1
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Piacentini N, Prophiro JS, Generoso JS, Barichello T, Petronilho F. The Blood-Cerebrospinal Fluid Barrier Dysfunction in Brain Disorders and Stroke: Why, How, What For? Neuromolecular Med 2024; 26:38. [PMID: 39278883 DOI: 10.1007/s12017-024-08806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Ischemic stroke (IS) results in the interruption of blood flow to the brain, which can cause significant damage. The pathophysiological mechanisms of IS include ionic imbalances, oxidative stress, neuroinflammation, and impairment of brain barriers. Brain barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (B-CSF), protect the brain from harmful substances by regulating the neurochemical environment. Although the BBB is widely recognized for its crucial role in protecting the brain and its involvement in conditions such as stroke, the B-CSF requires further study. The B-CSF plays a fundamental role in regulating the CSF environment and maintaining the homeostasis of the central nervous system (CNS). However, the impact of B-CSF impairment during pathological events such as IS is not yet fully understood. In conditions like IS and other neurological disorders, the B-CSF can become compromised, allowing the entry of inflammatory substances and increasing neuronal damage. Understanding and preserving the integrity of the B-CSF are crucial for mitigating damage and facilitating recovery after ischemic stroke, highlighting its fundamental role in regulating the CNS during adverse neurological conditions.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratory of Experimental Neurology, University of Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
3
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Sun X, Hou J, Xu H, Qu H. Efficacy of bumetanide in animal models of ischemic stroke: a systematic review and meta-analysis. Aging (Albany NY) 2024; 16:9959-9971. [PMID: 38850525 PMCID: PMC11210250 DOI: 10.18632/aging.205910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
This meta-analysis aimed to describe the efficacy of bumetanide in improving infarct volume, brain edema, and behavioral outcomes in animal models of cerebral ischemia. Embase, PubMed and Web of Science databases were searched from their inception to February 2024 (INPLASY:202430023). Data on the animal species, stroke model, drug dose, time of treatment, method of administration, study quality, and outcomes were extracted and pooled in a meta-analysis. The combined standardized mean difference (SMD) or mean difference (MD) estimates and 95% confidence intervals (CIs) were calculated using random- or fixed-effects models. Thirteen eligible studies involving >200 animals fulfilled the inclusion criteria and were included in this meta-analysis. Meta-analyses demonstrated that bumetanide treatment significantly reduced cerebral infarct volume (SMD: -0.42; 95% CI: -0.75, -0.09; p < 0.01; n = 186 animals) and consistently relieved brain edema (SMD: -1.39; 95% CI: -2.06, -0.72; p < 0.01; n = 64 animals). Subgroup analyses demonstrated that bumetanide treatment reduced infarct volume in transient but not permanent cerebral ischemia models. When administered after the stroke, it was more effective than treatment initiation before the stroke. Eight studies assessed the effect of bumetanide on behavioral function and the results showed that bumetanide treatment significantly improved neurobehavioral deficits (SMD: -2.35; 95% CI: -2.72, -1.97; p < 0.01; n = 250 animals). We conclude that bumetanide appears to be effective in reducing infarct volume and brain edema and improving behavioral recovery in animal models of cerebral ischemia. This mechanism needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Jiadi Hou
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Haichun Xu
- Department of Psychiatry, Shenyang Jing’an Mental Health Hospital, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
5
|
Wang Q, Cheng J, Liu F, Zhu J, Li Y, Zhao Y, Li X, Zhang H, Ju Y, Ma L, Hui X, Lin Y. Modulation of Cerebrospinal Fluid Dysregulation via a SPAK and OSR1 Targeted Framework Nucleic Acid in Hydrocephalus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306622. [PMID: 38353402 PMCID: PMC11077654 DOI: 10.1002/advs.202306622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/20/2024] [Indexed: 05/09/2024]
Abstract
