1
|
Tang YD, Li Y, Cai XH, Yin X. Viral Live-Attenuated Vaccines (LAVs): Past and Future Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407241. [PMID: 39639853 DOI: 10.1002/advs.202407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Viral infections continue to pose a significant threat to the health of both humans and animals. Currently, live attenuated vaccines (LAVs) remain the most efficacious and widely utilized tool for combating viral infections. Conventional LAVs involve the adaptation of virulent viruses to novel hosts, cell cultures, or suboptimal environments, resulting in a reduction in pathogenicity while retaining immunogenicity. This process entails directed evolution of the virus to enhance its replication efficiency under these modified conditions. In this review, the development of traditional animal-adapted and cold-adapted LAVs is specially discussed. Additionally, the factors that contribute to virus attenuation from a viral lifecycle perspective are summarized. Finally, we propose future directions for next-generation LAVs.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| |
Collapse
|
2
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
3
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
4
|
Wang Y, Ma G, Wang XF, Na L, Guo X, Zhang J, Liu C, Du C, Qi T, Lin Y, Wang X. Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense. PLoS Pathog 2022; 18:e1009986. [PMID: 35139135 PMCID: PMC8863222 DOI: 10.1371/journal.ppat.1009986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanqin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Truncation of the Cytoplasmic Tail of Equine Infectious Anemia Virus Increases Virion Production by Improving Env Cleavage and Plasma Membrane Localization. J Virol 2021; 95:e0108721. [PMID: 34495693 PMCID: PMC8577380 DOI: 10.1128/jvi.01087-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Envelope glycoproteins (Envs) of lentiviruses harbor unusually long cytoplasmic tails (CTs). Natural CT truncations always occur in vitro and are accompanied by attenuated virulence, but their effects on viral replication have not been fully elucidated. The Env in equine infectious anemia virus (EIAV) harbors the longest CT in the lentiviral family, and a truncated CT was observed in a live attenuated vaccine. This study demonstrates that CT truncation significantly increased EIAV production, as determined by comparing the virion yields from EIAV infectious clones in the presence and absence of the CT. A significant increase in a cleaved product from the CT-truncated Env precursor, but not the full-length Env, was observed. We further confirmed that the presence of the CT inhibited the cleavage of the Env precursor and found that a functional domain located at the C terminus was responsible for this function. Moreover, CT-truncated Env was mainly localized at the plasma membrane (PM), while full-length Env was mainly localized in the cytoplasm. The CT truncation caused a dramatic reduction in the endocytosis of Env. These results suggest that the CT can modulate the processing and trafficking of EIAV Env and thus regulate EIAV replication. IMPORTANCE The mature lentivirus envelope glycoprotein (Env) is composed of a surface unit (SU) and a transmembrane unit (TM), which are cleaved products of the Env precursor. After mature Env is heterodimerically formed from the cleavage of the Env precursor, it is trafficked to the plasma membrane (PM) for incorporation and virion assembly. Env harbors a long cytoplasmic tail (CT), which has been increasingly found to play multiple roles in the Env biological cycle. Here, we revealed for the first time that the CT of equine infectious anemia virus (EIAV) Env inhibits cleavage of the Env precursor. Simultaneously, the CT promoted Env endocytosis, resulting in weakened Env localization at the PM. We also validated that the CT could significantly decrease EIAV production. These findings suggest that the CT regulates the processing and trafficking of EIAV Env to balance virion production.
