1
|
Xie Q, Wang L, Liao X, Huang B, Luo C, Liao G, Yuan L, Liu X, Luo H, Shu Y. Research Progress into the Biological Functions of IFITM3. Viruses 2024; 16:1543. [PMID: 39459876 PMCID: PMC11512382 DOI: 10.3390/v16101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons. They are not only highly conserved in evolution but also structurally consistent and have almost identical structural domains and functional domains. They are all transmembrane proteins and have multiple heritable variations in genes. The IFITM protein family is closely related to a variety of biological functions, including antiviral immunity, tumor formation, bone metabolism, cell adhesion, differentiation, and intracellular signal transduction. The progress of the research on its structure and related functions, as represented by IFITM3, is reviewed.
Collapse
Affiliation(s)
- Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Liangliang Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
2
|
Chen J, Ding Y, Jiang C, Qu R, Wren JD, Georgescu C, Wang X, Reuter DN, Liu B, Giles CB, Mayr CH, Schiller HB, Dai J, Stipp CS, Subramaniyan B, Wang J, Zuo H, Huang C, Fung KM, Rice HC, Sonnenberg A, Wu D, Walters MS, Zhao YY, Kanie T, Hays FA, Papin JF, Wang DW, Zhang XA. CD151 Maintains Endolysosomal Protein Quality to Inhibit Vascular Inflammation. Circ Res 2024; 134:1330-1347. [PMID: 38557119 PMCID: PMC11081830 DOI: 10.1161/circresaha.123.323190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.
Collapse
Affiliation(s)
- Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Rongmei Qu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Xuejun Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Cory B. Giles
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | | - Jingxing Dai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Houjuan Zuo
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Huang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kar-Ming Fung
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Heather C. Rice
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - David Wu
- University of Chicago, Chicago, IL, USA
| | | | - You-Yang Zhao
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Franklin A. Hays
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - James F. Papin
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Dao Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
- Lead contact
| |
Collapse
|
3
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
4
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Shi G, Li T, Lai KK, Johnson RF, Yewdell JW, Compton AA. Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. Nat Commun 2024; 15:889. [PMID: 38291024 PMCID: PMC10828397 DOI: 10.1038/s41467-024-45075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue. Unlike earlier variants of SARS-CoV-2, our findings suggest that Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. Furthermore, we demonstrate that this entry pathway unlocked by Omicron Spike enables evasion from constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Reed F Johnson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
6
|
Verma S, Chen YC, Marin M, Gillespie SE, Melikyan GB. IFITM1 and IFITM3 Proteins Inhibit the Infectivity of Progeny HIV-1 without Disrupting Envelope Glycoprotein Clusters. Viruses 2023; 15:2390. [PMID: 38140631 PMCID: PMC10748374 DOI: 10.3390/v15122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Human interferon-induced transmembrane (IFITM) proteins inhibit the fusion of a broad spectrum of enveloped viruses, both when expressed in target cells and when present in infected cells. Upon expression in infected cells, IFITMs incorporate into progeny virions and reduce their infectivity by a poorly understood mechanism. Since only a few envelope glycoproteins (Envs) are present on HIV-1 particles, and Env clustering has been proposed to be essential for optimal infectivity, we asked if IFITM protein incorporation modulates HIV-1 Env clustering. The incorporation of two members of the IFITM family, IFITM1 and IFITM3, into HIV-1 pseudoviruses correlated with a marked reduction of infectivity. Super-resolution imaging of Env distribution on single HIV-1 pseudoviruses did not reveal significant effects of IFITMs on Env clustering. However, IFITM3 reduced the Env processing and incorporation into virions relative to the control and IFITM1-containing viruses. These results show that, in addition to interfering with the Env function, IFITM3 restricts HIV-1 Env cleavage and incorporation into virions. The lack of notable effect of IFITMs on Env clustering supports alternative restriction mechanisms, such as modification of the properties of the viral membrane.
Collapse
Affiliation(s)
- Smita Verma
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Yen-Cheng Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| | - Scott E. Gillespie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
da Silva-Januário ME, da Costa CS, Tavares LA, Oliveira AK, Januário YC, de Carvalho AN, Cassiano MHA, Rodrigues RL, Miller ME, Palameta S, Arns CW, Arruda E, Paes Leme AF, daSilva LLP. HIV-1 Nef Changes the Proteome of T Cells Extracellular Vesicles Depleting IFITMs and Other Antiviral Factors. Mol Cell Proteomics 2023; 22:100676. [PMID: 37940003 PMCID: PMC10746527 DOI: 10.1016/j.mcpro.2023.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023] Open
Abstract
Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.
Collapse
Affiliation(s)
- Mara E da Silva-Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina S da Costa
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas A Tavares
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana K Oliveira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Yunan C Januário
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia N de Carvalho
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Murilo H A Cassiano
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger L Rodrigues
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michael E Miller
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Soledad Palameta
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Clarice W Arns
- Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eurico Arruda
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Luis L P daSilva
- Centro de Pesquisa em Virologia (CPV) and Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Li N, Ma RH, Zhang EF, Ge F, Fang DY, Zhang J, Zhang YN, Gao Y, Hou LC, Jin HX. Interferon-induced transmembrane protein 3 in the hippocampus: a potential novel target for the therapeutic effects of recombinant human brain natriuretic peptide on sepsis-associated encephalopathy. Front Mol Neurosci 2023; 16:1182005. [PMID: 37602193 PMCID: PMC10436203 DOI: 10.3389/fnmol.2023.1182005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Objective This study aims to explore whether interferon-induced transmembrane protein 3 (IFITM3) is involved in recombinant human brain natriuretic peptide (rhBNP)-mediated effects on sepsis-induced cognitive dysfunction in mice. Methods The cellular localization and expression level of IFITM3 in the hippocampus were detected. The IFITM3 overexpression was achieved using an intracranial stereotactic system to inject an adeno-associated virus into the hippocampal CA1 region of mice. Field experiments, an elevated plus maze, and conditioned fear memory tests assessed the cognitive impairment in rhBNP-treated septic mice. Finally, in the hippocampus of septic mice, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining and Immunoblot were used to detect changes in the protein expression of cleaved Caspase-8 and cleaved Caspase-3 in apoptosis-related pathways, and toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) p65 in inflammatory pathways. Results Fourteen days after cecal ligation and puncture (CLP) surgery, IFITM3 localized in the plasma membrane and cytoplasm of the astrocytes in the hippocampus of septic mice, partially attached to the perivascular and neuronal surfaces, but not expressed in the microglia. The expression of IFITM3 was increased in the astrocytes and neurons in the hippocampus of septic mice, which was selectively inhibited by the administration of rhBNP. Overexpression of IFITM3 resulted in elevated anxiety levels and long-term learning and memory dysfunction, completely abolished the therapeutic effect of rhBNP on cognitive impairment in septic mice, and induced an increase in the number of neuronal apoptosis in the hippocampal CA1 region. The expression levels of cleaved Caspase-3 and cleaved Caspase-8 proteins were significantly increased in the hippocampus, but the expression levels of TLR4 and NF-κB p65 were not increased. Conclusion The activation of IFITM3 may be a potential new target for treating sepsis-associated encephalopathy (SAE), and it may be one of the key anti-apoptotic mechanisms in rhBNP exerting its therapeutic effect, providing new insight into the clinical treatment of SAE patients.