Hydrocephalus is one of the most common brain disorders and a life-long incurable condition. An empirical "one-size-fits-all" approach of cerebrospinal fluid (CSF) shunting remains the mainstay of hydrocephalus treatment and effective pharmacotherapy options are currently lacking. Macrophage-mediated ChP inflammation and CSF hypersecretion have recently been identified as a significant discovery in the pathogenesis of hydrocephalus. In this study, a pioneering DNA nano-drug (TSOs) is developed by modifying S2 ssDNA and S4 ssDNA with SPAK ASO and OSR1 ASO in tetrahedral framework nucleic acids (tFNAs) and synthesis via a one-pot annealing procedure. This construct can significantly knockdown the expression of SPAK and OSR1, along with their downstream ion channel proteins in ChP epithelial cells, thereby leading to a decrease in CSF secretion. Moreover, these findings indicate that TSOs effectively inhibit the M0 to M1 phenotypic switch of ChP macrophages via the MAPK pathways, thus mitigating the cytokine storm. In in vivo post-hemorrhagic hydrocephalus (PHH) models, TSOs significantly reduce CSF secretion rates, alleviate ChP inflammation, and prevent the onset of hydrocephalus. These compelling results highlight the potential of TSOs as a promising therapeutic option for managing hydrocephalus, with significant applications in the future.
Collapse
Affiliation(s)
- Qiguang Wang
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Jian Cheng
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Fei Liu
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Jianwei Zhu
- Department of NeurosurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000P.R. China
| | - Yue Li
- Core facilitiesWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiang Li
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Huan Zhang
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Yan Ju
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Lu Ma
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Xuhui Hui
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengdu610041P.R. China
| | - Yunfeng Lin
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041P.R. China
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsSichuan UniversityChengdu610041P.R. China
- National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| |
Collapse
|
6
|
Bhuiyan MIH, Habib K, Sultan MT, Chen F, Jahan I, Weng Z, Rahman MS, Islam R, Foley LM, Hitchens TK, Deng X, Canna SW, Sun D, Cao G. SPAK inhibitor ZT-1a attenuates reactive astrogliosis and oligodendrocyte degeneration in a mouse model of vascular dementia. CNS Neurosci Ther 2024; 30:e14654. [PMID: 38433018 PMCID: PMC10909630 DOI: 10.1111/cns.14654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Astrogliosis and white matter lesions (WML) are key characteristics of vascular contributions to cognitive impairment and dementia (VCID). However, the molecular mechanisms underlying VCID remain poorly understood. Stimulation of Na-K-Cl cotransport 1 (NKCC1) and its upstream kinases WNK (with no lysine) and SPAK (the STE20/SPS1-related proline/alanine-rich kinase) play a role in astrocytic intracellular Na+ overload, hypertrophy, and swelling. Therefore, in this study, we assessed the effect of SPAK inhibitor ZT-1a on pathogenesis and cognitive function in a mouse model of VCID induced by bilateral carotid artery stenosis (BCAS). METHODS Following sham or BCAS surgery, mice were randomly assigned to receive either vehicle (DMSO) or SPAK inhibitor ZT-1a treatment regimen (days 14-35 post-surgery). Mice were then evaluated for cognitive functions by Morris water maze, WML by ex vivo MRI-DTI analysis, and astrogliosis/demyelination by immunofluorescence and immunoblotting. RESULTS Compared to sham control mice, BCAS-Veh mice exhibited chronic cerebral hypoperfusion and memory impairments, accompanied by significant MRI DTI-detected WML and oligodendrocyte (OL) death. Increased activation of WNK-SPAK-NKCC1-signaling proteins was detected in white matter tissues and in C3d+ GFAP+ cytotoxic astrocytes but not in S100A10+ GFAP+ homeostatic astrocytes in BCAS-Veh mice. In contrast, ZT-1a-treated BCAS mice displayed reduced expression and phosphorylation of NKCC1, decreased astrogliosis, OL death, and WML, along with improved memory functions. CONCLUSION BCAS-induced upregulation of WNK-SPAK-NKCC1 signaling contributes to white matter-reactive astrogliosis, OL death, and memory impairment. Pharmacological inhibition of the SPAK activity has therapeutic potential for alleviating pathogenesis and memory impairment in VCID.
