1
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zhang S, Gu B, Zhen K, Du L, Lv Y, Yu L. Effects of exercise on brain-derived neurotrophic factor in Alzheimer's disease models: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 126:105538. [PMID: 38878598 DOI: 10.1016/j.archger.2024.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
A growing body of research examining effects of exercise on brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) models, while due to differences in gender, age, disease severity, brain regions examined, and type of exercise intervention, findings of available studies were conflicting. In this study, we aimed to evaluate current evidence regarding effects of exercise on BDNF in AD models. Searches were performed in PubMed, Web of Science, Cochrane, and EBSCO electronic databases, through July 20, 2023. We included studies that satisfied the following criteria: eligible studies should (1) report evidence on experimental work with AD models; (2) include an exercise group and a control group (sedentary); (3) use BDNF as the outcome indicator; and (4) be randomized controlled trials (RCTs). From 1196 search records initially identified, 36 studies met the inclusion criteria. There was a significant effect of exercise on increasing BDNF levels in AD models [standardized mean differences (SMD) = 0.98, P < 0.00001]. Subgroup analysis showed that treadmill exercise (SMD = 0.92, P< 0.0001), swimming (SMD = 1.79, P< 0.0001), and voluntary wheel running (SMD = 0.51, P= 0.04) were all effective in increasing BDNF levels in AD models. In addition, exercise significantly increased BDNF levels in the hippocampus (SMD = 0.92, P< 0.00001) and cortex (SMD = 1.56, P= 0.02) of AD models. Exercise, especially treadmill exercise, swimming, and voluntary wheel running, significantly increased BDNF levels in hippocampus and cortex of AD models, with swimming being the most effective intervention type.
Collapse
Affiliation(s)
- Shiyan Zhang
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Boya Gu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China
| | - Kai Zhen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Liwen Du
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing, China; Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China.
| |
Collapse
|
3
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Liu J, Jiang J, He C, Zhou L, Zhang Y, Zhao S, Yang Z. Platycodin D and voluntary running synergistically ameliorate memory deficits in 5 × FAD mice via mediating neuromodulation and neuroinflammation. Front Aging Neurosci 2024; 16:1451766. [PMID: 39385832 PMCID: PMC11461226 DOI: 10.3389/fnagi.2024.1451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia, and currently, no effective treatments are available to reverse or halt its progression in clinical practice. Although a plethora of studies have highlighted the benefits of physical exercise in combating AD, elder individuals often have limited exercise capacity. Therefore, mild physical exercise and nutritional interventions represent potential strategies for preventing and mitigating neurodegenerative diseases. Our research, along with other studies, have demonstrated that platycodin D (PD) or its metabolite, platycodigenin, derived from the medicinal plant Platycodon grandiflorus, exerts neuroprotective effects against amyloid β (Aβ)-induced neuroinflammation. However, the combined effects of PD and physical exercise on alleviating AD have yet to be explored. The current study aimed to investigate whether combined therapy could synergistically ameliorate memory deficits and AD pathology in 5 × FAD mice. Methods Five-month-old 5 × FAD mice were randomly assigned to four groups, and received either PD (5 mg/kg/day, p.o.), voluntary running, or a combination of both for 47 days. Nest building test, locomotion test, and Morris water maze test were used to evaluate the cognitive function. Immunohistochemical and ELISA analysis was performed to determine Aβ build-up, microglia and astrocytes hyperactivation, and survival neurons in the hippocampus and perirhinal cortex. Real-time quantitative PCR analysis was used to assess the polarization of microglia and astrocytes. HPLC analysis was performed to measure monoamine neurotransmitters in the hippocampus. Results and discussion The combination of PD and voluntary running synergistically restored nest-building behavior, alleviated recognition and spatial memory deficits, and showed superior effects compared to monotherapy. In addition, the PD and voluntary running combination reduced Aβ build-up, decreased hyperactivation of microglia and astrocytes in the hippocampus and perirhinal cortex, promoted the polarization of inflammatory M1 microglia and reactive astrocytes toward beneficial phenotypes, and lowered systemic circulating pro-inflammatory cytokines while increasing anti-inflammatory cytokines in 5 × FAD mice. Furthermore, combined therapy effectively protected neurons and increased levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of 5 × FAD mice. In conclusion, the combination of PD and voluntary running holds great potential as a treatment for AD, offering promise for delaying onset or progression of AD.