Collapse
Affiliation(s)
- Nan Li
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui-Hang Ma
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Er-Fei Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Anesthesiology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Feng Ge
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - De-Yu Fang
- Department of Chemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jing Zhang
- Department of Intensive Care Unit, Yue Bei People’s Hospital, The Affiliated Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Yan-Ning Zhang
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yan Gao
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Li-Chao Hou
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hong-Xu Jin
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Degrelle SA, Buchrieser J, Dupressoir A, Porrot F, Loeuillet L, Schwartz O, Fournier T. IFITM1 inhibits trophoblast invasion and is induced in placentas associated with IFN-mediated pregnancy diseases. iScience 2023; 26:107147. [PMID: 37434700 PMCID: PMC10331461 DOI: 10.1016/j.isci.2023.107147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-β demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Françoise Porrot
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
- Vaccine Research Institute, 94010 Créteil, France
| | - Thierry Fournier
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
| |
Collapse
|
10
|
Chen S, Wang S. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction. Front Immunol 2023; 14:1045009. [PMID: 37529051 PMCID: PMC10387544 DOI: 10.3389/fimmu.2023.1045009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
During the first waves of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, olfactory dysfunction (OD) was reported as a frequent clinical sign. The nasal epithelium is one of the front-line protections against viral infections, and the immune responses of the nasal mucosa may be associated with OD. Two mechanisms underlying OD occurrence in COVID-19 have been proposed: the infection of sustentacular cells and the inflammatory reaction of the nasal epithelium. The former triggers OD and the latter likely prolongs OD. These two alternative mechanisms may act in parallel; the infection of sustentacular cells is more important for OD occurrence because sustentacular cells are more likely to be the entry point of SARS-CoV-2 than olfactory neurons and more susceptible to early injury. Furthermore, sustentacular cells abundantly express transmembrane protease, serine 2 (TMPRSS2) and play a major role in the olfactory epithelium. OD occurrence in COVID-19 has revealed crucial roles of sustentacular cells. This review aims to elucidate how immune responses of the nasal epithelium contribute to COVID-19-related OD. Understanding the underlying immune mechanisms of the nasal epithelium in OD may aid in the development of improved medical treatments for COVID-19-related OD.
Collapse
Affiliation(s)
| | - Shufen Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Sim KY, Byeon Y, Bae SE, Yang T, Lee CR, Park SG. Mycoplasma fermentans infection induces human necrotic neuronal cell death via IFITM3-mediated amyloid-β (1-42) deposition. Sci Rep 2023; 13:6864. [PMID: 37100873 PMCID: PMC10132800 DOI: 10.1038/s41598-023-34105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Mycoplasma fermentans is a proposed risk factor of several neurological diseases that has been detected in necrotic brain lesions of acquired immunodeficiency syndrome patients, implying brain invasiveness. However, the pathogenic roles of M. fermentans in neuronal cells have not been investigated. In this study, we found that M. fermentans can infect and replicate in human neuronal cells, inducing necrotic cell death. Necrotic neuronal cell death was accompanied by intracellular amyloid-β (1-42) deposition, and targeted depletion of amyloid precursor protein by a short hairpin RNA (shRNA) abolished necrotic neuronal cell death. Differential gene expression analysis by RNA sequencing (RNA-seq) showed that interferon-induced transmembrane protein 3 (IFITM3) was dramatically upregulated by M. fermentans infection, and knockdown of IFITM3 abolished both amyloid-β (1-42) deposition and necrotic cell death. A toll-like receptor 4 antagonist inhibited M. fermentans infection-mediated IFITM3 upregulation. M. fermentans infection also induced necrotic neuronal cell death in the brain organoid. Thus, neuronal cell infection by M. fermentans directly induces necrotic cell death through IFITM3-mediated amyloid-β deposition. Our results suggest that M. fermentans is involved in neurological disease development and progression through necrotic neuronal cell death.
Collapse
Affiliation(s)
- Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yeongseon Byeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-Eun Bae
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Cho-Rong Lee
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Taurodeoxycholic acid-YAP1 upregulates OTX1 in promoting gallbladder cancer malignancy through IFITM3-dependent AKT activation. Oncogene 2023; 42:1466-1477. [PMID: 36928361 DOI: 10.1038/s41388-023-02660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Orthodenticle homeobox (OTX1) is reported to be involved in numerous cancers, but the expression level and molecular function of OTX1 in gallbladder cancer (GBC) remain unknown. Here, we found the elevated level of OTX1 associated with poor prognosis in human gallbladder cancer. In vitro and in vivo studies of human gallbladder cancer cell lines demonstrated that overexpression of OTX1 promoted cell proliferation, whereas the downregulation inhibited it. Additionally, we found a tight correlation between the serum level of taurodeoxycholic acid (TDCA) and OTX1 expression. TDCA-induced activation of YAP1 by phosphorylation inhibition contributed to the transcriptional activation of OTX1. Mechanistically, we identified that OTX1 activated AKT signaling pathway by transactivating the expression of IFITM3 and thus promoted the proliferation of GBC cells. Taken together, our results showed that TDCA-YAP1-dependent expression of OTX1 regulated IFITM3 and affected GBC proliferation via the AKT signaling pathway. Our experiments also suggested that OTX1 is a novel therapeutic target for GBC.
