culture model is that it allows for the visualization of cellular interactions and movements in real time, especially across embryogenesis. For complete details on the use and execution of this protocol, please refer to Rosin et al. (2021). Microglia and radial glia interactions can be captured in embryonic brain slices Microglial dynamics and interactions with nearby cells can be visualized in real time Live-cell imaging can be used to study various cell types in the developing brain
Collapse
|
6
|
Rosin JM, Sinha S, Biernaskie J, Kurrasch DM. A subpopulation of embryonic microglia respond to maternal stress and influence nearby neural progenitors. Dev Cell 2021; 56:1326-1345.e6. [PMID: 33887203 DOI: 10.1016/j.devcel.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022]
Abstract
The interplay between hypothalamic neurons and microglia as they integrate stressors to regulate homeostasis is of growing interest. We asked if microglia in the embryonic hypothalamus were likewise stress responsive and, if so, whether their precocious activation perturbs nearby neural stem cell (NSC) programs. We performed single-cell transcriptomics to define embryonic hypothalamic microglia heterogeneity and identified four microglial subsets, including a subpopulation adjacent to NSCs that was responsive to gestational cold stress. Stress exposure elevated CCL3 and CCL4 secretion, but only in male brains, and ex vivo CCL4 treatment of hypothalamic NSCs altered proliferation and differentiation. Concomitantly, gestational stress decreased PVN oxytocin neurons only in male embryos, which was reversed by microglia depletion. Adult offspring exposed to gestational stress displayed altered social behaviors, which was likewise microglia dependent, but only in males. Collectively, immature hypothalamic microglia play an unappreciated role in translating maternal stressors to sexually dimorphic perturbation of neurodevelopmental programs.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
7
|
Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult. Cell Rep 2021; 34:108587. [PMID: 33406432 DOI: 10.1016/j.celrep.2020.108587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a growing appreciation for microglial influences on the developing brain, the responsiveness of microglia to insults during gestation remains less well characterized, especially in the embryo when microglia themselves are still maturing. Here, we asked if fetal microglia could coordinate an innate immune response to an exogenous insult. Using time-lapse imaging, we showed that hypothalamic microglia actively surveyed their environment by near-constant "touching" of radial glia projections. However, following an insult (i.e., IUE or AAV transduction), this seemingly passive touching became more intimate and long lasting, ultimately resulting in the retraction of radial glial projections and degeneration into small pieces. Mechanistically, the TAM receptors MERTK and AXL were upregulated in microglia following the insult, and Annexin V treatment inhibited radial glia breakage and engulfment by microglia. These data demonstrate a remarkable responsiveness of embryonic microglia to insults during gestation, a critical window for neurodevelopment.
Collapse
|
8
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. Third Ventricular Injection of CCL2 in Rat Embryo Stimulates CCL2/CCR2 Neuroimmune System in Neuroepithelial Radial Glia Progenitor Cells: Relation to Sexually Dimorphic, Stimulatory Effects on Peptide Neurons in Lateral Hypothalamus. Neuroscience 2020; 443:188-205. [PMID: 31982472 PMCID: PMC7681774 DOI: 10.1016/j.neuroscience.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.
Collapse
|
9
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
10
|
Aslanpour S, Rosin JM, Balakrishnan A, Klenin N, Blot F, Gradwohl G, Schuurmans C, Kurrasch DM. Ascl1 is required to specify a subset of ventromedial hypothalamic neurons. Development 2020; 147:dev180067. [PMID: 32253239 DOI: 10.1242/dev.180067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
Despite clear physiological roles, the ventromedial hypothalamus (VMH) developmental programs are poorly understood. Here, we asked whether the proneural gene achaete-scute homolog 1 (Ascl1) contributes to VMH development. Ascl1 transcripts were detected in embryonic day (E) 10.5 to postnatal day 0 VMH neural progenitors. The elimination of Ascl1 reduced the number of VMH neurons at E12.5 and E15.5, particularly within the VMH-central (VMHC) and -dorsomedial (VMHDM) subdomains, and resulted in a VMH cell fate change from glutamatergic to GABAergic. We observed a loss of Neurog3 expression in Ascl1-/- hypothalamic progenitors and an upregulation of Neurog3 when Ascl1 was overexpressed. We also demonstrated a glutamatergic to GABAergic fate switch in Neurog3-null mutant mice, suggesting that Ascl1 might act via Neurog3 to drive VMH cell fate decisions. We also showed a concomitant increase in expression of the central GABAergic fate determinant Dlx1/2 in the Ascl1-null hypothalamus. However, Ascl1 was not sufficient to induce an ectopic VMH fate when overexpressed outside the normal window of competency. Combined, Ascl1 is required but not sufficient to specify the neurotransmitter identity of VMH neurons, acting in a transcriptional cascade with Neurog3.