Collapse
Affiliation(s)
- Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiahui Jiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
6
|
Liu L, Luo L, Wei JA, Xu X, So KF, Zhang L. Treadmill Exercise Reshapes Cortical Astrocytic and Neuronal Activity to Improve Motor Learning Deficits Under Chronic Alcohol Exposure. Neurosci Bull 2024; 40:1287-1298. [PMID: 38807019 PMCID: PMC11365901 DOI: 10.1007/s12264-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.
Collapse
Affiliation(s)
- Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Lanzhi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xintong Xu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
8
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 0:revneuro-2024-0040. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
9
|
Strohm AO, Majewska AK. Physical exercise regulates microglia in health and disease. Front Neurosci 2024; 18:1420322. [PMID: 38911597 PMCID: PMC11192042 DOI: 10.3389/fnins.2024.1420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Li M, Xu J, Li L, Zhang L, Zuo Z, Feng Y, He X, Hu X. Voluntary wheel exercise improves glymphatic clearance and ameliorates colitis-associated cognitive impairment in aged mice by inhibiting TRPV4-induced astrocytic calcium activity. Exp Neurol 2024; 376:114770. [PMID: 38580155 DOI: 10.1016/j.expneurol.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aβ deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aβ via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aβ via inhibition of TRPV4-induced astrocytic calcium hyperactivity.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
12
|
Nicolas S, Dohm-Hansen S, Lavelle A, Bastiaanssen TFS, English JA, Cryan JF, Nolan YM. Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Transl Psychiatry 2024; 14:195. [PMID: 38658547 PMCID: PMC11043361 DOI: 10.1038/s41398-024-02904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- INFANT Research Centre, Cork University Hospital, Wilton, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Ivanova M, Belaya I, Kucháriková N, de Sousa Maciel I, Saveleva L, Alatalo A, Juvonen I, Thind N, Andrès C, Lampinen R, Chew S, Kanninen KM. Upregulation of Integrin beta-3 in astrocytes upon Alzheimer's disease progression in the 5xFAD mouse model. Neurobiol Dis 2024; 191:106410. [PMID: 38220131 DOI: 10.1016/j.nbd.2024.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Integrins are receptors that have been linked to various brain disorders, including Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. While Integrin beta-3 (ITGB3) is known to participate in multiple cellular processes such as adhesion, migration, and signaling, its specific role in AD remains poorly understood, particularly in astrocytes, the main glial cell type in the brain. In this study, we investigated alterations in ITGB3 gene and protein expression during aging in different brain regions of the 5xFAD mouse model of AD and assessed the interplay between ITGB3 and astrocytes. Primary cultures from adult mouse brains were used to gain further insight into the connection between ITGB3 and amyloid beta (Aβ) in astrocytes. In vivo studies showed a correlation between ITGB3 and the astrocytic marker GFAP in the 5xFAD brains, indicating its association with reactive astrocytes. In vitro studies revealed increased gene expression of ITGB3 upon Aβ treatment. Our findings underscore the potential significance of ITGB3 in astrocyte reactivity in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Mariia Ivanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Alatalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilona Juvonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Navjot Thind
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Clarisse Andrès
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
14
|
Karnik SJ, Margetts TJ, Wang HS, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA, Plotkin LI. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health. Curr Osteoporos Rep 2024; 22:165-176. [PMID: 38285083 PMCID: PMC10912190 DOI: 10.1007/s11914-023-00847-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Gelfo F, Petrosini L, Mandolesi L, Landolfo E, Caruso G, Balsamo F, Bonarota S, Bozzali M, Caltagirone C, Serra L. Land/Water Aerobic Activities: Two Sides of the Same Coin. A Comparative Analysis on the Effects in Cognition of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1181-1197. [PMID: 38552114 DOI: 10.3233/jad-231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Evidence in the literature indicates that aerobic physical activity may have a protective role in aging pathologies. However, it has not been clarified whether different types of aerobic exercise produce different effects. In particular, these potential differences have not been explored in patients with Alzheimer's disease (AD). The present narrative review has the specific aim of evaluating whether land (walking/running) and water (swimming) aerobic activities exert different effects on cognitive functions and neural correlates in AD patients. In particular, the investigation is carried out by comparing the evidence provided from studies on AD animal models and on patients. On the whole, we ascertained that both human and animal studies documented beneficial effects of land and water aerobic exercise on cognition in AD. Also, the modulation of numerous biological processes is documented in association with structural modifications. Remarkably, we found that aerobic activity appears to improve cognition per se, independently from the specific kind of exercise performed. Aerobic exercise promotes brain functioning through the secretion of molecular factors from skeletal muscles and liver. These molecular factors stimulate neuroplasticity, reduce neuroinflammation, and inhibit neurodegenerative processes leading to amyloid-β accumulation. Additionally, aerobic exercise improves mitochondrial activity, reducing oxidative stress and enhancing ATP production. Aerobic activities protect against AD, but implementing exercise protocols for patients is challenging. We suggest that health policies and specialized institutions should direct increasing attention on aerobic activity as lifestyle modifiable factor for successful aging and age-related conditions.