Collapse
|
13
|
Zhou J, Tian Y, Qu Y, Williams M, Yuan Y, Karvas RM, Sheridan MA, Schulz LC, Ezashi T, Roberts MR, Schust DJ. The immune checkpoint molecule, VTCN1/B7-H4, guides differentiation and suppresses proinflammatory responses and MHC class I expression in an embryonic stem cell-derived model of human trophoblast. Front Endocrinol (Lausanne) 2023; 14:1069395. [PMID: 37008954 PMCID: PMC10062451 DOI: 10.3389/fendo.2023.1069395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
The placenta acts as a protective barrier to pathogens and other harmful substances present in the maternal circulation throughout pregnancy. Disruption of placental development can lead to complications of pregnancy such as preeclampsia, intrauterine growth retardation and preterm birth. In previous work, we have shown that expression of the immune checkpoint regulator, B7-H4/VTCN1, is increased upon differentiation of human embryonic stem cells (hESC) to an in vitro model of primitive trophoblast (TB), that VTCN1/B7-H4 is expressed in first trimester but not term human placenta and that primitive trophoblast may be uniquely susceptible to certain pathogens. Here we report on the role of VTCN1 in trophoblast lineage development and anti-viral responses and the effects of changes in these processes on major histocompatibility complex (MHC) class I expression and peripheral NK cell phenotypes.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Yuchen Tian
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ying Qu
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Madyson Williams
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ye Yuan
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Rowan M. Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A. Sheridan
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Toshihiko Ezashi
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Michael R. Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Villanueva-Aguilar ME, Rizo-de-la-Torre LDC, Granados-Muñiz MDP, Montoya-Fuentes A, Montoya-Fuentes H. The Genetic Variant TNFA (rs361525) Is Associated with Increased Susceptibility to Developing Dengue Symptoms. Viral Immunol 2023; 36:229-237. [PMID: 36730734 DOI: 10.1089/vim.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dengue virus (DENV) is the causal agent of dengue fever. The symptoms and signs of dengue vary from febrile illness to hemorrhagic syndrome. IFITM3 and TNFA are genes of the innate immune system. Variants IFITM3 (rs12252 T>C) and TNFA (rs1800629 G > A and rs361525 G>A) might alter gene expression and change the course of the disease. Our first objective was to determine whether these variants were associated with the susceptibility and severity of dengue. The second was to assess the association of these variants with each symptom. We studied 272 cases with suspected dengue infection, of which 102 were confirmed dengue cases (DENV+) and 170 were dengue-like cases without DENV infection (DENV-). Samples of 201 individuals from the general population of Mexico were included as a reference. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism technique. Odds ratios and confidence intervals were calculated using Pearson's chi-square test and later adjusted for age and sex with a binary logistic regression model. Haldane correction is applied when necessary. We found a significantly higher frequency of the A allele of TNFA rs361525 in both the DENV+ and DENV- groups compared with the general population. Focusing on DENV+ and DENV-, the frequency of the A allele of TNFA rs361525 was higher in the DENV+ group. A broad spectrum of symptoms was related to the A allele of both TNFA variants. We conclude that TNFA rs361525 increases the susceptibility to symptomatic dengue but can also be associated with susceptibility to other dengue-like symptoms from unknown causes.
Collapse
Affiliation(s)
- Mónica Edith Villanueva-Aguilar
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara, Jalisco, México
| | - Lourdes Del Carmen Rizo-de-la-Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - María Del Pilar Granados-Muñiz
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Andrea Montoya-Fuentes
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Héctor Montoya-Fuentes
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
15
|
Abstract
Interferon-inducible transmembrane (IFITM) proteins are small homologous proteins that are encoded by the interferon-stimulated genes (ISGs), which can be strongly induced by interferon (IFN) and provide resistance to invasion by a variety of viral pathogens. However, the exact molecular mechanisms underlying this function have remained elusive. The antiviral activity of IFITMs from different species depends on S-palmitoylation at conserved cysteine residues. However, specific enzymes involved in the dynamic palmitoylation cycle of IFITMs, especially depalmitoylase, have not yet been reported. Here, we demonstrate that α/-hydrolase domain-containing 16A (ABHD16A) is a depalmitoylase and a negative regulator of IFITM protein that can catalyze the depalmitoyl reaction of S-palmitoylated IFITM proteins, thereby decreasing their antiviral activities on RNA viruses. Using the acyl-PEGyl exchange gel shift (APEGS) assay, we identified ABHD16A proteins from humans, pigs, and mice that can directly participate in the palmitoylation/depalmitoylation cycles of IFITMs in the constructed abhd16a-/- cells and ABHD16A-overexpressing cells. Furthermore, we showed that ABHD16A functions as a regulator of subcellular localization of IFITM proteins and is related to the immune system. It is tempting to suggest that pharmacological intervention in IFITMs and ABHD16A can be achieved either through controlling their expression or regulating their activity, thereby providing a broad-spectrum therapeutic strategy for animal viral diseases. IMPORTANCE IFITM protein is the cells first line of antiviral defense that blocks early stages of viral replication; the underlying mechanism might be associated with the proper distribution in cells. The palmitoylation/depalmitoylation cycle can dynamically regulate protein localization, stability, and function. This work is the first one that found the critical enzyme that participates in the palmitoylation/depalmitoylation cycle of IFITM, and this type of palmitoyl loss may be an essential regulation mode for balancing the antiviral functions of the IFN pathway. These findings imply that the pharmacological intervention in IFITM and ABHD16A, either through controlling their expression or regulating their activities, could provide a broad-spectrum therapeutic strategy for animal viral diseases and complications linked to interferon elevation.
Collapse
|
16
|
Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, Eddy AC, Majdoul S, Zhang L, Dempsey T, Beare PA, Kar S, Yewdell JW, Best SM, Yount JS, Compton AA. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. J Clin Invest 2022; 132:e160766. [PMID: 36264642 PMCID: PMC9753997 DOI: 10.1172/jci160766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Tirhas Dempsey
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | | | | | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| |
Collapse
|
17
|
Lista MJ, Winstone H, Wilson HD, Dyer A, Pickering S, Galao RP, De Lorenzo G, Cowton VM, Furnon W, Suarez N, Orton R, Palmarini M, Patel AH, Snell L, Nebbia G, Swanson C, Neil SJD. The P681H Mutation in the Spike Glycoprotein of the Alpha Variant of SARS-CoV-2 Escapes IFITM Restriction and Is Necessary for Type I Interferon Resistance. J Virol 2022; 96:e0125022. [PMID: 36350154 PMCID: PMC9749455 DOI: 10.1128/jvi.01250-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-β) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-β and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-β downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Helena Winstone
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Harry D. Wilson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Adam Dyer
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Rui Pedro Galao
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vanessa M. Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolas Suarez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Luke Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chad Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| |
Collapse
|
18
|
Lou K, Wassarman DR, Yang T, Paung Y, Zhang Z, O’Loughlin TA, Moore MK, Egan RK, Greninger P, Benes CH, Seeliger MA, Taunton J, Gilbert LA, Shokat KM. IFITM proteins assist cellular uptake of diverse linked chemotypes. Science 2022; 378:1097-1104. [PMID: 36480603 PMCID: PMC9924227 DOI: 10.1126/science.abl5829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.
