1
|
Song R, Bhandari V. Epigenetics and bronchopulmonary dysplasia: unraveling the complex interplay and potential therapeutic implications. Pediatr Res 2024; 96:567-568. [PMID: 38755411 PMCID: PMC11499267 DOI: 10.1038/s41390-024-03268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Lyu T, Qiu X, Wang Y, Zhang L, Dai Y, Wang X, Zhao S, Xiang M, Cui L, Cheng S, Liu Y, Gu H, Jiang Y, Meng X, Wang Y, Zhao X, Wang X, Li Q, Wang M, Jiang Y, Xu Z, Huang X, Li H, Wang Y, Li Z. DNMT3A dysfunction promotes neuroinflammation and exacerbates acute ischemic stroke. MedComm (Beijing) 2024; 5:e652. [PMID: 39006763 PMCID: PMC11246610 DOI: 10.1002/mco2.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Somatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) are risk factors for stroke. The impact of DNMT3A, the most mutated gene in CHIP, on clinical functional outcomes of acute ischemic stroke (AIS) remains unclear. In a well-characterized cohort of 8524 ischemic stroke patients, we demonstrated that DNMT3A-driven CHIP was significantly associated with neurological disability in these patients. With a stroke mouse model of transient middle cerebral artery occlusion (tMCAO), we demonstrated that DNMT3A protein levels in the brain penumbra increased. The DNMT3A inhibitor RG108 administration amplified neutrophil proliferation in the blood, promoted neutrophil infiltration into the brain penumbra, and exaggerated proinflammatory activation in tMCAO male mice. DNMT3A inhibition also significantly increased infarct volume and worsened neurobehavioral function in tMCAO male mice. In conclusion, DNMT3A somatic mutations are associated with worsened neurological disability in some patients with AIS, potentially through increased neutrophil proliferation and infiltration in the ischemic brain region. These findings suggest a possible mechanism for proinflammatory activation and tissue damage in the affected brain tissue, highlighting the need for further research in this area.
Collapse
|
3
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Zhang G, Wu S, Xia G. MiR-326 sponges TET2 triggering imbalance of Th17/Treg differentiation to exacerbate pyroptosis of hepatocytes in concanavalin A-induced autoimmune hepatitis. Ann Hepatol 2024; 29:101183. [PMID: 38043702 DOI: 10.1016/j.aohep.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION AND OBJECTIVES MicroRNA-326 is abnormally expressed in autoimmune diseases, but its roles in autoimmune hepatitis (AIH) are unknown. In this study, we aimed to investigate the effect of miR-326 on AIH and the underlying mechanism. MATERIALS AND METHODS Concanavalin A was administrated to induce AIH in mice and the expression levels of miR-326 and TET2 was evaluated by qRT-PCR and western blot, respectively. The percentages of Th17 and Treg cells were evaluated by flow cytometry and their marker proteins were determined by western blot and ELISA. The mitochondrial membrane potential (MMP) and ROS level were tested with the JC-1 kit and DCFH-DA assay. The binding relationships between miR-326 and TET2 were verified by dual-luciferase reporter assay. The liver tissues were stained by the HE staining. In vitro, AML12 cells were cocultured with mouse CD4+T cells. The expression levels of pyroptosis-related proteins were assessed by western blot. RESULTS Concanavalin A triggered AIH and enhanced the expression level of miR-326 in mice. It increased both Th17/Treg ratio and the levels of their marker proteins. The expression of TET2 was decreased in AIH mice. Knockdown of miR-326 could decrease the levels of pyroptosis-related proteins, the ROS level and increase MMP. In mouse CD4+T cells, miR-326 sponged TET2 to release IL-17A. Coculture of AML12 cells with isolated CD4+T cells from miR-326 knockdown AIH mice could relieve pyroptosis. CONCLUSIONS Knockdown of miR-326 exerted anti-pyroptosis effects via suppressing TET2 and downstream NF-κB signaling to dampen AIH. We highlighted a therapeutic target in AIH.