Collapse
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, Naples, Italy
| | | | | | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Turin, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
16
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
18
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
19
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Paul M, Paul JW, Hinwood M, Hood RJ, Martin K, Abdolhoseini M, Johnson SJ, Pollack M, Nilsson M, Walker FR. Clopidogrel Administration Impairs Post-Stroke Learning and Memory Recovery in Mice. Int J Mol Sci 2023; 24:11706. [PMID: 37511466 PMCID: PMC10380815 DOI: 10.3390/ijms241411706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Clopidogrel, which is one of the most prescribed antiplatelet medications in the world, is given to stroke survivors for the prevention of secondary cardiovascular events. Clopidogrel exerts its antiplatelet activity via antagonism of the P2Y12 receptor (P2RY12). Although not widely known or considered during the initial clinical trials for clopidogrel, P2RY12 is also expressed on microglia, which are the brain's immune cells, where the receptor facilitates chemotactic migration toward sites of cellular damage. If microglial P2RY12 is blocked, microglia lose the ability to migrate to damaged sites and carry out essential repair processes. We aimed to investigate whether administering clopidogrel to mice post-stroke was associated with (i) impaired motor skills and cognitive recovery; (ii) physiological changes, such as survival rate and body weight; (iii) changes in the neurovascular unit, including blood vessels, microglia, and neurons; and (iv) changes in immune cells. Photothrombotic stroke (or sham surgery) was induced in adult male mice. From 24 h post-stroke, mice were treated daily for 14 days with either clopidogrel or a control. Cognitive performance (memory and learning) was assessed using a mouse touchscreen platform (paired associated learning task), while motor impairment was assessed using the cylinder task for paw asymmetry. On day 15, the mice were euthanized and their brains were collected for immunohistochemistry analysis. Clopidogrel administration significantly impaired learning and memory recovery, reduced mouse survival rates, and reduced body weight post-stroke. Furthermore, clopidogrel significantly increased vascular leakage, significantly increased the number and appearance of microglia, and significantly reduced the number of T cells within the peri-infarct region post-stroke. These data suggest that clopidogrel hampers cognitive performance post-stroke. This effect is potentially mediated by an increase in vascular permeability post-stroke, providing a pathway for clopidogrel to access the central nervous system, and thus, interfere in repair and recovery processes.
Collapse
Affiliation(s)
- Marina Paul
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jonathan W Paul
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Madeleine Hinwood
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rebecca J Hood
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristy Martin
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Mahmoud Abdolhoseini
- School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Sarah J Johnson
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Pollack
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- LKC School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
21
|
Eo SJ, Leem YH. Effects of exercise intensity on the reactive astrocyte polarization in the medial prefrontal cortex. Phys Act Nutr 2023; 27:19-24. [PMID: 37583068 PMCID: PMC10440185 DOI: 10.20463/pan.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Physical exercise contributes to neuroplasticity by promoting cognitive functions, such as learning and memory. The astrocytic phenotype is closely associated with synaptic plasticity. This study aimed to determine whether astrocyte polarization and synaptic alterations in the medial prefrontal cortex (mPFC) are affected differently by high- and moderate-intensity exercise. METHODS Mice were subjected to moderate-(MIE) and high-intensity treadmill running (HIE). Memory capacity was assessed using the novel object recognition and modified Y-maze tests. For immunohistochemistry, c-Fos-positive cells were counted in the mPFC. Using western blot analysis, astrocyte phenotype markers were quantified in whole-cell lysates, and synaptic molecules were determined in the synaptosomal fraction. RESULTS Exercise lengthened the approach time to novel objects regardless of intensity in the NOR test, whereas MIE only improved spatial memory. Exercise induced c-Fos expression in the anterior cingulate cortex (ACC) and c-Fos-positive cells were higher in MIE than in HIE in the ACC area. In the prelimbic/infralimbic cortex region, the number of c-Fos-positive cells were enhanced in MIE and decreased in HIE mice. The A1 astrocyte marker (C3) was increased in HIE mice, while the A2 astrocyte markers were enhanced in exercised mice, regardless of the intensity. In the synaptosomal fraction, synaptic proteins were elevated by exercise regardless of intensity. CONCLUSION These results suggest that exercise intensity affects neuronal plasticity by modulating the reactive state of astrocytes in the mPFC.