Collapse
Affiliation(s)
- Kevin Lou
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Douglas R. Wassarman
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Tangpo Yang
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
| | - YiTing Paung
- Department of Pharmacological Sciences, Stony Brook
University, Stony Brook, New York 11794-8651, United States
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Department of Chemistry, University of California,
Berkeley, Berkeley, 94720, CA, United States
| | - Thomas A. O’Loughlin
- Helen Diller Family Comprehensive Cancer Center, University
of California, San Francisco, San Francisco, CA 94158, United States
- Department of Urology, University of California, San
Francisco, San Francisco, CA 94158, United States
| | - Megan K. Moore
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
| | - Regina K. Egan
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
| | - Cyril H. Benes
- Center for Cancer Research, Massachusetts General Hospital
Cancer Center, Charlestown, MA 02129, United States
- Department of Medicine, Harvard Medical School, Boston, MA
02115, United States
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook
University, Stony Brook, New York 11794-8651, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
| | - Luke A. Gilbert
- Helen Diller Family Comprehensive Cancer Center, University
of California, San Francisco, San Francisco, CA 94158, United States
- Department of Urology, University of California, San
Francisco, San Francisco, CA 94158, United States
- Innovative Genomics Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Arc Institute, Palo Alto, CA, 94304, United States
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA 94158, United
States
- Howard Hughes Medical Institute, University of California,
San Francisco, San Francisco, CA 94158, United States
- Department of Chemistry, University of California,
Berkeley, Berkeley, 94720, CA, United States
| |
Collapse
|
19
|
Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr Opin Struct Biol 2022; 77:102467. [PMID: 36306674 DOI: 10.1016/j.sbi.2022.102467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 01/30/2023]
Abstract
Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.
Collapse
Affiliation(s)
- I Jiménez-Munguía
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A H Beaven
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - P S Blank
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA
| | - A J Sodt
- Unit on Membrane Chemical Physics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) MD, USA.
| | - J Zimmerberg
- Section on Integrative Biophysics Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), MD, USA.
| |
Collapse
|
20
|
Wang Z, Tuo X, Zhang J, Chai K, Tan J, Qiao W. Antiviral role of IFITM3 in prototype foamy virus infection. Virol J 2022; 19:195. [PMID: 36419065 PMCID: PMC9682733 DOI: 10.1186/s12985-022-01931-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) are retroviruses with unique replication strategies that cause lifelong latent infections in their hosts. FVs can also produce foam-like cytopathic effects in vitro. However, the effect of host cytokines on FV replication requires further investigation. Although interferon induced transmembrane (IFITMs) proteins have become the focus of antiviral immune response research due to their broad-spectrum antiviral ability, it remains unclear whether IFITMs can affect FV replication. METHOD In this study, the PFV virus titer was characterized by measuring luciferase activity after co-incubation of PFVL cell lines with the cell culture supernatants (cell-free PFV) or the cells transfected with pcPFV plasmid/infected with PFV (cell-associated PFV). The foam-like cytopathic effects of PFV infected cells was observed to reflect the virus replication. The total RNA of PFV infected cells was extracted, and the viral genome was quantified by Quantitative reverse transcription PCR to detect the PFV entry into target cells. RESULTS In the present study, we demonstrated that IFITM1-3 overexpression inhibited prototype foamy virus (PFV) replication. In addition, an IFITM3 knockdown by small interfering RNA increased PFV replication. We further demonstrated that IFITM3 inhibited PFV entry into host cells. Moreover, IFITM3 also reduced the number of PFV envelope proteins, which was related to IFITM3 promoted envelope degradation through the lysosomal pathway. CONCLUSIONS Taken together, these results demonstrate that IFITM3 inhibits PFV replication by inhibiting PFV entry into target cells and reducing the number of PFV envelope.
Collapse
Affiliation(s)
- Zhaohuan Wang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Xiaopeng Tuo
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,Present Address: Merck Sharp & Dohme Corp, Building 21, Rongda Road, Chaoyang District, Beijing, 1000102 People’s Republic of China
| | - Junshi Zhang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417031.00000 0004 1799 2675Present Address: Department of Hematology, Oncology Centrer, Tianjin People’s Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Keli Chai
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417303.20000 0000 9927 0537Present Address: Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002 Jiangsu China
| | - Juan Tan
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Wentao Qiao
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
21
|
The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2022; 23:ijms232113627. [PMID: 36362412 PMCID: PMC9655316 DOI: 10.3390/ijms232113627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane proteins participate in various physiological activities in plants, including signal transduction, substance transport, and energy conversion. Although more than 20% of gene products are predicted to be transmembrane proteins in the genome era, due to the complexity of transmembrane domains they are difficult to reliably identify in the predicted protein, and they may have different overall three-dimensional structures. Therefore, it is challenging to study their biological function. In this review, we describe the typical structures of transmembrane proteins and their roles in plant growth, development, and stress responses. We propose a model illustrating the roles of transmembrane proteins during plant growth and response to various stresses, which will provide important references for crop breeding.
Collapse
|
22
|
Shilagardi K, Spear ED, Abraham R, Griffin DE, Michaelis S. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation. mBio 2022; 13:e0254322. [PMID: 36197088 PMCID: PMC9601121 DOI: 10.1128/mbio.02543-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on global public health, emphasizing the importance of understanding innate immune mechanisms and cellular restriction factors that cells can harness to fight viral infections. The multimembrane-spanning zinc metalloprotease ZMPSTE24 is one such restriction factor. ZMPSTE24 has a well-characterized proteolytic role in the maturation of prelamin A, precursor of the nuclear scaffold protein lamin A. An apparently unrelated role for ZMPSTE24 in viral defense involves its interaction with the interferon-inducible membrane proteins (IFITMs), which block virus-host cell fusion by rigidifying cellular membranes and thereby prevent viral infection. ZMPSTE24, like the IFITMs, defends cells against a broad spectrum of enveloped viruses. However, its ability to protect against coronaviruses has never been examined. Here, we show that overexpression of ZMPSTE24 reduces the efficiency of cellular infection by SARS-CoV-2 Spike-pseudotyped lentivirus and that genetic knockout or small interfering RNA-mediated knockdown of endogenous ZMPSTE24 enhances infectivity. We further demonstrate a protective role for ZMPSTE24 in a Spike-ACE2-dependent cell-cell fusion assay. In both assays, a catalytic dead version of ZMPSTE24 is equally as protective as the wild-type protein, indicating that ZMPSTE24's proteolytic activity is not required for defense against SARS-CoV-2. Finally, we demonstrate by plaque assays that Zmpste24-/- mouse cells show enhanced infection by a genuine coronavirus, mouse hepatitis virus (MHV). This study extends the range of viral protection afforded by ZMPSTE24 to include coronaviruses and suggests that targeting ZMPSTE24's mechanism of viral defense could have therapeutic benefit. IMPORTANCE The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has underscored the importance of understanding intrinsic cellular components that can be harnessed as the cell's first line of defense to fight against viral infection. Our paper focuses on one such protein, the integral membrane protease ZMPSTE24, which interacts with interferon-inducible transmembrane proteins (IFITMs). IFITMs interfere with virus entry by inhibiting fusion between viral and host cell membranes, and ZMPSTE24 appears to contribute to this inhibitory activity. ZMPSTE24 has been shown to defend cells against several, but not all, enveloped viruses. In this study, we extend ZMPSTE24's reach to include coronaviruses, by showing that ZMPSTE24 protects cells from SARS-CoV-2 pseudovirus infection, Spike protein-mediated cell-cell fusion, and infection by the mouse coronavirus MHV. This work lays the groundwork for further studies to decipher the mechanistic role of ZMPSTE24 in blocking the entry of SARS-CoV-2 and other viruses into cells.