Collapse
|
6
|
Romo-Sáenz CI, Tamez-Guerra P, Olivas-Holguin A, Ramos-Zayas Y, Obregón-Macías N, González-Ochoa G, Zavala-Díaz de la Serna FJ, Rodríguez-Padilla C, Tamez-Guerra R, Gomez-Flores R. Molecular detection of equine infectious anemia virus in clinically normal, seronegative horses in an endemic area of Mexico. J Vet Diagn Invest 2021; 33:758-761. [PMID: 33797316 DOI: 10.1177/10406387211006195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Equine infectious anemia (EIA) is a highly infectious disease in members of the Equidae family, caused by equine infectious anemia virus (EIAV). The disease severity ranges from subclinical to acute or chronic, and causes significant economic losses in the equine industry worldwide. Serologic tests for detection of EIAV infection have some concerns given the prolonged seroconversion time. Therefore, molecular methods are needed to improve surveillance programs for this disease. We attempted detection of EIAV in 6 clinical and 42 non-clinical horses in Nuevo Leon State, Mexico, using the agar gel immunodiffusion (AGID) test for antibody detection, and nested and hemi-nested PCR for detection of proviral DNA. We found that 6 of 6, 5 of 6, and 6 of 6 clinical horses were positive by AGID, nested PCR, and hemi-nested PCR, respectively, whereas 0 of 42, 1 of 42, and 9 of 42 non-clinical horses were positive by these tests, respectively. BLAST analysis of the 203-bp 5'-LTR/tat segment of PCR product revealed 83-93% identity with EIAV isolates in GenBank and reference strains from other countries. By phylogenetic analysis, our Mexican samples were grouped in a different clade than other sequences reported worldwide, indicating that the LRT/tat region represents an important target for the detection of non-clinical horses.
Collapse
Affiliation(s)
- César I Romo-Sáenz
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Aymee Olivas-Holguin
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Yareellys Ramos-Zayas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Nelson Obregón-Macías
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas y Agropecuarias, División de Ciencias e Ingeniería, Universidad de Sonora, Navojoa, Sonora, Mexico
| | - Francisco J Zavala-Díaz de la Serna
- Facultad de Ciencias Químicas, Laboratorio de Biotecnología, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus Universitario, Chihuahua, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Reyes Tamez-Guerra
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, México
| |
Collapse
|
7
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
8
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
9
|
Goh GKM, Uversky VN. Shell disorder and the HIV vaccine mystery: lessons from the legendary Oswald Avery. J Biomol Struct Dyn 2021; 40:5702-5711. [PMID: 33410379 DOI: 10.1080/07391102.2020.1870562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The search for a human immunodeficiency virus (HIV) vaccine has spanned nearly four decades without much success. A much needed paradigm shift can be found in the abnormally high levels of intrinsic disorder in the outer shells of HIVs, the hepatitis C virus (HCV), and herpes simplex viruses (HSVs), for which successful vaccines have not been established. On the other hand, this feature (high levels of intrinsic disorder in the outer shells) is completely absent in classic viruses for which effective vaccines are found, such as the rabies virus. The motions arising from the disordered outer shell result in the inability of antibodies to bind tightly to the polysaccharides on the viral surface proteins, and, therefore, induce inadequate immune response. Experiments conducted by the legendary Avery Oswald in the 1920s form the theoretical underpinning of this new model. Failures of the vaccines based on the HIV glycoprotein Gp120 and other vaccines can be traced back to the lack of understanding of the important roles of shell disorder in a "Trojan-horse" immune evasion mechanism utilized by the virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
10
|
Câmara RJF, Bueno BL, Resende CF, Balasuriya UBR, Sakamoto SM, dos Reis JKP. Viral Diseases that Affect Donkeys and Mules. Animals (Basel) 2020; 10:ani10122203. [PMID: 33255568 PMCID: PMC7760297 DOI: 10.3390/ani10122203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Donkeys have been neglected and threatened by abandonment, indiscriminate slaughter, and a lack of proper sanitary management. They are often treated as “small horses.” However, donkeys and horses have significant genetic, physiological, and behavioral differences. Specific knowledge about viral infectious diseases that affect donkeys and mules is important to mitigate disease outbreaks. Thus, the purpose of this review is to provide a brief update on viral diseases of donkeys and mules and ways to prevent their spread. Abstract Donkeys (Equus asinus) and mules represent approximately 50% of the entire domestic equine herd in the world and play an essential role in the lives of thousands of people, primarily in developing countries. Despite their importance, donkeys are currently a neglected and threatened species due to abandonment, indiscriminate slaughter, and a lack of proper sanitary management. Specific knowledge about infectious viral diseases that affect this group of Equidae is still limited. In many cases, donkeys and mules are treated like horses, with the physiological differences between these species usually not taken into account. Most infectious diseases that affect the Equidae family are exclusive to the family, and they have a tremendous economic impact on the equine industry. However, some viruses may cross the species barrier and affect humans, representing an imminent risk to public health. Nevertheless, even with such importance, most studies are conducted on horses (Equus caballus), and there is little comparative information on infection in donkeys and mules. Therefore, the objective of this article is to provide a brief update on viruses that affect donkeys and mules, thereby compromising their performance and well-being. These diseases may put them at risk of extinction in some parts of the world due to neglect and the precarious conditions they live in and may ultimately endanger other species’ health and humans.