Collapse
Affiliation(s)
- Su-Ju Eo
- Department of Beauty Health Design, Open Cyber University of Korea, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Santiago JA, Potashkin JA. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1185671. [PMID: 37304072 PMCID: PMC10250655 DOI: 10.3389/fnagi.2023.1185671] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Neurodegenerative diseases have reached alarming numbers in the past decade. Unfortunately, clinical trials testing potential therapeutics have proven futile. In the absence of disease-modifying therapies, physical activity has emerged as the single most accessible lifestyle modification with the potential to fight off cognitive decline and neurodegeneration. In this review, we discuss findings from epidemiological, clinical, and molecular studies investigating the potential of lifestyle modifications in promoting brain health. We propose an evidence-based multidomain approach that includes physical activity, diet, cognitive training, and sleep hygiene to treat and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
23
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
24
|
Ayari S, Abellard A, Carayol M, Guedj É, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals' models with mild cognitive impairment or dementia. Exp Gerontol 2023; 175:112141. [PMID: 36898593 DOI: 10.1016/j.exger.2023.112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To investigate which type, frequency, duration, intensity, and volume of chronic exercise might more strongly reduce pro-inflammatory cytokines and enhance anti-inflammatory cytokines in human and animal models with Mild Cognitive Impairment (MCI) or dementia. DESIGN A systematic review. DATA SOURCE English-language search of 13 electronic databases: Web of Science, PubMed/Medline, Sport Discus, Scopus, Cochrane, Psych Net, Springer, ScienceDirect, Pascal & Francis, Sage journals, Pedro, Google Scholar, and Sage. INCLUSION CRITERIA (i) human and animal studies that included exercise, physical activity, or fitness training as an experimental intervention, (ii) studies that addressed MCI, dementia, or AD, (iii) studies that focused on measuring cytokines and/or other inflammatory and/or neuroinflammatory immune markers, (iii) studies that examined inflammatory indicators in blood, CSF (Cerebrospinal Fluid), and brain tissue. RESULTS Of the 1290 human and animal studies found, 38 were included for qualitative analysis, 11 human articles, 27 animal articles, and two articles addressing both human and animal protocols. In the animal model, physical exercise decreased pro-inflammatory markers in 70.8 % of the articles and anti-inflammatory cytokines: IL -4, IL -10, IL-4β, IL -10β, and TGF-β in 26 % of articles. Treadmill running, resistance exercise, and swimming exercise reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. In the human model, 53.9 % of items reduced pro-inflammatory proteins and 23 % increased anti-inflammatory proteins. Cycling exercise, multimodal, and resistance training effectively decreased pro-inflammatory cytokines. CONCLUSION In rodent animal models with AD phenotype, treadmill, swimming, and resistance training remain good interventions that can delay various mechanisms of dementia progression. In the human model, aerobic, multimodal, and resistance training are beneficial in both MCI and AD. Multimodal training of moderate to high intensity multimodal exercise is effective for MCI. Voluntary cycling training, moderate- or high-intensity aerobic exercise is effective in mild AD patients.
Collapse
Affiliation(s)
- Sawsen Ayari
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Alexandre Abellard
- Mediterranean Institute of Information and Communication Sciences, Toulon, France.
| | - Marion Carayol
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Éric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France.