Collapse
Affiliation(s)
- Khurts Shilagardi
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Eric D. Spear
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rachy Abraham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Michaelis
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Rahman K, Datta SA, Beaven AH, Jolley AA, Sodt AJ, Compton AA. Cholesterol Binds the Amphipathic Helix of IFITM3 and Regulates Antiviral Activity. J Mol Biol 2022; 434:167759. [PMID: 35872070 PMCID: PMC9342930 DOI: 10.1016/j.jmb.2022.167759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023]
Abstract
The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and cholesterol remains unclear. We previously showed that inhibition of IAV entry by IFITM3 is associated with its ability to promote cellular membrane rigidity, and these activities are functionally linked by a shared requirement for the amphipathic helix (AH) found in the intramembrane domain (IMD) of IFITM3. Furthermore, it has been shown that the AH of IFITM3 alters lipid membranes in vitro in a cholesterol-dependent manner. Therefore, we aimed to elucidate the relationship between IFITM3 and cholesterol in more detail. Using a fluorescence-based in vitro binding assay, we found that a peptide derived from the AH of IFITM3 directly interacted with the cholesterol analog, NBD-cholesterol, while other regions of the IFITM3 IMD did not, and native cholesterol competed with this interaction. In addition, recombinant full-length IFITM3 protein also exhibited NBD-cholesterol binding activity. Importantly, previously characterized mutations within the AH of IFITM3 that strongly inhibit antiviral function (F63Q and F67Q) disrupted AH structure in solution, inhibited cholesterol binding in vitro, and restricted bilayer insertion in silico. Our data suggest that direct interactions with cholesterol may contribute to the inhibition of membrane fusion pore formation by IFITM3. These findings may facilitate the design of therapeutic peptides for use in broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Kazi Rahman
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Siddhartha A.K. Datta
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Andrew H. Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States,National Institute of General Medical Sciences, Bethesda, MD 20892, United States
| | - Abigail A. Jolley
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States,Corresponding author
| |
Collapse
|
24
|
Nchioua R, Schundner A, Kmiec D, Prelli Bozzo C, Zech F, Koepke L, Graf A, Krebs S, Blum H, Frick M, Sparrer KMJ, Kirchhoff F. SARS-CoV-2 Variants of Concern Hijack IFITM2 for Efficient Replication in Human Lung Cells. J Virol 2022; 96:e0059422. [PMID: 35543509 PMCID: PMC9175628 DOI: 10.1128/jvi.00594-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Annika Schundner
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
25
|
Vavougios GD, Mavridis T, Artemiadis A, Krogfelt KA, Hadjigeorgiou G. Trained immunity in viral infections, Alzheimer's disease and multiple sclerosis: A convergence in type I interferon signalling and IFNβ-1a. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166430. [DOI: 10.1016/j.bbadis.2022.166430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
|
26
|
Rajah MM, Bernier A, Buchrieser J, Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol 2022; 434:167280. [PMID: 34606831 PMCID: PMC8485708 DOI: 10.1016/j.jmb.2021.167280] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France. https://twitter.com/MaaranRajah
| | - Annie Bernier
- Institut Curie, INSERM U932, Paris, France. https://twitter.com/nini_bernier
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France. https://twitter.com/JBuchrieser
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
27
|
Stott-Marshall RJ, Foster TL. Inhibition of Arenavirus Entry and Replication by the Cell-Intrinsic Restriction Factor ZMPSTE24 Is Enhanced by IFITM Antiviral Activity. Front Microbiol 2022; 13:840885. [PMID: 35283811 PMCID: PMC8915953 DOI: 10.3389/fmicb.2022.840885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In the absence of effective vaccines and treatments, annual outbreaks of severe human haemorrhagic fever caused by arenaviruses, such as Lassa virus, continue to pose a significant human health threat. Understanding the balance of cellular factors that inhibit or promote arenavirus infection may have important implications for the development of effective antiviral strategies. Here, we identified the cell-intrinsic zinc transmembrane metalloprotease, ZMPSTE24, as a restriction factor against arenaviruses. Notably, CRISPR-Cas9-mediated knockout of ZMPSTE24 in human alveolar epithelial A549 cells increased arenavirus glycoprotein-mediated viral entry in pseudoparticle assays and live virus infection models. As a barrier to viral entry and replication, ZMPSTE24 may act as a downstream effector of interferon-induced transmembrane protein (IFITM) antiviral function; though through a yet poorly understood mechanism. Overexpression of IFITM1, IFITM2, and IFITM3 proteins did not restrict the entry of pseudoparticles carrying arenavirus envelope glycoproteins and live virus infection. Furthermore, gain-of-function studies revealed that IFITMs augment the antiviral activity of ZMPSTE24 against arenaviruses, suggesting a cooperative effect of viral restriction. We show that ZMPSTE24 and IFITMs affect the kinetics of cellular endocytosis, suggesting that perturbation of membrane structure and stability is likely the mechanism of ZMPSTE24-mediated restriction and cooperative ZMPSTE24-IFITM antiviral activity. Collectively, our findings define the role of ZMPSTE24 host restriction activity in the early stages of arenavirus infection. Moreover, we provide insight into the importance of cellular membrane integrity for productive fusion of arenaviruses and highlight a novel avenue for therapeutic development.
Collapse
Affiliation(s)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Wolfson Centre for Global Virus Research, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
28
|
Abstract
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical 'do or die' event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.
