1
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Falvey A, Palandira SP, Chavan SS, Brines M, Dantzer R, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus in male mice can regulate inflammation without affecting the heart rate. Brain Behav Immun 2024; 120:630-639. [PMID: 38670240 DOI: 10.1016/j.bbi.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 μA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS Either left or right eDMNS at 500 μA and 250 μA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Robert Dantzer
- University of Texas MD Anderson Cancer Center, Department of Symptom Research, Houston, TX 77030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
3
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
4
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
6
|
Thompson DA, Tsaava T, Rishi A, George SJ, Hepler TD, Hide D, Pavlov VA, Brines M, Chavan SS, Tracey KJ. Galantamine ameliorates experimental pancreatitis. Mol Med 2023; 29:149. [PMID: 37907853 PMCID: PMC10617083 DOI: 10.1186/s10020-023-00746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute pancreatitis is a common and serious inflammatory condition currently lacking disease modifying therapy. The cholinergic anti-inflammatory pathway (CAP) is a potent protective anti-inflammatory response activated by vagus nerve-dependent α7 nicotinic acetylcholine receptor (α7nAChR) signaling using splenic CD4+ T cells as an intermediate. Activating the CAP ameliorates experimental acute pancreatitis. Galantamine is an acetylcholinesterase inhibitor (AChEI) which amplifies the CAP via modulation of central muscarinic ACh receptors (mAChRs). However, as mAChRs also activate pancreatitis, it is currently unknown whether galantamine would be beneficial in acute pancreatitis. METHODS The effect of galantamine (1-6 mg/kg-body weight) on caerulein-induced acute pancreatitis was evaluated in mice. Two hours following 6 hourly doses of caerulein (50 µg/kg-body weight), organ and serum analyses were performed with accompanying pancreatic histology. Experiments utilizing vagotomy, gene knock out (KO) technology and the use of nAChR antagonists were also performed. RESULTS Galantamine attenuated pancreatic histologic injury which was mirrored by a reduction in serum amylase and pancreatic inflammatory cytokines and an increase the anti-inflammatory cytokine IL-10 in the serum. These beneficial effects were not altered by bilateral subdiaphragmatic vagotomy, KO of either choline acetyltransferase+ T cells or α7nAChR, or administration of the nAChR ganglionic blocker mecamylamine or the more selective α7nAChR antagonist methyllycaconitine. CONCLUSION Galantamine improves acute pancreatitis via a mechanism which does not involve previously established physiological and molecular components of the CAP. As galantamine is an approved drug in widespread clinical use with an excellent safety record, our findings are of interest for further evaluating the potential benefits of this drug in patients with acute pancreatitis.
Collapse
Affiliation(s)
- Dane A Thompson
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
- Department of Surgery, Northshore University Hospital, Northwell Health, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sam J George
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Daniel Hide
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Valentin A Pavlov
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| | - Kevin J Tracey
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| |
Collapse
|
7
|
Pakhomov AG, Gudvangen E, Mangalanathan U, Kondratiev O, Redondo L, Semenov I. Next generation CANCAN focusing for remote stimulation by nanosecond electric pulses. Bioelectrochemistry 2023; 152:108437. [PMID: 37030093 PMCID: PMC10247516 DOI: 10.1016/j.bioelechem.2023.108437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Focusing electric pulse effects away from electrodes is a challenge because the electric field weakens with distance. Previously we introduced a remote focusing method based on bipolar cancellation, a phenomenon of low efficiency of bipolar nanosecond electric pulses (nsEP). Superpositioning two bipolar nsEP into a unipolar pulse canceled bipolar cancellation ("CANCAN" effect), enhancing bioeffects at a distance despite the electric field weakening. Here, we introduce the next generation (NG) CANCAN focusing with unipolar nsEP packets designed to produce bipolar waveforms near electrodes (suppressing electroporation) but not at the remote target. NG-CANCAN was tested in CHO cell monolayers using a quadrupole electrode array and labeling electroporated cells with YO-PRO-1 dye. We routinely achieved 1.5-2 times stronger electroporation in the center of the quadrupole than near electrodes, despite a 3-4-fold field attenuation. With the array lifted 1-2 mm above the monolayer (imitating a 3D treatment), the remote effect was enhanced up to 6-fold. We analyzed the role of nsEP number, amplitude, rotation, and inter-pulse delay, and showed how remote focusing is enhanced when re-created bipolar waveforms exhibit stronger cancellation. Advantages of NG-CANCAN include the exceptional versatility of designing pulse packets and easy remote focusing using an off-the-shelf 4-channel nsEP generator.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | | | - Luis Redondo
- Pulsed Power Advanced Applications Group, Lisbon Engineering Superior Institute, GIAAPP/ISEL, Lisbon, Portugal
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
8
|
Falvey A, Palandira SP, Chavan SS, Brines M, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus regulates inflammation without affecting the heart rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541191. [PMID: 37292846 PMCID: PMC10245723 DOI: 10.1101/2023.05.17.541191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications, but the anti-inflammatory efficacy of electrical DMN stimulation (eDMNS) was not previously investigated. Here, we examined the effects of eDMNS on heart rate (HR) and cytokine levels in murine endotoxemia as well as the cecal ligation and puncture (CLP) model of sepsis. Methods Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (50, 250 or 500 μA and 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24h after CLP. CLP survival was monitored for 14 days. Results Either left or right eDMNS at 250 μA and 500 μA decreased HR, compared with pre- and post-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and were not associated with serum corticosterone alterations. Right side eDMNS suppressed serum TNF levels but had no effects on serum IL-10 and on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum TNF and IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. Conclusions For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation and these effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P. Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S. Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A. Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
9
|
Katayama PL, Leirão IP, Kanashiro A, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body: A novel key player in neuroimmune interactions. Front Immunol 2022; 13:1033774. [PMID: 36389846 PMCID: PMC9644854 DOI: 10.3389/fimmu.2022.1033774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.
Collapse
Affiliation(s)
- Pedro L. Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Isabela P. Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Mota CMD, Madden CJ. Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am J Physiol Regul Integr Comp Physiol 2022; 323:R375-R384. [PMID: 35993560 PMCID: PMC9485006 DOI: 10.1152/ajpregu.00151.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Immune system responses are a vital defense mechanism against pathogens. Inflammatory mediators finely regulate complex inflammatory responses from initiation to resolution. However, in certain conditions, the inflammation is initiated and amplified, but not resolved. Understanding the biological mechanisms underlying the regulation of the immune response is critical for developing therapeutic alternatives, including pharmaceuticals and bioelectronic tools. The spleen is an important immune effector organ since it orchestrates innate and adaptive immune responses such as pathogen clearance, cytokine production, and differentiation of cells, therefore playing a modulatory role that balances pro- and anti-inflammatory responses. However, modulation of splenic immune activity is a largely unexplored potential therapeutic tool that could be used for the treatment of inflammatory and life-threatening conditions. This review discusses some of the mechanisms controlling neuroimmune communication and the brain-spleen axis.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
11
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
12
|
Katayama PL, Leirão IP, Kanashiro A, Luiz JPM, Cunha FQ, Navegantes LCC, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain Behav Immun 2022; 102:370-386. [PMID: 35339628 DOI: 10.1016/j.bbi.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P M Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
13
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
14
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
15
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. J Neuroinflammation 2021; 18:191. [PMID: 34465362 PMCID: PMC8408927 DOI: 10.1186/s12974-021-02241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Department of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Rm 209 Martin Research Building, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Arijit Roy
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
17
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|