Collapse
Affiliation(s)
- Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Khadija Habib
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Md Tipu Sultan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Fenghua Chen
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Israt Jahan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongfang Weng
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | | | - Lesley M. Foley
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - T. Kevin Hitchens
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenFujianChina
| | - Scott W. Canna
- Department of Pediatric RheumatologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dandan Sun
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Guodong Cao
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Subramanya AR, Boyd-Shiwarski CR. Molecular Crowding: Physiologic Sensing and Control. Annu Rev Physiol 2024; 86:429-452. [PMID: 37931170 PMCID: PMC11472293 DOI: 10.1146/annurev-physiol-042222-025920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.
Collapse
Affiliation(s)
- Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Tian Y, Tao K, Li S, Chen X, Wang R, Zhang M, Zhai Z. Identification of m6A-Related Biomarkers in Systemic Lupus Erythematosus: A Bioinformation-Based Analysis. J Inflamm Res 2024; 17:507-526. [PMID: 38298525 PMCID: PMC10829513 DOI: 10.2147/jir.s439779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE), a prototypical autoimmune disorder, presents a challenge due to the absence of reliable biomarkers for discerning organ-specific damage within SLE. A growing body of evidence underscores the pivotal involvement of N6-methyladenosine (m6A) in the etiology of autoimmune conditions. Methods The datasets, which primarily encompassed the expression profiles of m6A regulatory genes, were retrieved from the Gene Expression Omnibus (GEO) repository. The optimal model, selected from either Random Forest (RF) or Support Vector Machine (SVM), was employed for the development of a predictive nomogram model. To identify pivotal genes associated with SLE, a comprehensive screening process was conducted utilizing LASSO, SVM-RFE, and RF techniques. Within the realm of SLE susceptibility, Weighted Gene Co-expression Network Analysis (WGCNA) was harnessed to delineate relevant modules and hub genes. Additionally, MeRIP-qPCR assays were performed to elucidate key genes correlated with m6A targets. Furthermore, a Mendelian randomization study was conducted based on genome-wide association studies to assess the causative influence of MMP9 on ischemic stroke (IS), which is not only a severe cerebrovascular event but also a common complication of SLE. Results Twelve m6A regulatory genes was identified, demonstrating statistical significance (p < 0.05) and utilized for constructing a nomogram model using the RF algorithm. EPSTI1, USP18, HP, and MMP9, as the hub genes, were identified. MMP9 uniquely correlates with m6A modification and was causally linked to an increased risk of IS, as indicated by our inverse variance weighting analysis showing an odds ratio of 1.0134 (95% CI=1.0004-1.0266, p = 0.0440). Conclusion Our study identified twelve m6A regulators, shedding light on the molecular mechanisms underlying SLE risk genes. Importantly, our analysis established a causal relationship between MMP9, a key m6A-related gene, and ischemic stroke, a common complication of SLE, thereby providing critical insights for presymptomatic diagnostic approaches.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Kang Tao
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Shifei Li
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaoqiang Chen
- Department of Dermatology, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Rupeng Wang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Ruiz Munevar M, Rizzi V, Portioli C, Vidossich P, Cao E, Parrinello M, Cancedda L, De Vivo M. Cation Chloride Cotransporter NKCC1 Operates through a Rocking-Bundle Mechanism. J Am Chem Soc 2024; 146:552-566. [PMID: 38146212 PMCID: PMC10786066 DOI: 10.1021/jacs.3c10258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.