Collapse
|
29
|
Interferon-Induced Transmembrane Proteins Inhibit Infection by the Kaposi's Sarcoma-Associated Herpesvirus and the Related Rhesus Monkey Rhadinovirus in a Cell-Specific Manner. mBio 2021; 12:e0211321. [PMID: 34933450 PMCID: PMC8689460 DOI: 10.1128/mbio.02113-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit the entry of enveloped viruses. We analyzed the effect of IFITMs on the gamma-2 herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus monkey rhadinovirus (RRV). We used CRISPR/Cas9-mediated gene knockout to generate A549 cells, human foreskin fibroblasts (HFF), and human umbilical vein endothelial cells (HUVEC) with combined IFITM1/2/3 knockout and identified IFITMs as cell-dependent inhibitors of KSHV and RRV infection in A549 cells and HFF but not HUVEC. IFITM overexpression revealed IFITM1 as the relevant IFITM that inhibits KSHV and RRV infection. Fluorescent KSHV particles did not pronouncedly colocalize with IFITM-positive compartments. However, we found that KSHV and RRV glycoprotein-mediated cell-cell fusion is enhanced upon IFITM1/2/3 knockout. Taken together, we identified IFITM1 as a cell-dependent restriction factor of KSHV and RRV that acts at the level of membrane fusion. Of note, our results indicate that recombinant IFITM overexpression may lead to results that are not representative for the situation at endogenous levels. Strikingly, we observed that the endotheliotropic KSHV circumvents IFITM-mediated restriction in HUVEC despite high IFITM expression, while influenza A virus (IAV) glycoprotein-driven entry into HUVEC is potently restricted by IFITMs even in the absence of interferon. Mechanistically, we found that KSHV colocalizes less with IFITM1 and IFITM2 in HUVEC than in A549 cells immediately after attachment, potentially contributing to the observed difference in restriction. IMPORTANCE IFITM proteins are the first line of defense against infection by many pathogens and may also have therapeutic importance, as they, among other effectors, mediate the antiviral effect of interferons. Neither their function against herpesviruses nor their mechanism of action is well understood. We report here that in some cells but not in, for example, primary umbilical vein endothelial cells, IFITM1 restricts KSHV and RRV and that, mechanistically, this is likely effected by reducing the fusogenicity of the cell membrane. Further, we demonstrate potent inhibition of IAV glycoprotein-driven infection of cells of extrapulmonary origin by high constitutive IFITM expression.
Collapse
|
30
|
When good turns bad: how viruses exploit innate immunity factors. Curr Opin Virol 2021; 52:60-67. [PMID: 34872031 DOI: 10.1016/j.coviro.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Humans evolved numerous cell-intrinsic restriction factors as a first line of defense against viral pathogens. Typically, they inhibit efficient viral replication and thus prevent viral zoonoses and pandemics. However, viruses show enormous adaptability and are well known for their ability to counteract antiviral mechanisms. Accumulating evidence shows that some viruses are even capable of exploiting antiviral factors for efficient infection. In addition, antiviral factors may exert enhancing effects under specific circumstances. While much progress has been made in understanding the antiviral mechanisms of restriction factors, their proviral effects are poorly defined. Here, we summarize current knowledge on how viral pathogens may exploit otherwise antiviral cellular factors for efficient infection and replication.
Collapse
|
31
|
Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract 2021; 228:153647. [PMID: 34749207 PMCID: PMC8505027 DOI: 10.1016/j.prp.2021.153647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is more serious in people with underlying diseases, but the cause of healthy people with progressive disease is largely unknown. Host genetic factors such as ACE2 variants, IFITM-3, HLA, TMRSS2, and furin polymorphisms appear to be one of the agents involved in the progression of the COVID-19 and outcome of the disease. This review discusses the general characteristics of SARS-CoV-2, including viral features, receptors, cell entry, clinical findings, and the main human genetic factors that may contribute to the pathogenesis of COVID-19 and get the patients' situation more complex. Further knowledge in this context may help to find a way to prevent and treat this viral pneumonia.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran,Immunology Today, Universal Scientific Education and Research Network (USERN), Tehan, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author at: Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Rahman K, Compton AA. The Indirect Antiviral Potential of Long Noncoding RNAs Encoded by IFITM Pseudogenes. J Virol 2021; 95:e0068021. [PMID: 34319781 PMCID: PMC8513482 DOI: 10.1128/jvi.00680-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interferon-induced transmembrane (IFITM) gene family performs multiple functions in immunity, including inhibition of virus entry into cells. The IFITM repertoire varies widely between species and consists of protein-coding genes and pseudogenes. The selective forces driving pseudogenization within gene families are rarely understood. In this issue, the human pseudogene IFITM4P is characterized as a virus-induced, long noncoding RNA that contributes to restriction of influenza A virus by regulating mRNA levels of IFITM1, IFITM2, and IFITM3.
Collapse
Affiliation(s)
- Kazi Rahman
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
33
|
Abstract
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in endemic regions of northern Asia and central and northern Europe. Interferon induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as the West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show the most significant role being that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of co-culture assays suggest that TBEV might partially escape IFN- and IFITM-mediated suppression during high-density co-culture infection when the virus enters naïve cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. Importance: TBEV infection may result in encephalitis, chronic illness or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new endemic centers arise. Although effective TBEV vaccines have been approved, vaccination coverage is low, and, due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. The IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies regarding the role of IFITM proteins in the TBEV infection have been published so far. Understanding of antiviral innate immune responses is crucial for future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both IFN- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
Collapse
|
34
|
Rajah MM, Hubert M, Bishop E, Saunders N, Robinot R, Grzelak L, Planas D, Dufloo J, Gellenoncourt S, Bongers A, Zivaljic M, Planchais C, Guivel-Benhassine F, Porrot F, Mouquet H, Chakrabarti LA, Buchrieser J, Schwartz O. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation. EMBO J 2021; 40:e108944. [PMID: 34601723 PMCID: PMC8646911 DOI: 10.15252/embj.2021108944] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Severe COVID‐19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS‐CoV‐2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco‐2, Calu‐3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon‐induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS‐CoV‐2 emerging variants display enhanced syncytia formation.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Mathieu Hubert
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Elodie Bishop
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Sorbonne Université, Paris, France
| | - Nell Saunders
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Remy Robinot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Stacy Gellenoncourt
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Alice Bongers
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Marija Zivaljic
- Integrative Neurobiology of Cholinergic Systems, Department of Neuroscience, Institut Pasteur, CNRS UMR 3571, Paris, France.,Sorbonne Université, ED3C "Brain, Cognition, Behavior", Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | | | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Lisa A Chakrabarti
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
36
|
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y, Pan J, Yang J, Zhu H, Mei J. Interferon-Induced Transmembrane Protein 3 Shapes an Inflamed Tumor Microenvironment and Identifies Immuno-Hot Tumors. Front Immunol 2021; 12:704965. [PMID: 34456915 PMCID: PMC8385493 DOI: 10.3389/fimmu.2021.704965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an interferon-induced membrane protein, which has been identified as a functional gene in multiple human cancers. The role of IFITM3 in cancer has been preliminarily summarized, but its relationship to antitumor immunity is still unclear. A pancancer analysis was conducted to investigate the expression pattern and immunological role of IFITM3 based on transcriptomic data downloaded from The Cancer Genome Atlas (TCGA) database. Next, correlations between IFITM3 and immunological features in the bladder cancer (BLCA) tumor microenvironment (TME) were assessed. In addition, the role of IFITM3 in estimating the clinical characteristics and the response to various therapies in BLCA was also evaluated. These results were next confirmed in the IMvigor210 cohort and a recruited cohort. In addition, correlations between IFITM3 and emerging immunobiomarkers, such as microbiota and N6-methyladenosine (m6A) genes, were assessed. IFITM3 was enhanced in most tumor tissues in comparison with adjacent tissues. IFITM3 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, and inhibitory immune checkpoints. In addition, IFITM3 was associated with an inflamed phenotype and several established molecular subtypes. IFITM3 expression also predicted a notably higher response to chemotherapy, anti-EGFR therapy, and immunotherapy but a low response to anti-ERBB2, anti-ERBB4, and antiangiogenic therapy. In addition, IFITM3 was correlated with immune-related microbiota and m6A genes. In addition to BLCA, IFITM3 is expected to be a marker of high immunogenicity in most human cancers. In conclusion, IFITM3 expression can be used to identify immuno-hot tumors in most cancers, and IFITM3 may be a promising pancancer biomarker to estimate the immunological features of tumors.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Wenfei Ji