Collapse
Affiliation(s)
- Genglin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; Key Lab for Biotech-Drugs of National Health Commission; Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan city, Shandong province 250062, PR China
| | - Sensen Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan city, Shandong province 250012, PR China
| | - Guangtao Xia
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), No. 324, Jingwuweiqi Road, Jinan city, Shandong province 250021, PR China.
| |
Collapse
|
5
|
Geng J, Feng J, Ke F, Fang F, Jing X, Tang J, Fang C, Zhang B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging (Albany NY) 2024; 16:2828-2847. [PMID: 38319722 PMCID: PMC10911356 DOI: 10.18632/aging.205513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNA-124 (miR-124) is implicated in various neurological diseases; however, its significance in hypoxic-ischaemic brain damage (HIBD) remains unclear. This study aimed to elucidate the underlying pathophysiological mechanisms of miR-124 in HIBD. In our study performed on oxygen-glucose deprivation followed by reperfusion (OGD)/R-induced primary cortical neurons, a substantial reduction in miR-124 was observed. Furthermore, the upregulation of miR-124 significantly mitigated oxidative stress, apoptosis, and mitochondrial impairment. We demonstrated that miR-124 interacts with the signal transducer and activator of transcription 3 (STAT3) to exert its biological function using the dual-luciferase reporter gene assay. As the duration of OGD increased, miR-124 exhibited a negative correlation with STAT3. STAT3 overexpression notably attenuated the protective effects of miR-124 mimics, while knockdown of STAT3 reversed the adverse effects of the miR-124 inhibitor. Subsequently, we conducted an HIBD model in rats. In vivo experiments, miR-124 overexpression attenuated cerebral infarction volume, cerebral edema, apoptosis, oxidative stress, and improved neurological function recovery in HIBD rats. In summary, the neuroprotective effects of the miR-124/STAT3 axis were confirmed in the HIBD model. MiR-124 may serve as a potential biomarker with significant therapeutic implications for HIBD.
Collapse
Affiliation(s)
- Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Jiaxin Tang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| | - Binghong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan 430062, China
| |
Collapse
|
6
|
Mainali S, Nepal G, Webb A, Fadda P, Mirebrahimi D, Nana-Sinkam P, Worrall B, Woo D, Johnson N, Hamed M. MicroRNA Expression Profile in Acute Ischemic Stroke. RESEARCH SQUARE 2024:rs.3.rs-3754883. [PMID: 38260305 PMCID: PMC10802726 DOI: 10.21203/rs.3.rs-3754883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Introduction Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors such as inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels. In this context, microRNAs (miRNAs) have emerged as a promising biomarker, demonstrating potential as biomarkers across various diseases, including cancer, cardiovascular conditions, and neurological disorders. These circulating miRNAs embody a wide spectrum of pathophysiological processes, encompassing cell death, inflammation, angiogenesis, neuroprotection, brain plasticity, and blood-brain barrier integrity. This pilot study explores the utility of circulating exosome-enriched extracellular vesicle (EV) miRNAs as potential biomarkers for anterior circulation LVO (acLVO) stroke. Methods In our longitudinal prospective cohort study, we collected data from acute large vessel occlusion (acLVO) stroke patients at four critical time intervals post-symptom onset: 0-6 hours, 6-12 hours, 12-24 hours, and 5-7 days. For comparative analysis, healthy individuals were included as control subjects. In this study, extracellular vesicles (EVs) were isolated from the plasma of participants, and the miRNAs within these EVs were profiled utilizing the NanoString nCounter system. Complementing this, a scoping review was conducted to examine the roles of specific miRNAs such as miR-140-5p, miR-210-3p, and miR-7-5p in acute ischemic stroke (AIS). This review involved a targeted PubMed search to assess their influence on crucial pathophysiological pathways in AIS, and their potential applications in diagnosis, treatment, and prognosis. The review also included an assessment of additional miRNAs linked to stroke. Results Within the first 6 hours of symptom onset, three specific miRNAs (miR-7-5p, miR-140-5p, and miR-210-3p) exhibited significant differential expression compared to other time points and healthy controls. These miRNAs have previously been associated with neuroprotection, cellular stress responses, and tissue damage, suggesting their potential as early markers of acute ischemic stroke. Conclusion This study highlights the potential of circulating miRNAs as blood-based biomarkers for hyperacute acLVO ischemic stroke. However, further validation in a larger, risk-matched cohort is required. Additionally, investigations are needed to assess the prognostic relevance of these miRNAs by linking their expression profiles with radiological and functional outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel Woo
- University of Cincinnati College of Medicine
| | | | | |
Collapse
|
7
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Cheng G, Wu J, Ji M, Hu W, Wu C, Jiang J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer 2023; 23:825. [PMID: 37667220 PMCID: PMC10478367 DOI: 10.1186/s12885-023-11343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui Cheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Jun Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Mei Ji
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, 185 Juqian Street, Changzhou, 213003, P.R. China.