Collapse
Affiliation(s)
- Rebeca Jéssica Falcão Câmara
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Bruna Lopes Bueno
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Cláudia Fideles Resende
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, River Rd, Room 1043, Baton Rouge, LA 70803, USA;
| | - Sidnei Miyoshi Sakamoto
- Laboratório Multidisciplinar do Centro de Ciências Biológicas e da Saúde, Departamento de Ciências da Saúde (DCS), Universidade Federal Rural do Semi-Árido, Rio Grande do Norte 59625-900, Brazil;
| | - Jenner Karlisson Pimenta dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
- Correspondence: ; Tel.: +55-31-3409-2100
| |
Collapse
|
11
|
Comparative analysis of CpG islands in equine infectious anemia virus strains. Virus Genes 2020; 56:339-346. [PMID: 32239368 DOI: 10.1007/s11262-020-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Increasing evidence suggests that DNA methylation has key roles in the replication of retroviruses, including lentiviruses, and pathogenesis of diseases. However, the precise characteristics of CpG islands are not known for many retroviruses. In this study, we compared the distribution of CpG islands among strains of equine infectious anemia virus (EIAV), a lentivirus in the family Retroviridae and a model for HIV research. We identified CpG islands in 32 full-length EIAV genomic sequences obtained from the GenBank database using MethPrimer. Only one CpG island, from 100 to 120 bp, was identified in the genomes of EIAV strains DV10, DLV3-A, and DLV5-10 from China, V26 and V70 from Japan, and IRE H3, IRE F2, IRE F3, and IRE F4 from Ireland. Importantly, the CpG island was located within the Rev gene, which is required for the expression of viral cis-acting elements and the production of new virions. These results suggest that the distribution, length, and genetic properties of CpG islands differ among EIAV strains. Future research should focus on the biological significance of this CpG island within rev to improve our understanding of the precise roles of CpG islands in epigenetic regulation in the species.
Collapse
|
12
|
Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. J Virol 2019; 93:JVI.00653-19. [PMID: 31391270 DOI: 10.1128/jvi.00653-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is an equine lentivirus similar to HIV-1, targets host immune cells, and causes a life-long infection in horses. The Chinese live EIAV vaccine is attenuated from long-term passaging of a highly virulent strain in vitro The parent pathogenic strain (EIAVDLV34) induces a host inflammatory storm to cause severe pathological injury of animals. However, the vaccine strain (EIAVDLV121) induces a high level of apoptosis to eliminate infected cells. To investigate how these processes are regulated, we performed a comparative proteomics analysis and functional study in equine monocyte-derived macrophages (eMDMs) and found that the divergent mitochondrial protein expression profiles caused by EIAV strains with different virulence led to disparate mitochondrial function, morphology, and metabolism. This in turn promoted the distinct transformation of macrophage inflammatory polarization and intrinsic apoptosis. In EIAVDLV34-infected cells, a high level of glycolysis and increased mitochondrial fragmentation were induced, resulting in the M1-polarized proinflammatory-type transformation of macrophages and the subsequent production of a strong inflammatory response. Following infection with EIAVDLV121, the infected cells were transformed into M2-polarized anti-inflammatory macrophages by inhibition of glycolysis. In this case, a decrease in the mitochondrial membrane potential and impairment of the electron transport chain led to increased levels of apoptosis and reactive oxygen species. These results correlated with viral pathogenicity loss and may help provide an understanding of the key mechanism of lentiviral attenuation.IMPORTANCE Following viral infection, the working pattern and function of the cell can be transformed through the impact on mitochondria. It still unknown how the mitochondrial response changes in cells infected with viruses in the process of virulence attenuation. EIAVDLV121 is the only effective lentiviral vaccine for large-scale use in the world. EIAVDLV34 is the parent pathogenic strain. Unlike EIAVDLV34-induced inflammation storms, EIAVDLV121 can induce high levels of apoptosis. For the first time, we found that, after the mitochondrial protein expression profile is altered, EIAVDLV34-infected cells are transformed into M1-polarized-type macrophages and cause inflammatory injury and that the intrinsic apoptosis pathway is activated in EIAVDLV121-infected cells. These studies shed light on how the mitochondrial protein expression profile changes between cells infected by pathogenic lentivirus strains and cells infected by attenuated lentivirus strains to drive different cellular responses, especially from inflammation to apoptosis.