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Chuan Sun
- Department of Geriatrics, Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Rui Xu
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xuechun Chen
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Deng
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiadong Pan
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Jie Mei
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China.,Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity). We found a high functional heterogeneity among IFITM homologs with respect to both antiviral modalities, with IFITM members that exhibit enhanced viral inhibition, while others have no ability to block HIV-1. These differences could not be ascribed to known regulatory domains and could only be partially explained through differential protein stability, implying the existence of additional mechanisms. Through the use of chimeras between active and inactive IFITMs, we demonstrate that the cross talk between distinct domains of IFITMs is an important contributor of their antiviral potency. Finally, we identified murine IFITMs as natural variants competent for target cell protection, but not for negative imprinting of virion particles' infectivity, suggesting that the two properties may, at least in principle, be uncoupled. Overall, our results shed new light on the complex relationship between IFITMs and viral infection and point to the cross talk between IFITM domains as a novel layer of regulation of their activity. IMPORTANCE IFITMs are broad viral inhibitors capable of interfering with both early and late phases of the replicative cycle of many different viruses. By comparing 21 IFITM proteins issued from different animal species for their ability to inhibit HIV-1, we have identified several that exhibit either enhanced or impaired antiviral behavior. This functional diversity is not driven by differences in known domains and can only be partly explained through differential protein stability. Chimeras between active and inactive IFITMs point to the cross talk between individual IFITM domains as important for optimal antiviral activity. Finally, we show that murine IFITMs are not capable of decreasing the infectivity of newly produced HIV-1 virion particles, although they retain target cell protection abilities, suggesting that these properties may be, in principle, disconnected. Overall, our results shed new light on the complex layers of regulation of IFITM proteins and enrich our current understanding of these broad antiviral factors.
Collapse
|
38
|
HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Curr Opin Virol 2021; 50:59-68. [PMID: 34390925 DOI: 10.1016/j.coviro.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence resonance energy transfer (smFRET) imaging allows observation of these conformational changes on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, some of which inhibit the entry process. The Env structure or its dynamics may determine the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env conformation changes on virus particles and inhibition of Env activities by virion-incorporated host transmembrane proteins.
Collapse
|
39
|
IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021; 12:4584. [PMID: 34321474 PMCID: PMC8319209 DOI: 10.1038/s41467-021-24817-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches. IFITM proteins can inhibit several viruses, but effects on SARS-CoV-2 infection are not well understood. Here, the authors show that endogenous IFITMs support SARS-CoV-2 infection in different in vitro models by binding spike and enhancing virus entry.
Collapse
|
40
|
Abstract
Long noncoding RNAs (lncRNAs) are involved in numerous cellular processes. Increasing evidence suggests that some lncRNAs function in immunity through various complex mechanisms. However, implication of a large fraction of lncRNAs in antiviral innate immunity remains uncharacterized. Here, we identified a lncRNA called lncRNA IFITM4P that was transcribed from interferon induced transmembrane protein 4 pseudogene (IFITM4P), a pseudogene belonging to interferon induced transmembrane protein (IFITM) family. We found that expression of lncRNA IFITM4P was significantly induced by infection with several viruses including influenza A virus (IAV). Importantly, lncRNA IFITM4P acted as a positive regulator of innate antiviral immunity. Ectopic expression of lncRNA IFITM4P significantly suppressed IAV replication in vitro, whereas IFITM4P deficiency promoted the viral production. We further observed that expression of lncRNA IFITM4P was up-regulated by interferon (IFN) signaling during viral infection, and altering the expression of this lncRNA had significant effects on the mRNA levels of several IFITM family members including IFITM1, IFITM2 and IFITM3. Moreover, it was identified that lncRNA IFITM4P was a target of miR-24-3p that represses mRNA of IFITM1, IFITM2 and IFITM3. The experiments demonstrated that lncRNA IFITM4P was able to cross-regulate the expression of IFITM family members as a competing endogenous RNA (ceRNA), leading to increased stability of these IFITM mRNAs. Together, our results reveal that lncRNA IFITM4P, as a ceRNA, is involved in innate immunity against viral infection through the lncRNA IFITM4P-miR-24-3p- IFITM1/2/3 regulatory network. IMPORTANCE LncRNAs play important roles in various biological processes, but their involvement in host antiviral responses remains largely unknown. In this study, we revealed that the pseudogene IFITM4P belonging to IFITM family can transcribe a functional long noncoding RNA termed lncRNA IFITM4P. Importantly, results showed that lncRNA IFITM4P was involved in innate antiviral immunity, which resembles some interferon-stimulated genes (ISGs). Furthermore, lncRNA IFITM4P was identified as a target of miR-24-3p and acts as a ceRNA to inhibit the replication of IAV through regulating the mRNA levels of IFITM1, IFITM2 and IFITM3. These data provide a new insight into the role of a previously uncharacterized lncRNA encoded by a pseudogene in the host antiviral response, and a better understanding of the IFITM antiviral network.
Collapse
|
41
|
Abstract
Type I interferons (IFNs) are a family of cytokines that represent a first line of defense against virus infections. The 12 different IFN-α subtypes share a receptor on target cells and trigger similar signaling cascades. Several studies have collectively shown that this apparent redundancy conceals qualitatively different responses induced by individual subtypes, which display different efficacies of inhibition of HIV replication. Some studies, however, provided evidence that the disparities are quantitative rather than qualitative. Since RNA expression analyses show a large but incomplete overlap of the genes induced, they may support both models. To explore if the IFN-α subtypes induce functionally relevant different anti-HIV activities, we have compared the efficacies of inhibition of all 12 subtypes on HIV spread and on specific steps of the viral replication cycle, including viral entry, reverse transcription, protein synthesis, and virus release. Finding different hierarchies of inhibition would validate the induction of qualitatively different responses. We found that while most subtypes similarly inhibit virus entry, they display distinctive potencies on other early steps of HIV replication. In addition, only some subtypes were able to target effectively the late steps. The extent of induction of known anti-HIV factors helps to explain some, but not all differences observed, confirming the participation of additional IFN-induced anti-HIV effectors. Our findings support the notion that different IFN-α subtypes can induce the expression of qualitatively different antiviral activities. IMPORTANCE The initial response against viruses relies in large part on type I interferons, which include 12 subtypes of IFN-α. These cytokines bind to a common receptor on the cell surface and trigger the expression of incompletely overlapping sets of genes. Whether the anti-HIV responses induced by IFN-α subtypes differ in the extent of expression or in the nature of the genes involved remains debated. Also, RNA expression profiles led to opposite conclusions, depending on the importance attributed to the induction of common or distinctive genes. To explore if relevant anti-HIV activities can be differently induced by the IFN-α subtypes, we compared their relative efficacies on specific steps of the replication cycle. We show that the hierarchy of IFN potencies depends on the step analyzed, supporting qualitatively different responses. This work will also prompt the search for novel IFN-induced anti-HIV factors acting on specific steps of the replication cycle.