| | - Olivier Gavarry
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| |
Collapse
|
25
|
Wang YY, Zhou YN, Jiang L, Wang S, Zhu L, Zhang SS, Yang H, He Q, Liu L, Xie YH, Liang X, Tang J, Chao FL, Tang Y. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice. Exp Neurol 2023; 363:114371. [PMID: 36871860 DOI: 10.1016/j.expneurol.2023.114371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is closely related to hippocampal synapse loss, which can be alleviated by running exercise. However, further studies are needed to determine whether running exercise reduces synapse loss in the hippocampus in an AD model by regulating microglia. Ten-month-old male wild-type mice and APP/PS1 mice were randomly divided into control and running groups. All mice in the running groups were subjected to voluntary running exercise for four months. After the behavioral tests, immunohistochemistry, stereological methods, immunofluorescence staining, 3D reconstruction, western blotting and RNA-Seq were performed. Running exercise improved the spatial learning and memory abilities of APP/PS1 mice and increased the total number of dendritic spines, the levels of the PSD-95 and Synapsin Ia/b proteins, the colocalization of PSD-95 and neuronal dendrites (MAP-2) and the number of PSD-95-contacting astrocytes (GFAP) in the hippocampi of APP/PS1 mice. Moreover, running exercise reduced the relative expression of CD68 and Iba-1, the number of Iba-1+ microglia and the colocalization of PSD-95 and Iba-1+ microglia in the hippocampi of APP/PS1 mice. The RNA-Seq results showed that some differentially expressed genes (DEGs) related to the complement system (Cd59b, Serping1, Cfh, A2m, and Trem2) were upregulated in the hippocampi of APP/PS1 mice, while running exercise downregulated the C3 gene. At the protein level, running exercise also reduced the expression of advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), C1q and C3 in the hippocampus and AGEs and RAGE in hippocampal microglia in APP/PS1 mice. Furthermore, the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes were upregulated in the hippocampi of APP/PS1 mice but downregulated after running, and these genes were associated with the C3 and RAGE genes according to protein-protein interaction (PPI) analysis. These findings indicate that long-term voluntary exercise might protect hippocampal synapses and affect the function and activation of microglia, the AGE/RAGE signaling pathway in microglia and the C1q/C3 complement system in the hippocampus in APP/PS1 mice, and these effects may be related to the Col6a3, Scn5a, Cxcl5, Tdg and Clec4n genes. The current results provide an important basis for identifying targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Hao Yang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Qi He
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Han Xie
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical College, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
26
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
27
|
Physical exercise mediates a cortical FMRP-mTOR pathway to improve resilience against chronic stress in adolescent mice. Transl Psychiatry 2023; 13:16. [PMID: 36658152 PMCID: PMC9852236 DOI: 10.1038/s41398-023-02311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Aerobic exercise effectively relieves anxiety disorders via modulating neurogenesis and neural activity. The molecular mechanism of exercise-mediated anxiolysis, however, remains incomplete. On a chronic restrain stress (CRS) model in adolescent mice, we showed that 14-day treadmill exercise profoundly maintained normal neural activity and axonal myelination in the medial prefrontal cortex (mPFC), in association with the prevention of anxiety-like behaviors. Further interrogation of molecular mechanisms revealed the activation of the mechanistic target of the rapamycin (mTOR) pathway within mPFC under exercise training. At the upstream of mTOR, exercise-mediated brain RNA methylation inhibited the expression of Fragile X mental retardation protein (FMRP) to activate the mTOR pathway. In summary, treadmill exercise modulates an FMRP-mTOR pathway to maintain cortical neural activity and axonal myelination, contributing to improved stress resilience. These results extended our understanding of the molecular substrate of exercise-mediated anxiolytic effect during adolescent period.
Collapse
|
28
|
Guo L, Yang X, Zhang Y, Xu X, Li Y. Effect of exercise on cognitive function and synaptic plasticity in Alzheimer's disease models: A systematic review and meta-analysis. Front Aging Neurosci 2023; 14:1077732. [PMID: 36704501 PMCID: PMC9872519 DOI: 10.3389/fnagi.2022.1077732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Cognitive decline is a central manifestation of Alzheimer's disease (AD), and its process is inseparable from changes in synaptic plasticity. The aim of this review was to summarize and evaluate the effectiveness of exercise on cognitive function and synaptic plasticity in AD animal models. Materials and methods Eligible studies were searched from PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Library from April to May 2022. The risk of bias was evaluated by Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). The Morris water maze (MWM) test and synaptic plasticity were considered outcome measures. Data were analyzed using random-effects meta-analyses using the software Stata. Heterogeneity was examined by using I2 test. Sensitivity analysis and publication bias were also assessed. Results A total of 20 randomized controlled studies were eligible for study inclusion. Compared with controls, exercise decreased escape latency (SMD = -0.86, 95% CI: -1.21 to -0.50, P < 0.001), increased platform crossover numbers (SMD = 1.34, 95% CI: 0.57-2.11, P = 0.001) and time in the target quadrant (SMD = 1.65, 95% CI: 0.95-2.36, P < 0.001) and the expression of PSD95 (SMD = 0.73, 95% CI: 0.25-1.21, P = 0.003) in AD animals. The results of the subgroup analysis showed that exercise before AD had a greater effect on escape latency (SMD = -0.88, 95% CI: -1.25 to -0.52, P < 0.001), platform crossover numbers (SMD = 1.71, 95% CI: 1.23-2.18, P < 0.001), time in the target quadrant (SMD = 2.03, 95% CI: 1.19-2.87, P < 0.001) and the expression of PSD95 (SMD = 0.94, 95% CI: 0.19-1.69, P = 0.014) than exercise after AD. The results of the subgroup analysis also showed that treadmill running might be an appropriate exercise type. Conclusion Our findings suggested that exercise had a potential effect on improving cognitive function and synaptic plasticity. It can play a better neuroprotective role before AD. Systematic review registration PROSPERO, identifier: CRD42022328438.