Collapse
Affiliation(s)
- Manuel
José Ruiz Munevar
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Valerio Rizzi
- Biomolecular
& Pharmaceutical Modelling Group, Université
de Genève, Rue Michel-Servet 1, Geneva CH-1211 4, Switzerland
| | - Corinne Portioli
- Laboratory
of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Laboratory
of Brain Development and Disease, Istituto
Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Erhu Cao
- Department
of Biochemistry, University of Utah School
of Medicine, Salt Lake City, Utah 84112-5650, United States
| | - Michele Parrinello
- Laboratory
of Atomistic Simulations, Istituto Italiano
di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Laura Cancedda
- Laboratory
of Brain Development and Disease, Istituto
Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
10
|
Chen Y, Lin L, Bhuiyan MIH, He K, Jha R, Song S, Fiesler VM, Begum G, Yin Y, Sun D. Transient ischemic stroke triggers sustained damage of the choroid plexus blood-CSF barrier. Front Cell Neurosci 2023; 17:1279385. [PMID: 38107410 PMCID: PMC10725199 DOI: 10.3389/fncel.2023.1279385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Kai He
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Victoria M. Fiesler
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yan Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Jia Y, Sun H, Sun L, Wang Y, Xu Q, Liu Y, Chang X, He Y, Guo D, Shi M, Chen GC, Zheng J, Zhang Y, Zhu Z. Mendelian randomization analysis implicates bidirectional associations between brain imaging-derived phenotypes and ischemic stroke. Cereb Cortex 2023; 33:10848-10857. [PMID: 37697910 DOI: 10.1093/cercor/bhad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Brian imaging-derived phenotypes (IDPs) have been suggested to be associated with ischemic stroke, but the causality between them remains unclear. In this bidirectional two-sample Mendelian randomization (MR) study, we explored the potential causal relationship between 461 imaging-derived phenotypes (n = 33,224, UK Biobank) and ischemic stroke (n = 34,217 cases/406,111 controls, Multiancestry Genome-Wide Association Study of Stroke). Forward MR analyses identified five IDPs associated with ischemic stroke, including mean diffusivity (MD) in the right superior fronto-occipital fasciculus (1.22 [95% CI, 1.11-1.34]), MD in the left superior fronto-occipital fasciculus (1.30 [1.17-1.44]), MD in the anterior limb of the right internal capsule (1.36 [1.22-1.51]), MD in the right anterior thalamic radiation (1.17 [1.09-1.26]), and MD in the right superior thalamic radiation (1.23 [1.11-1.35]). In the reverse MR analyses, ischemic stroke was identified to be associated with three IDPs, including high isotropic or free water volume fraction in the body of corpus callosum (beta, 0.189 [95% confidence interval, 0.107-0.271]), orientation dispersion index in the pontine crossing tract (0.175 [0.093-0.257]), and volume of the third ventricle (0.219 [0.138-0.301]). This bidirectional two-sample MR study suggested five predictors and three diagnostic markers for ischemic stroke at the brain-imaging level. Further studies are warranted to replicate our findings and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Hongyan Sun
- Department of Medical Imaging, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Daoxia Guo
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jin Zheng
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 200433, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Ministry of Education (MOE) Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Bhuiyan MIH, Fischer S, Patel SM, Oft H, Zhang T, Foley LM, Zhang J, Hitchens TK, Molyneaux BJ, Deng X, Sun D. Efficacy of novel SPAK inhibitor ZT-1a derivatives (1c, 1d, 1g & 1h) on improving post-stroke neurological outcome and brain lesion in mice. Neurochem Int 2023; 162:105441. [PMID: 36375633 PMCID: PMC9839627 DOI: 10.1016/j.neuint.2022.105441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