Collapse
Affiliation(s)
- Shaghayegh Aslanpour
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica M Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Natalia Klenin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Florence Blot
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Gerard Gradwohl
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Carol Schuurmans
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Deborah M Kurrasch
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
11
|
Neurog2 Acts as a Classical Proneural Gene in the Ventromedial Hypothalamus and Is Required for the Early Phase of Neurogenesis. J Neurosci 2020; 40:3549-3563. [PMID: 32273485 DOI: 10.1523/jneurosci.2610-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022] Open
Abstract
The tuberal hypothalamus is comprised of the dorsomedial, ventromedial, and arcuate nuclei, as well as parts of the lateral hypothalamic area, and it governs a wide range of physiologies. During neurogenesis, tuberal hypothalamic neurons are thought to be born in a dorsal-to-ventral and outside-in pattern, although the accuracy of this description has been questioned over the years. Moreover, the intrinsic factors that control the timing of neurogenesis in this region are poorly characterized. Proneural genes, including Achate-scute-like 1 (Ascl1) and Neurogenin 3 (Neurog3) are widely expressed in hypothalamic progenitors and contribute to lineage commitment and subtype-specific neuronal identifies, but the potential role of Neurogenin 2 (Neurog2) remains unexplored. Birthdating in male and female mice showed that tuberal hypothalamic neurogenesis begins as early as E9.5 in the lateral hypothalamic and arcuate and rapidly expands to dorsomedial and ventromedial neurons by E10.5, peaking throughout the region by E11.5. We confirmed an outside-in trend, except for neurons born at E9.5, and uncovered a rostrocaudal progression but did not confirm a dorsal-ventral patterning to tuberal hypothalamic neuronal birth. In the absence of Neurog2, neurogenesis stalls, with a significant reduction in early-born BrdU+ cells but no change at later time points. Further, the loss of Ascl1 yielded a similar delay in neuronal birth, suggesting that Ascl1 cannot rescue the loss of Neurog2 and that these proneural genes act independently in the tuberal hypothalamus. Together, our findings show that Neurog2 functions as a classical proneural gene to regulate the temporal progression of tuberal hypothalamic neurogenesis.SIGNIFICANCE STATEMENT Here, we investigated the general timing and pattern of neurogenesis within the tuberal hypothalamus. Our results confirmed an outside-in trend of neurogenesis and uncovered a rostrocaudal progression. We also showed that Neurog2 acts as a classical proneural gene and is responsible for regulating the birth of early-born neurons within the ventromedial hypothalamus, acting independently of Ascl1 In addition, we revealed a role for Neurog2 in cell fate specification and differentiation of ventromedial -specific neurons. Last, Neurog2 does not have cross-inhibitory effects on Neurog1, Neurog3, and Ascl1 These findings are the first to reveal a role for Neurog2 in hypothalamic development.
Collapse
|
12
|
piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020; 12:pharmaceutics12030277. [PMID: 32204422 PMCID: PMC7151002 DOI: 10.3390/pharmaceutics12030277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
In vivo gene delivery involves direct injection of nucleic acids (NAs) into tissues, organs, or tail-veins. It has been recognized as a useful tool for evaluating the function of a gene of interest (GOI), creating models for human disease and basic research targeting gene therapy. Cargo frequently used for gene delivery are largely divided into viral and non-viral vectors. Viral vectors have strong infectious activity and do not require the use of instruments or reagents helpful for gene delivery but bear immunological and tumorigenic problems. In contrast, non-viral vectors strictly require instruments (i.e., electroporator) or reagents (i.e., liposomes) for enhanced uptake of NAs by cells and are often accompanied by weak transfection activity, with less immunological and tumorigenic problems. Chromosomal integration of GOI-bearing transgenes would be ideal for achieving long-term expression of GOI. piggyBac (PB), one of three transposons (PB, Sleeping Beauty (SB), and Tol2) found thus far, has been used for efficient transfection of GOI in various mammalian cells in vitro and in vivo. In this review, we outline recent achievements of PB-based production of genetically modified animals and organs and will provide some experimental concepts using this system.