Collapse
Affiliation(s)
- Linlin Guo
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Yang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Xu
- College of Nursing, Hebei Medical University, Shijiazhuang, China,Postdoctoral Research Station in Basic Medicine, Hebei Medical University, Shijiazhuang, China,*Correspondence: Xinyi Xu ✉
| | - Yan Li
- College of Nursing, Hebei Medical University, Shijiazhuang, China,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China,*Correspondence: Yan Li ✉
| |
Collapse
|
29
|
Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, Tian N, Wang Y, Han X, Qiu C, Hou T, Du Y. Exosomal miR-532-5p induced by long-term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2022; 22:e13748. [PMID: 36494892 PMCID: PMC9835579 DOI: 10.1111/acel.13748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
The breakdown of the blood-brain barrier, which develops early in Alzheimer's disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood-brain barrier. Here, we demonstrate that long-term exercise promotes the clearance of brain amyloid-β by improving the function of the blood-brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO-1, and claudin-5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR-532-5p. Administration or transfection of miR-532-5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood-brain barrier function. Exosomal miR-532-5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR-532-5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood-brain barrier-associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood-brain barrier function in AD.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Nan Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Yuanming Peng
- Department of Clinical LaboratoryThird Hospital of JinanShandongChina
| | - Cuicui Liu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Min Zhu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Na Tian
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Xiaolei Han
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversitySolnaSweden
| | - Tingting Hou
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina,Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina,Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongChina
| |
Collapse
|
30
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
31
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
32
|
Companys-Alemany J, Turcu AL, Vázquez S, Pallàs M, Griñán-Ferré C. Glial cell reactivity and oxidative stress prevention in Alzheimer's disease mice model by an optimized NMDA receptor antagonist. Sci Rep 2022; 12:17908. [PMID: 36284170 PMCID: PMC9596444 DOI: 10.1038/s41598-022-22963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/21/2022] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer's disease pathology, several neuronal processes are dysregulated by excitotoxicity including neuroinflammation and oxidative stress (OS). New therapeutic agents capable of modulating such processes are needed to foster neuroprotection. Here, the effect of an optimised NMDA receptor antagonist, UB-ALT-EV and memantine, as a gold standard, have been evaluated in 5XFAD mice. Following treatment with UB-ALT-EV, nor memantine, changes in the calcineurin (CaN)/NFAT pathway were detected. UB-ALT-EV increased neurotropic factors (Bdnf, Vgf and Ngf) gene expression. Treatments reduced astrocytic and microglial reactivity as revealed by glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1) quantification. Interestingly, only UB-ALT-EV was able to reduce gene expression of Trem2, a marker of microglial activation and NF-κB. Pro-inflammatory cytokines Il-1β, Ifn-γ, Ccl2 and Ccl3 were down-regulated in UB-ALT-EV-treated mice but not in memantine-treated mice. Interestingly, the anti-inflammatory markers of the M2-migroglial phenotype, chitinase-like 3 (Ym1) and Arginase-1 (Arg1), were up-regulated after treatment with UB-ALT-EV. Since iNOS gene expression decreased after UB-ALT-EV treatment, a qPCR array containing 84 OS-related genes was performed. We found changes in Il-19, Il-22, Gpx6, Ncf1, Aox1 and Vim gene expression after UB-ALT-EV. Hence, our results reveal a robust effect on neuroinflammation and OS processes after UB-ALT-EV treatment, surpassing the memantine effect in 5XFAD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
33
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
35
|
Yu WS, Aquili L, Wong KH, Lo ACY, Chan LLH, Chan YS, Lim LW. Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Ann N Y Acad Sci 2022; 1515:249-265. [PMID: 35751874 DOI: 10.1111/nyas.14850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.