Collapse
|
13
|
Wang XF, Bai B, Lin Y, Qi T, Du C, Song M, Wang X. High-Efficiency Rescue of Equine Infectious Anemia Virus from a CMV-Driven Infectious Clone. Virol Sin 2019; 34:725-728. [PMID: 31376080 DOI: 10.1007/s12250-019-00153-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xue-Feng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Bowen Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
14
|
Alnaeem AA, Hemida MG. Surveillance of the equine infectious anemia virus in Eastern and Central Saudi Arabia during 2014-2016. Vet World 2019; 12:719-723. [PMID: 31327910 PMCID: PMC6584864 DOI: 10.14202/vetworld.2019.719-723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 11/16/2022] Open
Abstract
Background Equine infectious anemia virus (EIAV) is one of the most important threats to the equine industry globally. This is due to the poor performance of the affected horses, which requires euthanization of the infected animals upon the infection confirmation. Infected animals remain carriers throughout their life. EIAV infection has been reported in many parts of the world, including North America, Europe, Asia, and Africa. However, the EIAV status is never assessed in horses in the Gulf area, especially in the Kingdom of Saudi Arabia (KSA). Aim This study aimed to perform molecular and serological surveillance among some horse populations in Eastern and Central Saudi Arabia. Materials and Methods Sera and whole blood were collected from 361 horses and 19 donkeys from the eastern and central regions of Saudi Arabia during January 2014-December 2016. Sera were tested by the commercial EIAV enzyme-linked immunosorbent assay kits. Moreover, the collected blood samples were tested by the commercial real-time polymerase chain reaction kits. Results Our serological surveillance revealed the absence of any antibodies against EIAV in the tested animals. Similar results were reported for the tested horses' plasma. This study confirms the absence of EIAV in horses and donkeys from Eastern and Central Saudi Arabia during the tenure of the current study. However, careful monitoring of the EIAV is highly recommended to avoid the emergence of such a virus in the horse population in Saudi Arabia. Conclusion To the best of our knowledge, this is the first EIAV surveillance conducted not only in Saudi Arabia but also in the Gulf area. This study confirms the absence of EIAV in the tested equine population in the eastern and central regions of Saudi Arabia during 2014-2016.