| |
Collapse
|
9
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Hu XQ, Song R, Dasgupta C, Blood AB, Zhang L. TET2 confers a mechanistic link of microRNA-210 and mtROS in hypoxia-suppressed spontaneous transient outward currents in uterine arteries of pregnant sheep. J Physiol 2023; 601:1501-1514. [PMID: 36856073 PMCID: PMC10106393 DOI: 10.1113/jp284336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
11
|
Kremsky I, Ma Q, Li B, Dasgupta C, Chen X, Ali S, Angeloni S, Wang C, Zhang L. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci 2023; 13:58. [PMID: 36932456 PMCID: PMC10022003 DOI: 10.1186/s13578-023-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Samir Ali
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shawnee Angeloni
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
12
|
Zhang M, Zhou H, He R, Yang J, Zou Y, Deng Y, Xie H, Yan Z. Up-regulating microRNA-214-3p relieves hypoxic-ischemic brain damage through inhibiting TXNIP expression. Mol Cell Biochem 2023; 478:597-608. [PMID: 35980563 DOI: 10.1007/s11010-022-04530-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
A list of microRNAs (miRs) has been referred to involve in the development of hypoxic-ischemic brain damage (HIBD). Based on that, we probed the concrete role of miR-214-3p regulating thioredoxin-interacting protein (TXNIP) in the illness. A neonatal HIBD mouse model was established using the Rice-Vannucci method, followed by measurements of miR-214-3p and TXNIP levels in brain tissues. After modeling, mice were given brain injection of the compounds that could alter miR-214-3p and TXNIP expression. Afterward, neurological function, neuronal inflammation, neuronal apoptosis, neuron morphology, and the number of Nissl body were assessed in HIBD mice. The binding of miR-214-3p to TXNIP was analyzed. Lower miR-214-3p and higher TXNIP were analyzed in brain tissues of mice with HIBD. Up-regulating miR-214-3p or depleting TXNIP improved neurological function, reduced neuronal inflammation and neuronal apoptosis, attenuated morphological damage of neurons, and increased the number of Nissl bodies in mice with HIBD. TXNIP was targeted by miR-214-3p and overexpressing TXNIP reversed the therapeutic effect of miR-214-3p on HIBD mice. It is noted that promotion of miR-214-3p relieves HIBD in mice through inhibiting TXNIP expression.
Collapse
Affiliation(s)
- Miaoyu Zhang
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Haiyang Zhou
- Department of Neurology, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Juan Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China
| | - Yang Zou
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yiting Deng
- Department of Neurology, The Second Clinical College of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| | - Zhenxing Yan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue Middle, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
13
|
Peeples ES. MicroRNA therapeutic targets in neonatal hypoxic-ischemic brain injury: a narrative review. Pediatr Res 2023; 93:780-788. [PMID: 35854090 DOI: 10.1038/s41390-022-02196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) is a devastating injury resulting from impaired blood flow and oxygen delivery to the brain at or around the time of birth. Despite the use of therapeutic hypothermia, more than one in four survivors suffer from major developmental disabilities-an indication of the critical need for more effective therapies. MicroRNAs (miRNA) have the potential to act as biomarkers and/or therapeutic targets in neonatal HIBI as a step toward improving outcomes in this high-risk population. This review summarizes the current literature around the use of cord blood and postnatal circulating blood miRNA expression for diagnosis or prognosis in human infants with hypoxic-ischemic encephalopathy, as well as animal studies assessing endogenous brain miRNA expression and potential for therapeutic targeting of miRNA expression for neuroprotection. Ultimately, the lack of knowledge regarding brain specificity of circulating miRNAs and the temporal variability in expression currently limit the use of miRNAs as biomarkers. However, given their broad effect profile, ease of administration, and small size allowing for effective blood-brain barrier crossing, miRNAs represent promising therapeutic targets for improving brain injury and reducing developmental impairments in neonates after HIBI. IMPACT: The high morbidity and mortality of neonatal hypoxic-ischemic brain injury (HIBI) despite current therapies demonstrates a need for developing more sensitive biomarkers and superior therapeutic options. MicroRNAs have been evaluated both as biomarkers and therapeutic options after neonatal HIBI. The limited knowledge regarding brain specificity of circulating microRNAs and temporal variability in expression currently limit the use of microRNAs as biomarkers. Future studies comparing the neuroprotective effects of modulating microRNA expression must consider temporal changes in the endogenous expression to determine appropriate timing of therapy, while also optimizing techniques for delivery.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
- Children's Hospital & Medical Center, Omaha, NE, USA.