Collapse
Affiliation(s)
- Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
37
|
Ribarič S. Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23063245. [PMID: 35328666 PMCID: PMC8952567 DOI: 10.3390/ijms23063245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
This narrative review summarises the evidence for considering physical exercise (PE) as a non-pharmacological intervention for delaying cognitive decline in patients with Alzheimer’s disease (AD) not only by improving cardiovascular fitness but also by attenuating neuroinflammation. Ageing is the most important risk factor for AD. A hallmark of the ageing process is a systemic low-grade chronic inflammation that also contributes to neuroinflammation. Neuroinflammation is associated with AD, Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders. Pharmacological treatment of AD is currently limited to mitigating the symptoms and attenuating progression of the disease. AD animal model studies and human studies on patients with a clinical diagnosis of different stages of AD have concluded that PE attenuates cognitive decline not only by improving cardiovascular fitness but possibly also by attenuating neuroinflammation. Therefore, low-grade chronic inflammation and neuroinflammation should be considered potential modifiable risk factors for AD that can be attenuated by PE. This opens the possibility for personalised attenuation of neuroinflammation that could also have important health benefits for patients with other inflammation associated brain disorders (i.e., Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders). In summary, life-long, regular, structured PE should be considered as a supplemental intervention for attenuating the progression of AD in human. Further studies in human are necessary to develop optimal, personalised protocols, adapted to the progression of AD and the individual’s mental and physical limitations, to take full advantage of the beneficial effects of PE that include improved cardiovascular fitness, attenuated systemic inflammation and neuroinflammation, stimulated brain Aβ peptides brain catabolism and brain clearance.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Connolly MG, Bruce SR, Kohman RA. Exercise duration differentially effects age-related neuroinflammation and hippocampal neurogenesis. Neuroscience 2022; 490:275-286. [PMID: 35331843 PMCID: PMC9038708 DOI: 10.1016/j.neuroscience.2022.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The physiological effects of exercise vary as a function of frequency and length. However, research on the duration-dependent effects of exercise has focused primarily on young adults and less is known about the influence of exercise duration in the aged. The current study compared the effects of short-term and long-term running wheel access on hippocampal neurogenesis and neuroimmune markers in aged (19-23 months) male C57BL/6J mice. Aged mice were given 24-hour access to a running wheel for 14 days (short-term) or 51 days (long-term). Groups of non-running aged and young (5 months) mice served as comparison groups to detect age-related differences and effects of exercise. Long-term, but not short-term, exercise increased hippocampal neurogenesis as assessed by number of doublecortin (DCX) positive cells in the granular cell layer. Assessment of cytokines, receptors, and glial-activation markers showed the expected age-related increase compared to young controls. In the aged, exercise as a function of duration regulated select aspects of the neuroimmune profile. For instance, hippocampal expression of interleukin (IL)-10 was increased only following long-term exercise. While in contrast brain levels of IL-6 were reduced by both short- and long-term exercise. Additional findings showed that exercise does not modulate all aspects of age-related neuroinflammation and/or may have differential effects in hippocampal compared to brain samples. Overall, the data indicate that increasing exercise duration produces more robust effects on immune modulation and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Meghan G Connolly
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Champaign, IL, USA.
| | - Spencer R Bruce
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
39
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
40
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
41
|
Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun 2021; 98:13-27. [PMID: 34391817 DOI: 10.1016/j.bbi.2021.08.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1β), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.