Collapse
Affiliation(s)
| | - Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
15
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. HIV Vaccine Mystery and Viral Shell Disorder. Biomolecules 2019; 9:biom9050178. [PMID: 31072073 PMCID: PMC6572542 DOI: 10.3390/biom9050178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Hundreds of billions of dollars have been spent for over three decades in the search for an effective human immunodeficiency virus (HIV) vaccine with no success. There are also at least two other sexually transmitted viruses, for which no vaccine is available, the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Traditional textbook explanatory paradigm of rapid mutation of retroviruses cannot adequately address the unavailability of vaccine for many sexually transmissible viruses, since HSV and HCV are DNA and non-retroviral RNA viruses, respectively, whereas effective vaccine for the horsefly-transmitted retroviral cousin of HIV, equine infectious anemia virus (EIAV), was found in 1973. We reported earlier the highly disordered nature of proteins in outer shells of the HIV, HCV, and HSV. Such levels of disorder are completely absent among the classical viruses, such as smallpox, rabies, yellow fever, and polio viruses, for which efficient vaccines were discovered. This review analyzes the physiology and shell disorder of the various related and non-related viruses to argue that EIAV and the classical viruses need harder shells to survive during harsher conditions of non-sexual transmissions, thus making them vulnerable to antibody detection and neutralization. In contrast, the outer shell of the HIV-1 (with its preferential sexual transmission) is highly disordered, thereby allowing large scale motions of its surface glycoproteins and making it difficult for antibodies to bind to them. The theoretical underpinning of this concept is retrospectively traced to a classical 1920s experiment by the legendary scientist, Oswald Avery. This concept of viral shapeshifting has implications for improved treatment of cancer and infections via immune evasion.
Collapse
Affiliation(s)
| | - A Keith Dunker
- Center for Computational Biology, Indiana and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia.
| |
Collapse
|
16
|
Characterization of EIAV env Quasispecies during Long-Term Passage In Vitro: Gradual Loss of Pathogenicity. Viruses 2019; 11:v11040380. [PMID: 31022927 PMCID: PMC6520696 DOI: 10.3390/v11040380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 01/12/2023] Open
Abstract
As the only widely used live lentiviral vaccine, the equine infectious anima virus (EIAV) attenuated vaccine was developed by in vitro passaging of a virulent strain for 121 generations. In our previous study, we observed that the attenuated vaccine was gradually selected under increased environmental pressure at the population level (termed a quasispecies). To further elucidate the potential correlation between viral quasispecies evolution and pathogenesis, a systematic study was performed by sequencing env using several methods. Some key mutations were identified within Env, and we observed that increased percentages of these mutations were accompanied by an increased passage number and attenuated virulence. Phylogenetic analysis revealed that env mutations related to the loss of virulence might have occurred evolutionarily. Among these mutations, deletion of amino acid 236 in the V4 region of Env resulted in the loss of one N-glycosylation site that was crucial for virulence. Notably, the 236-deleted sequence represented a "vaccine-specific" mutation that was also found in wild EIAVLN40 strains based on single genome amplification (SGA) analysis. Therefore, our results suggest that the EIAV attenuated vaccine may originate from a branch of quasispecies of EIAVLN40. Generally, the presented results may increase our understanding of the attenuation mechanism of the EIAV vaccine and provide more information about the evolution of other lentiviruses.
Collapse
|
17
|
Li Y, Xie L, Zhang L, Wang X, Li C, Han Y, Hu S, Sun Y, Li S, Luo Y, Liu L, Munir M, Qiu HJ. The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology 2018; 519:197-206. [PMID: 29734043 DOI: 10.1016/j.virol.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/26/2022]
Abstract
Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins Erns, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing Erns-E1-E2, Erns-E2 or E1-E2 but not Erns-E1, Erns, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either Erns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of Erns or E1.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libao Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingkai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuying Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shouping Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lihong Liu
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
18
|
Characterization of Equine Infectious Anemia Virus Long Terminal Repeat Quasispecies In Vitro and In Vivo. J Virol 2018; 92:JVI.02150-17. [PMID: 29386282 PMCID: PMC5874411 DOI: 10.1128/jvi.02150-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022] Open
Abstract