SPAK inhibitor ZT-1a was previously shown to be neuroprotective in murine ischemic stroke models. In this study, we further examined the efficacy of four ZT-1a derivatives (ZT-1c, -1d, -1g and -1h) on reducing stroke-induced sensorimotor function impairment and brain lesions. Vehicle control (Veh) or ZT-1 derivatives were administered via osmotic pump to adult C57BL/6J mice during 3-21 h post-stroke. Neurological behavior of these mice was assessed at days 1, 3, 5, and 7 post-stroke and MRI T2WI and DTI analysis was subsequently conducted in ex vivo brains. Veh-treated stroke mice displayed sensorimotor function deficits compared to Sham mice. In contrast, mice receiving ZT-1a derivatives displayed significantly lower neurological deficits at days 3-7 post-stroke (p < 0.05), with ZT-1a, ZT-1c and ZT-1d showing greater impact than ZT-1h and ZT-1g. ZT-1a treatment was the most effective in reducing brain lesion volume on T2WI and in preserving NeuN + neurons (p < 0.01), followed by ZT-1d > -1c > -1g > -1h. The Veh-treated stroke mice displayed white matter tissue injury, reflected by reduced fractional anisotropy (FA) or axial diffusivity (AD) values in external capsule, internal capsule and hippocampus. In contrast, only ZT-1a-as well as ZT-1c-treated stroke mice exhibited significantly higher FA and AD values. These findings demonstrate that post-stroke administration of SPAK inhibitor ZT-1a and its derivatives (ZT-1c and ZT-1d) is effective in protecting gray and white matter tissues in ischemic brains, showing a potential for ischemic stroke therapy development.
Collapse
Affiliation(s)
- Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sydney Fischer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shivani M Patel
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Helena Oft
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bradley J Molyneaux
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
15
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
16
|
Chmiel TA, Gardel ML. Confluence and tight junction dependence of volume regulation in epithelial tissue. Mol Biol Cell 2022; 33:ar98. [PMID: 35731553 PMCID: PMC9582799 DOI: 10.1091/mbc.e22-03-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
Epithelial cell volume regulation is a key component to tissue stability and dynamics. In particular, how cells respond to osmotic stresses is of significant physiological interest in kidney epithelial tissue. For individual mammalian cells, it is well established that Na-K-2Cl cotransporter (NKCC) channels mediate cell volume homeostasis in response to hyperosmotic stress. However, whether mature epithelium responds similarly is not well known. Here we show that while small colonies of madin darby canine kidney (MDCK) epithelial cells behave similarly to single cells and exhibit volume homeostasis that is dependent on the NKCC channel function, mature epithelial tissue does not. Instead, the cell volume decreases by 33% when confluent monolayers or acini formed from MDCK cells are subjected to hyperosmotic stress. We show that the tight junction protein zonula occludins-1 (ZO-1), and Rho-associated kinase (ROCK) are essential for osmotic regulation of cell volume in mature epithelium. Because these both are known to be essential for tight junction assembly, this strongly suggests a role for tight junctions in changing volume response in mature epithelium. Thus, tight junctions act either directly or indirectly in osmotic pressure response of epithelial tissue to suppress volume homeostasis common to isolated epithelial cells.