- Child Health Research Institute, Omaha, NE, USA.
| |
Collapse
|
14
|
Li Y, Song R, Shen G, Huang L, Xiao D, Ma Q, Zhang L. MicroRNA-210 Downregulates TET2 (Ten-Eleven Translocation Methylcytosine Dioxygenase 2) and Contributes to Neuroinflammation in Ischemic Stroke of Adult Mice. Stroke 2023; 54:857-867. [PMID: 36734233 PMCID: PMC10151037 DOI: 10.1161/strokeaha.122.041651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide. Neuroinflammation plays a key role in acute brain injury of ischemic stroke. MicroRNA-210 (miR210) is the master hypoxamir and regulates microglial activation and inflammation in a variety of diseases. In this study, we uncovered the mechanism of miR210 in orchestrating ischemic stroke-induced neuroinflammation through repression of TET2 (ten-eleven translocation methylcytosine dioxygenase 2) in the adult mouse brain. METHODS Ischemic stroke was induced in adult WT (wild type) or miR210 KO (miR210 deficient) mice by transient intraluminal middle cerebral artery occlusion. Injection of TET2 silencing RNA or miR210 complementary locked nucleic acid oligonucleotides, or miR210 KO mice were used to validate miR210-TET2 axis and its role in ischemic brain injury. Furthermore, the effect of TET2 overexpression on miR210-stimulated proinflammatory cytokines was examined in BV2 microglia. Post assays included magnetic resonance imaging scan for brain infarct size; neurobehavioral tests, reverse transcription-quantitative polymerase chain reaction, and Western blot for miR210; and TET2 levels, flow cytometry, and ELISA for neuroinflammation in the brain after stroke or microglia in vitro. RESULTS miR210 injection significantly reduced TET2 protein abundance in the brain, while miR210 complementary locked nucleic acid oligonucleotides or miR210 KO preserved TET2 regardless of ischemic brain injury. TET2 knockdown reversed the protective effects of miR210 inhibition or miR210 KO on ischemic stroke-induced brain infarct size and neurobehavioral deficits. Moreover, flow cytometry and ELISA assays showed that TET2 knockdown also significantly dampened the anti-inflammatory effect of miR210 inhibition on microglial activation and IL (interleukin)-6 release after stroke. In addition, overexpression of TET2 in BV2 microglia counteracted miR210-induced increase in cytokines. CONCLUSIONS miR210 inhibition reduced ischemic stroke-induced neuroinflammatory response via repression of TET2 in the adult mouse brain, suggesting that miR210 is a potential treatment target for acute brain injury after ischemic stroke.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Guofang Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
15
|
Shen G, Sanchez K, Hu S, Zhao Z, Zhang L, Ma Q. 3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice. PLoS One 2023; 18:e0285434. [PMID: 37159455 PMCID: PMC10168578 DOI: 10.1371/journal.pone.0285434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Cerebral blood flow (CBF) acutely reduces in neonatal hypoxic-ischemic encephalopathy (HIE). Clinic studies have reported that severe CBF impairment can predict HIE outcomes in neonates. Herein, the present study uses a non-invasive 3D ultrasound imaging approach to evaluate the changes of CBF after HI insult, and explores the correlation between CBF alterations and HI-induced brain infarct in mouse pups. The neonatal HI brain injury was induced in postnatal day 7 mouse pups using the Rice-Vannucci model. Non-invasive 3D ultrasound imaging was conducted to image CBF changes with multiple frequencies on mouse pups before common carotid artery (CCA) ligation, immediately after ligation, and 0 or 24 hours after HI. Vascularity ratio of the ipsilateral hemisphere was acutely reduced after unilateral ligation of the CCA alone or in combination with hypoxia, and partially restored at 24 hours after HI. Moreover, regression analysis showed that the vascularity ratio of ipsilateral hemisphere was moderately correlated with brain infarct size 24 hours after HI, indicating that CBF reduction contributes to of HI brain injury. To further verify the association between CBF and HI-induced brain injury, a neuropeptide C-type natriuretic peptide (CNP) or PBS was intranasally administrated to the brain of mouse pups one hour after HI insult. Brain infarction, CBF imaging and long-term neurobehavioral tests were conducted. The result showed that intranasal administration of CNP preserved ipsilateral CBF, reduced the infarct size, and improved neurological function after HI brain injury. Our findings suggest that CBF alteration is an indicator for neonatal HI brain injury, and 3D ultrasound imaging is a useful non-invasive approach for assessment of HI brain injury in mouse model.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA, United States of America
| | - Kayla Sanchez