The equine infectious anemia virus (EIAV) attenuated vaccine was developed by long-term passaging of a field-isolated virulent strain in cross-species hosts, followed by successive cultivation in cells in vitro. To explore the molecular mechanism underlying the evolution of the EIAV attenuated vaccine, a systematic study focusing on long-terminal-repeat (LTR) variation in numerous virus strains ranging from virulent EIAV to attenuated EIAV was performed over time both in vitro and in vivo. Two hypervariable regions were identified within the U3 region in the enhancer region (EHR) and the negative regulatory element (NRE) and within the R region in the transcription start site (TSS) and the Tat-activating region (TAR). Among these sites, variation in the U3 region resulted in the formation of additional transcription factor binding sites; this variation of the in vitro-adapted strains was consistent with the loss of pathogenicity. Notably, the same LTR variation pattern was observed both in vitro and in vivo. Generally, the LTR variation in both the attenuated virus and the virulent strain fluctuated over time in vivo. Interestingly, the attenuated-virus-specific LTR variation was also detected in horses infected with the virulent strain, supporting the hypothesis that the evolution of an attenuated virus might have involved branching from EIAV quasispecies. This hypothesis was verified by phylogenetic analysis. The present systematic study examining the molecular evolution of attenuated EIAV from EIAV quasispecies may provide an informative model reflecting the evolution of similar lentiviruses. IMPORTANCE The attenuated EIAV vaccine was the first lentiviral vaccine used to successfully control for equine infectious anemia in China. This vaccine provides an important reference for studying the relationship between EIAV gene variation and changes in biological characteristics. Importantly, the vaccine provides a model for the investigation of lentiviral quasispecies evolution. This study followed the “natural” development of the attenuated EIAV vaccine by use of a systematic analysis of LTR evolution in vitro and in vivo. The results revealed that the increase in LTR variation with passaging was accompanied by a decrease in virulence, which indicated that LTR variability might parallel the attenuation of virulence. Interestingly, the attenuated-virus-specific LTR variation was also detected in virulent-strain-infected horses, a finding consistent with those of previous investigations of gp90 and S2 evolution. Therefore, we present a hypothesis that the evolution of the attenuated virus may involve branching from EIAV quasispecies present in vivo.
Collapse
|
19
|
Liu Q, Wang XF, Du C, Lin YZ, Ma J, Wang YH, Zhou JH, Wang X. The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. J Gen Virol 2017; 98:2596-2606. [PMID: 28884679 DOI: 10.1099/jgv.0.000918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Integration is an important feature of retroviruses and retrovirus-based therapeutic transfection vectors. The non-primate lentivirus equine infectious anaemia virus (EIAV) primarily targets macrophages/monocytes in vivo. Investigation of the integration features of EIAVDLV121 strains, which are adapted to donkey monocyte-derived macrophages (MDMs), is of great interest. In this study, we analysed the integration features of EIAVDLV121 in equine MDMs during in vitro infection. Our previously published integration sites (IS) for EIAVFDDV13 in fetal equine dermal (FED) cells were also analysed in parallel as references. Sequencing of the host genomic regions flanking the viral IS showed that reference sequence (RefSeq) genes were preferentially targeted for integration by EIAVDLV121. Introns, AT-rich regions, long interspersed nuclear elements (LINEs) and DNA transposons were also predominantly biased toward viral insertion, which is consistent with EIAVFDDV13 integration into the horse genome in FED cells. In addition, the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, specifically gag junctions for EIAVDLV121 and tight junctions for EIAVFDDV13, are regulators of metabolic function, which is consistent with the common bioprocesses, specifically cell cycle and chromosome/DNA organization, identified by gene ontology (GO) analysis. Our results demonstrate that EIAV integration occurs in regions that harbour structural and topological features of local chromatin in both macrophages and fibroblasts. Our data on EIAV will facilitate further understanding of lentivirus infection and the development of safer and more effective gene therapy vectors.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yu-Hong Wang
- Department of Geriatrics, The First Affiliated Clinical College of Harbin Medical University, Harbin, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
20
|
A pilot study on interaction between donkey tetherin and EIAV stains with different virulent and replication characteristics. Microb Pathog 2016; 106:65-68. [PMID: 27816678 DOI: 10.1016/j.micpath.2016.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/27/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022]
Abstract
Tetherin (BST-2) is an important host restriction factor that can inhibit the release of a diverse array of enveloped viruses from infected cells. Conversely, to facilitate their release and spread, many viruses have evolved various strategies to overcome the antiviral effect of tetherin in a species-specific manner. During the development of an attenuated equine infectious anemia virus (EIAV) vaccine in our laboratory, we found that serial passage of a field-isolated virulent EIAV strains in horse and donkey as well as the cultivated donkey cells, produces several typical EIAV strains, including EIAVDV, EIAVDLV, and EIAVFDDV, which exhibit distinct virulence and replication features in vivo and in vitro. However, the role of host restriction factors in EIAV evolution during the serial passage is not well understood. This study aimed to evaluate whether these newly generated strains adapt differently to donkey tetherin (do-tetherin) based on their virulence. We found that do-tetherin exerts an inhibition on the release of the viral particles produced by all three strains, albeit with varying intensity: EIAVDV < EIAVDLV < EIAVFDDV. Additionally, all three EIAV strains could counteract the restriction mediated by do-tetherin via their envelope proteins (Env) with varying strength: EIAVDV > EIAVDLV > EIAVFDDV. These results indicate that donkey tetherin is involved in shaping of EIAV evolution during serial passage.