Collapse
Affiliation(s)
- Theresa A. Chmiel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Margaret L. Gardel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Lolansen SD, Rostgaard N, Barbuskaite D, Capion T, Olsen MH, Norager NH, Vilhardt F, Andreassen SN, Toft-Bertelsen TL, Ye F, Juhler M, Keep RF, MacAulay N. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 2022; 19:62. [PMID: 35948938 PMCID: PMC9367104 DOI: 10.1186/s12987-022-00360-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Posthemorrhagic hydrocephalus (PHH) often develops following hemorrhagic events such as intraventricular hemorrhage (IVH) and subarachnoid hemorrhage (SAH). Treatment is limited to surgical diversion of the cerebrospinal fluid (CSF) since no efficient pharmacological therapies are available. This limitation follows from our incomplete knowledge of the molecular mechanisms underlying the ventriculomegaly characteristic of PHH. Here, we aimed to elucidate the molecular coupling between a hemorrhagic event and the subsequent PHH development, and reveal the inflammatory profile of the PHH pathogenesis. METHODS CSF obtained from patients with SAH was analyzed for inflammatory markers using the proximity extension assay (PEA) technique. We employed an in vivo rat model of IVH to determine ventricular size, brain water content, intracranial pressure, and CSF secretion rate, as well as for transcriptomic analysis. Ex vivo radio-isotope assays of choroid plexus transport were employed to determine the direct effect of choroidal exposure to blood and inflammatory markers, both with acutely isolated choroid plexus and after prolonged exposure obtained with viable choroid plexus kept in tissue culture conditions. RESULTS The rat model of IVH demonstrated PHH and associated CSF hypersecretion. The Na+/K+-ATPase activity was enhanced in choroid plexus isolated from IVH rats, but not directly stimulated by blood components. Inflammatory markers that were elevated in SAH patient CSF acted on immune receptors upregulated in IVH rat choroid plexus and caused Na+/K+/2Cl- cotransporter 1 (NKCC1) hyperactivity in ex vivo experimental conditions. CONCLUSIONS CSF hypersecretion may contribute to PHH development, likely due to hyperactivity of choroid plexus transporters. The hemorrhage-induced inflammation detected in CSF and in the choroid plexus tissue may represent the underlying pathology. Therapeutic targeting of such pathways may be employed in future treatment strategies towards PHH patients.
Collapse
Affiliation(s)
- Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nicolas H Norager
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Marianne Juhler
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Xu H, Miyajima M, Nakajima M, Ogino I, Kawamura K, Akiba C, Kamohara C, Sakamoto K, Karagiozov K, Nakamura E, Tada N, Arai H, Kondo A. Ptpn20 deletion in H-Tx rats enhances phosphorylation of the NKCC1 cotransporter in the choroid plexus: an evidence of genetic risk for hydrocephalus in an experimental study. Fluids Barriers CNS 2022; 19:39. [PMID: 35658898 PMCID: PMC9164390 DOI: 10.1186/s12987-022-00341-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital hydrocephalus occurs with some inheritable characteristics, but the mechanisms of its development remain poorly understood. Animal models provide the opportunity to identify potential genetic causes in this condition. The Hydrocephalus-Texas (H-Tx) rat strain is one of the most studied animal models for investigating the causative genetic alterations and analyzing downstream pathogenetic mechanisms of congenital hydrocephalus. METHODS Comparative genomic hybridization (CGH) array on non-hydrocephalic and hydrocephalic H-Tx rats was used to identify causative genes of hydrocephalus. Targeted gene knockout mice were generated by CRISPR/Cas9 to study the role of this gene in hydrocephalus. RESULTS CGH array revealed a copy number loss in chromosome 16p16 region in hydrocephalic H-Tx rats at 18 days gestation, encompassing the protein tyrosine phosphatase non-receptor type 20 (Ptpn20), a non-receptor tyrosine phosphatase, without change in most non-hydrocephalic H-Tx rats. Ptpn20-knockout (Ptpn20-/-) mice were generated and found to develop ventriculomegaly at 8 weeks. Furthermore, high expression of phosphorylated Na-K-Cl cotransporter 1 (pNKCC1) was identified in the choroid plexus (CP) epithelium of mice lacking Ptpn20 from 8 weeks until 72 weeks. CONCLUSIONS This study determined the chromosomal location of the hydrocephalus-associated Ptpn20 gene in hydrocephalic H-Tx rats. The high level of pNKCC1 mediated by Ptpn20 deletion in CP epithelium may cause overproduction of cerebrospinal fluid and contribute to the formation of hydrocephalus in Ptpn20-/- mice. Ptpn20 may be a potential therapeutic target in the treatment of hydrocephalus.
Collapse
Affiliation(s)
- Hanbing Xu
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan.
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo, 136-0075, Japan
| | - Chihiro Kamohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koichiro Sakamoto
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Eri Nakamura
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Tada
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|