Collapse
|
13
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 Chemokine System in Embryonic Hypothalamus: Involvement in Sexually Dimorphic Stimulatory Effects of Prenatal Ethanol Exposure on Peptide-Expressing Neurons. Neuroscience 2019; 424:155-171. [PMID: 31705896 DOI: 10.1016/j.neuroscience.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 µg/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females.
Collapse
|
14
|
Rosin JM, Kurrasch DM. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 2019; 54:100748. [PMID: 31059719 DOI: 10.1016/j.yfrne.2019.100748] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
The hypothalamus is a crucial brain region that responds to external stressors and functions to maintain physiological homeostatic processes, such as core body temperature and energy balance. The hypothalamus regulates homeostasis by producing hormones that thereby influence the production of other hormones that then control the internal milieu of the body. Microglia are resident macrophages and phagocytic immune cells of the central nervous system (CNS), classically known for surveying the brain's environment, responding to neural insults, and disposing of cellular debris. Recent evidence has shown that microglia are also responsive to external stressors and can influence both the development and function of the hypothalamus in a sex-dependent manner. This emerging microglia-hypothalamic interaction raises the intriguing notion that microglia might play an unappreciated role in hypothalamic control of physiological homeostasis. In this review, we briefly outline how the hypothalamus regulates physiological homeostasis and then describe how this literature overlaps with our understanding of microglia's role in the CNS. We also outline the current literature demonstrating how microglia loss or activation affects the hypothalamus, and ultimately homeostasis. We conclude by proposing how microglia could be key regulators of homeostatic processes by sensing cues external to the CNS and transmitting them through the hypothalamus.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Embryonic Neocortical Microglia Express Toll-Like Receptor 9 and Respond to Plasmid DNA Injected into the Ventricle: Technical Considerations Regarding Microglial Distribution in Electroporated Brain Walls. eNeuro 2018; 5:eN-MNT-0312-18. [PMID: 30627652 PMCID: PMC6325556 DOI: 10.1523/eneuro.0312-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia, the resident immune cells in the CNS, play multiple roles during development. In the embryonic cerebral wall, microglia modulate the functions of neural stem/progenitor cells through their distribution in regions undergoing cell proliferation and/or differentiation. Previous studies using CX3CR1-GFP transgenic mice demonstrated that microglia extensively survey these regions. To simultaneously visualize microglia and neural-lineage cells that interact with each other, we applied the in utero electroporation (IUE) technique, which has been widely used for gene-transfer in neurodevelopmental studies, to CX3CR1-GFP mice (males and females). However, we unexpectedly faced a technical problem: although microglia are normally distributed homogeneously throughout the mid-embryonic cortical wall with only limited luminal entry, the intraventricular presence of exogenously derived plasmid DNAs induced microglia to accumulate along the apical surface of the cortex and aggregate in the choroid plexus. This effect was independent of capillary needle puncture of the brain wall or application of electrical pulses. The microglial response occurred at plasmid DNA concentrations lower than those routinely used for IUE, and was mediated by activation of Toll-like receptor 9 (TLR9), an innate immune sensor that recognizes unmethylated cytosine-phosphate guanosine motifs abundant in microbial DNA. Administration of plasmid DNA together with oligonucleotide 2088, the antagonist of TLR9, partially restored the dispersed intramural localization of microglia and significantly decreased luminal accumulation of these cells. Thus, via TLR9, intraventricular plasmid DNA administration causes aberrant distribution of embryonic microglia, suggesting that the behavior of microglia in brain primordia subjected to IUE should be carefully interpreted.
Collapse
|