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Zhen Zhao
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| |
Collapse
|
16
|
Li S, Wan L, Sun J, Yan W, Wang J, Gao X, Ren C, Hao L. New Insights into Mechanisms of Ferroptosis Associated with Immune Infiltration in Neonatal Hypoxic-Ischemic Brain Damage. Cells 2022; 11:3778. [PMID: 36497037 PMCID: PMC9736049 DOI: 10.3390/cells11233778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The mechanisms underlying ferroptosis in neonatal hypoxic-ischemic brain damage (HIBD) remain unclear. METHOD Four microarray datasets were collected from the GEO database (three mRNA datasets GSE23317, GSE144456, and GSE112137, and one miRNA microarray dataset GSE184939). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of HIBD-related genes. The ferroptosis-related genes were extracted from FerrDb, of which closely correlated to HIBD were obtained after the intersection with existing HIBD's DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as protein-protein interaction (PPI) network analysis were subsequently conducted. Cytoscape was used to identify central genes. Immune cell infiltration analysis was performed by the CIBERSORT algorithm. RESULT Fifty-six ferroptosis-related differentially expressed genes (FRDEGs) were screened, mainly related to ferroptosis, autophagy, hypoxia response, metabolic pathways, and immune inflammation. The seven optimal hub FRDEGs were obtained by intersecting with key modules of WGCNA. Then, the expression levels of the seven optimal hub FRDEGs were validated in the GSE144456 and GSE112137 datasets, and the ferroptosis-related mRNA-miRNA network was established. In addition, this study revealed immune cell infiltration in the HIBD cerebral cortex and the interaction between immune cells. Moreover, notably, specific FRDEGs were strongly positively correlated with immune function. CONCLUSIONS The mechanism of ferroptosis is intricate and closely related to neonatal HIBD. Therefore, targeting ferroptosis-related gene therapy and immunotherapy may have therapeutic prospects for neonatal HIBD.
Collapse
Affiliation(s)
- Shangbin Li
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Li Wan
- Institute for Epidemic Disease Control, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Jingfei Sun
- Department of Pediatrics, Zhengding People’s Hospital, Shijiazhuang 050000, China
| | - Weichen Yan
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Wang
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiong Gao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Changjun Ren
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| | - Ling Hao
- Department of Pediatrics, First Affiliated Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
17
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
18
|
He H, Sun M, Chen Y, Zhou Y, Qie W, Tu W. Dexmedetomidine alleviates the hypoxic-ischemic brain damage via miR-20a-5p/methionine adenosyltransferase 2B axis in rat pups. Neuroreport 2022; 33:205-214. [PMID: 35287147 DOI: 10.1097/wnr.0000000000001750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The neuroprotective effect of dexmedetomidine (DEX) has been demonstrated in hypoxic-ischemic brain damage (HIBD) animal models, the mechanism of which will be the foothold in this work. METHODS After establishment of HIBD rat model, the rats were treated with DEX, miR-20a-5p agomir and adenoviral methionine adenosyltransferase 2B (MAT2B) overexpression vector, and then their brain tissues were harvested. The infarction volume and pathological changes of these brain tissues were measured using the triphenyl tetrazolium chloride (TTC), Nissl and hematoxylin-eosin (HE) stainings. The levels of miR-20a-5p, Bcl-2, Bax and MAT2B in these brain tissues were detected by Real-Time PCR (RT-PCR) and western blot. The binding sites of MAT2B and miR-20a-5p were predicted using the TargetScan and verified using the dual-luciferase reporter assay. The memory deficits and spatial learning of rat pups were assessed by Morris water maze test. RESULTS MiR-20a-5p expression was upregulated, while MAT2B expression was downregulated in rats with HIBD. MAT2B was targeted by miR-20a-5p. DEX treatment improved the neurons and hippocampal tissue damage and decreased miR-20a-5p level in brain tissues of rats with HIBD. MiR-20a-5p overexpression overturned the protective effect of DEX on brain tissues and learning and memory abilities in rats with HIBD. Moreover, DEX promoted Bcl-2 level while inhibiting Bax level in HIBD rats' brain tissues. Besides, overexpressed MAT2B reversed the effect of overexpressed miR-20a-5p on the levels of MAT2B, Bcl-2 and Bax, brain tissue damage, as well as the learning and memory abilities in rats with HIBD. CONCLUSION DEX alleviated HIBD via the miR-20a-5p/MAT2B axis in rats.