Collapse
|
21
|
Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Virus Genes 2016; 52:814-822. [PMID: 27572122 DOI: 10.1007/s11262-016-1382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
The Chinese EIAV vaccine is an attenuated live virus vaccine obtained by serial passage of a virulent horse isolate (EIAVL) in donkeys (EIAVD) and, subsequently, in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAVL) with attenuated strains serially passaged in donkey MDM (EIAVDLV) and donkey dermal cells (EIAVFDDV). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAVFDDV infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAVFDDV. Results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum neutralizing antibodies that were also able to recognize parental viruses. This study indicates that these mutations played an important role in the attenuation of the EIAV vaccine strains.
Collapse
|
22
|
Tang YD, Zhang X, Na L, Wang XF, Fu LH, Zhu CH, Wang X, Zhou JH. Double-stranded-RNA-specific adenosine deaminase 1 (ADAR1) is proposed to contribute to the adaptation of equine infectious anemia virus from horses to donkeys. Arch Virol 2016; 161:2667-72. [PMID: 27383210 DOI: 10.1007/s00705-016-2951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/25/2016] [Indexed: 12/14/2022]
Abstract
Equine infectious anemia virus (EIAV) is a member of the genus Lentivirus of the family Retroviridae. Horses are the most susceptible equids to EIAV infection and are therefore the primary hosts of this virus. In contrast, infected donkeys do not develop clinically active equine infectious anemia (EIA). This phenomenon is similar to what has been observed with HIV-1, which fails to induce AIDS in non-human primates. Interestingly, Shen et al. developed a donkey-tropic pathogenic virus strain (EIAVDV117, DV117) by serially passaging a horse-tropic pathogenic strain, EIAVLN40 (LN40), in donkeys. LN40, which was generated by passaging a field isolate in horses, displayed enhanced virulence in horses but caused no clinical symptoms in donkeys. Infection with DV117 induced acute EIA in nearly 100 % of donkeys. Genomic analysis of DV117 revealed a significantly higher frequency of A-to-G substitutions when compared to LN40. Furthermore, detailed analysis of dinucleotide editing showed that A-to-G mutations had a preference for 5'TpA and 5'ApA. These results strongly implicated the activity of the adenosine deaminase, ADAR1, in this type of mutation. Further investigation demonstrated that overexpression of donkey ADAR1 increased A-to-G mutations within the genome of EIAV. Together with our previous finding that multiple mutations in multiple genes are generated in DV117 during its adaptation from horses to donkeys, the present study suggests that ADAR1-induced A-to-G mutations occur during virus adaption to related new hosts contributing to the alteration of EIAV host tropism.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li-Hua Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Chun-Hui Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.,Reproductive Medicine Center, Subei People's Hospital of Jiangsu Province (Clinic Medical College of Yang Zhou University), Yangzhou, 225001, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Harbin Pharmaceutical Group Biovaccine Company, Harbin, 150069, China.
| |
Collapse
|