Collapse
|
42
|
Mirzaei N, Davis N, Chau TW, Sastre M. Astrocyte Reactivity in Alzheimer's Disease: Therapeutic Opportunities to Promote Repair. Curr Alzheimer Res 2021; 19:1-15. [PMID: 34719372 DOI: 10.2174/1567205018666211029164106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer's disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from "normal" healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048. United States
| | - Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Tsz Wing Chau
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammer-smith Hospital, Du Cane Road, LondonW12 0NN. United Kingdom
| |
Collapse
|
43
|
Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y. Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 2021; 12:1644-1657. [PMID: 34631212 PMCID: PMC8460294 DOI: 10.14336/ad.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Physical exercise is an effective therapy for neurorehabilitation. Exercise has been shown to induce remodeling and proliferation of astrocyte. Astrocytes potentially affect the recruitment and function of neurons; they could intensify responses of neurons and bring more neurons for the process of neuroplasticity. Interactions between astrocytes, microglia and neurons modulate neuroplasticity and, subsequently, neural circuit function. These cellular interactions promote the number and function of synapses, neurogenesis, and cerebrovascular remodeling. However, the roles and crosstalk of astrocytes with neurons and microglia and any subsequent neuroplastic effects have not been studied extensively in exercise-induced settings. This article discusses the impact of physical exercise on astrocyte proliferation and highlights the interplay between astrocytes, microglia and neurons. The crosstalk between these cells may enhance neuroplasticity, leading to the neuroplastic effects of exercise.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yazeed Haddad
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
44
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
45
|
Maugeri G, D’Agata V, Magrì B, Roggio F, Castorina A, Ravalli S, Di Rosa M, Musumeci G. Neuroprotective Effects of Physical Activity via the Adaptation of Astrocytes. Cells 2021; 10:cells10061542. [PMID: 34207393 PMCID: PMC8234474 DOI: 10.3390/cells10061542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia;
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95100 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +39-095-378-2043
| |
Collapse
|
46
|
GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway. Biochem Pharmacol 2021; 188:114578. [PMID: 33895160 DOI: 10.1016/j.bcp.2021.114578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) was shown to have neuroprotective effects in Alzheimer's disease (AD). However, the underlying mechanism remains elusive. Astrocytic mitochondrial abnormalities have been revealed to constitute important pathologies. In the present study, we investigated the role of astrocytic mitochondria in the neuroprotective effect of GLP-1 in AD. To this end, 6-month-old 5 × FAD mice were subcutaneously treated with liraglutide, a GLP-1 analogue (25 nmol/kg/qd) for 8 weeks. Liraglutide ameliorated mitochondrial dysfunction and prevented neuronal loss with activation of the cyclic adenosine 3',5'-monophosphate (cAMP)/phosphorylate protein kinase A (PKA) pathway in the brain of 5 × FAD mice. Next, we exposed astrocytes to β-amyloid (Aβ) in vitro and treated them with GLP-1. By activating the cAMP/PKA pathway, GLP-1 increased the phosphorylation of DRP-1 at the s637 site and mitigated mitochondrial fragmentation in Aβ-treated astrocytes. GLP-1 further improved the Aβ-induced energy failure, mitochondrial reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (MMP) collapse, and cell toxicity in astrocytes. Moreover, GLP-1 also promoted the neuronal supportive ability of Aβ-treated astrocytes via the cAMP/PKA pathway. This study revealed a new mechanism behind the neuroprotective effect of GLP-1 in AD.
Collapse
|
47
|
Sagud M, Tudor L, Pivac N. Personalized treatment interventions: nonpharmacological and natural treatment strategies in Alzheimer's disease. Expert Rev Neurother 2021; 21:571-589. [PMID: 33749488 DOI: 10.1080/14737175.2021.1906223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Alzheimer's disease (AD) is a slow, irreversible, progressive, complex, and fatal neurodegenerative disorder. Available pharmacological treatment, known for almost two decades, does not cure the disease, but only alleviates the symptoms, with various efficacy and different side effects. Therefore, there is an unmet need to find other person-centered or personalized approaches to treat AD.Areas covered: This article describes the application of precision medicine-like approaches utilizing nonpharmacological treatment strategies and the use of natural products in personalized care for patients with AD.Expert opinion: Due to the heterogeneity of disease symptoms, somatic conditions, and patient preferences, there is definitely no "one size fits all" intervention. Therefore, individualized treatment choice is based on dementia stage, medical and psychiatric comorbidity, leading symptoms, patient preferences, and remaining capacity of the patient. In the absence of disease-modifying agents, a patient-centered, multidisciplinary team approach appears to be the best option to alleviate the heavy symptomatic burden in this unfortunate population. Hence, appropriate interventions can be offered along the AD continuum, while a better understanding of personal characteristics might help in establishing optimal individualized treatment, as well as its duration and intensity, to deliver interventions in the most effective ways.
Collapse
Affiliation(s)
- Marina Sagud
- Department of Psychiatry, Clinical Hospital Centre, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
48
|
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from unregulated exposure to the blood and its contents. The BBB also controls the blood-to-brain and brain-to-blood permeation of many substances, resulting in nourishment of the CNS, its homeostatic regulation and communication between the CNS and peripheral tissues. The cells forming the BBB communicate with cells of the brain and in the periphery. This highly regulated interface changes with healthy aging. Here, we review those changes, starting with morphology and disruption. Transporter changes include those for amyloid beta peptide, glucose and drugs. Brain fluid dynamics, pericyte health and basement membrane and glycocalyx compositions are all altered with healthy aging. Carrying the ApoE4 allele leads to an acceleration of most of the BBB's age-related changes. We discuss how alterations in the BBB that occur with healthy aging reflect adaptation to the postreproductive phase of life and may affect vulnerability to age-associated diseases.
Collapse
|