Collapse
Affiliation(s)
- Huan He
- The First School of Clinical Medicine, Southern Medical University, Department of Anesthesiology, Southern Theater General Hospital of PLA
| | - Mei Sun
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou City, Guangdong Province, China
| | - Yun Chen
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou City, Guangdong Province, China
| | - Yang Zhou
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou City, Guangdong Province, China
| | - Wenbin Qie
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou City, Guangdong Province, China
| | - Weifeng Tu
- Department of Anesthesiology, Southern Theater General Hospital of PLA, Guangzhou City, Guangdong Province, China
| |
Collapse
|
19
|
Li W, Li X, Ma X, Xiao W, Zhang J. Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 2022; 23:105. [PMID: 35135476 PMCID: PMC8822802 DOI: 10.1186/s12864-022-08350-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epigenetic modifications play important regulatory roles in tissue development, maintenance of physiological functions and pathological process. RNA methylations, including newly identified m1A, m5C, m6A and m7G, are important epigenetic modifications. However, how these modifications are distributed in the transcriptome of vertebrate brains and whether their abundance is altered under pathological conditions are still poorly understood. In this study, we chose the model animal of zebrafish to conduct a systematic study to investigate the mRNA methylation atlas in the brain. RESULTS By performing unbiased analyses of the m1A, m5C, m6A and m7G methylation of mRNA, we found that within the whole brain transcriptome, with the increase of the gene expression levels, the overall level of each of these four modifications on the related genes was also progressively increased. Further bioinformatics analysis indicated that the zebrafish brain has an abundance of m1A modifications. In the hypoxia-treated zebrafish brains, the proportion of m1A is decreased, affecting the RNA splicing and zebrafish endogenous retroviruses. CONCLUSIONS Our study presents the first comprehensive atlas of m1A, m5C, m6A and m7G in the epitranscriptome of the zebrafish brain and reveals the distribution of these modifications in mRNA under hypoxic conditions. These data provide an invaluable resource for further research on the involvement of m1A, m5C, m6A and m7G in the regulation of miRNA and repeat elements in vertebrates, and provide new thoughts to study the brain hypoxic injury on the aspect of epitranscriptome.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xunjie Ma
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
20
|
Circ_0003423 Alleviates ox-LDL-Induced Human Brain Microvascular Endothelial Cell Injury via the miR-589-5p/TET2 Network. Neurochem Res 2021; 46:2885-2896. [PMID: 34226983 DOI: 10.1007/s11064-021-03387-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Brain microvascular endothelial cells (BMECs) injury is one of the main causes of cerebrovascular diseases. Circular RNA (circRNA) has been found to be involved in the regulation of cerebrovascular diseases progression. However, the role and mechanism of circ_0003423 in cerebrovascular diseases is still unclear. In our study, oxidized low density lipoprotein (ox-LDL)-induced HBMEC-IM cells were used to construct cerebrovascular cell injury model in vitro. Quantitative real-time PCR was used to determine the expression levels of circ_0003423, miR-589-5p and Ten-eleven translocation 2 (TET2). The interactions between miR-589-5p and circ_0003423 or TET2 were confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Cell viability, angiogenesis and apoptosis were measured using cell counting kit 8 assay, tube formation assay and flow cytometry. Cell oxidative stress was evaluated by detecting the levels of reactive oxygen species and lactate dehydrogenase. The protein levels were examined by western blot analysis. Our results showed that circ_0003423 was a downregulated circRNA in ox-LDL-induced HBMEC-IM cells. In the terms of mechanism, circ_0003423 was found to be a sponge of miR-589-5p. Function analysis showed that circ_0003423 overexpression could relieve ox-LDL-induced HBMEC-IM cell injury, and this effect could be reversed by miR-589-5p mimic. In addition, TET2 was confirmed to be a target of miR-589-5p, and its overexpression could alleviate ox-LDL-induced HBMEC-IM cell injury. Moreover, the rescue experiments also confirmed that TET2 silencing could abolish the inhibition effect of anti-miR-589-5p on ox-LDL-induced HBMEC-IM cell injury. In summary, our data showed that circ_0003423 alleviated ox-LDL-induced HBMEC-IM cells injury through regulating the miR-589-5p/TET2 axis.
Collapse
|