Collapse
|
42
|
Buchrieser J, Schwartz O. Pregnancy complications and Interferon-induced transmembrane proteins (IFITM): balancing antiviral immunity and placental development. C R Biol 2021; 344:145-156. [PMID: 34213852 DOI: 10.5802/crbiol.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Pregnancy complications occur frequently and are particularly prevalent during the first trimester. They are caused by a multitude of factors, including karyotypic, genetic or environmental conditions, congenital infections and inflammation. The molecular mechanisms leading to placental complications under inflammatory conditions remain unclear. In this review, we discuss how uncontrolled inflammation, triggered by viral infections or other diseases can lead to placental complications. We first highlight the importance of syncytins, ancestral retroviral genes co-opted by mammals including humans, millions of years ago for the process of placenta formation. We then focus on recent advances elucidating how interferon-induced transmembrane (IFITM) proteins, antiviral proteins rendering cells refractory to viral infections, interfere with placental development.
Collapse
Affiliation(s)
- Julian Buchrieser
- CNRS-UMR3569, Paris, France
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- CNRS-UMR3569, Paris, France
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Curr Biol 2021; 31:3884-3893.e4. [PMID: 34237268 PMCID: PMC8445322 DOI: 10.1016/j.cub.2021.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
The endosomal system constitutes a highly dynamic vesicle network used to relay materials and signals between the cell and its environment.1 Once internalized, endosomes gradually mature into late acidic compartments and acquire a multivesicular body (MVB) organization through invagination of the limiting membrane (LM) to form intraluminal vesicles (ILVs).2 Cargoes sequestered into ILVs can either be delivered to lysosomes for degradation or secreted following fusion of the MVB with the plasma membrane.3 It has been speculated that commitment to ILVs is not a terminal event, and that a return pathway exists, allowing “back-fusion” or “retrofusion” of intraluminal membranes to the LM.4 The existence of retrofusion as a way to support membrane equilibrium within the MVB has been widely speculated in various cell biological contexts, including exosome uptake5 and major histocompatibility complex class II (MHC class II) antigen presentation.6, 7, 8, 9 Given the small physical scale, retrofusion of ILVs cannot be measured with conventional techniques. To circumvent this, we designed a chemically tunable cell-based system to monitor retrofusion in real time. Using this system, we demonstrate that retrofusion occurs as part of the natural MVB lifestyle, with attributes parallel to those of viral infection. Furthermore, we find that retrofusion and exocytosis coexist in an equilibrium, implying that ILVs inert to retrofusion comprise a significant fraction of exosomes destined for secretion. MVBs thus contain three types of ILVs: those committed to lysosomal degradation, those retrofusing ILVs, and those subject to secretion in the form of exosomes. Video abstract
MVBs are complex organelles with intraluminal vesicles bound by the limiting membrane Intraluminal membranes are in a dynamic equilibrium with the limiting membrane Retrofusion of internal vesicles is controlled by processes used for viral fusion Exosomes arise from internal MVB vesicles not participating in retrofusion
Collapse
|
44
|
Lange C, Maldarelli F. Immune Reconstitution Following Allogeneic Stem Cell Transplantation in HIV infected Individuals: Years of Living Danger-ously. Clin Infect Dis 2021; 74:1671-1674. [PMID: 34157095 DOI: 10.1093/cid/ciab565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Camille Lange
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland.,Clinical Retrovirology Section, NCI-Frederick, Frederick, MD
| |
Collapse
|
45
|
Wang H, Wang L, Li J, Fu F, Zheng Y, Zhang L. Molecular characterization, expression and functional analysis of yak IFITM3 gene. Int J Biol Macromol 2021; 184:349-357. [PMID: 34119542 DOI: 10.1016/j.ijbiomac.2021.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023]
Abstract
IFITM3 is interferon-induced transmembrane 3, which plays an extremely key role in anti-proliferation, anti-virus and anti-tumor diseases. In this study, the yak (Bos grunniens) IFITM3 (BgIFITM3) gene contained a 5'-untranslated region (UTR) (25 bp), a coding region (441 bp), and a 3'-UTR (115 bp). The expression of BgIFITM3 gene in liver was significantly higher than that in heart, spleen, lung and kidney (P < 0.01). BgIFITM3 protein was localized on the yak hepatocyte plasma membrane, and its expression was significantly different between 1 day and 15 months of age (P < 0.05). Moreover, the prokaryotic expression vector of BgIFITM3 protein was constructed and expressed successfully, with a molecular weight of 19.5 kDa. The activities of yak hepatocyte were significantly inhibited after treating with BgIFITM3 protein (10 and 20 μg/mL) (P < 0.01). The expression levels of ERBB-2, IRS-1, PI3KR-1, AKT-1 and MAPK-3 were significantly lower after treating with 20 μg/mL BgIFITM3 protein (P < 0.05). Besides, the activities of HepG2 cells were significantly inhibited after treating with BgIFITM3 protein (1, 10 and 20 μg/mL) (P < 0.05). While, the cloning ability and migration ability of HepG2 cells were significantly inhibited after treating with 10 μg/mL BgIFITM3 protein (P < 0.05). Finally, the mitochondria of HepG2 cells was concentrated, cristae widened, and the double film density of mitochondria was increased after treating with 10 μg/mL BgIFITM3 protein. After 10 μg/mL BgIFITM3 protein treating, the expression levels of VDAC-2, VDAC-3 and p53 genes were significantly increased, but the expression level of GPX-4 gene was significantly decreased (P < 0.01). Taken together, the BgIFITM3 protein could inhibit the proliferations of yak hepatocyte and HepG2 cells by regulating the PI3K/Akt pathway or ferroptosis-related genes, respectively. These results benefit for further study of the function of BgIFITM3 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fang Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
46
|
Marziali F, Cimarelli A. Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells 2021; 10:cells10051171. [PMID: 34065027 PMCID: PMC8151167 DOI: 10.3390/cells10051171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-1 is a complex retrovirus that is adapted to replicate in cells of the immune system. To do so, HIV-1, like other viruses, developed strategies to use several cellular processes to its advantage, but had also to come to terms with an arsenal of cellular innate defense proteins, or antiviral factors, that target more or less efficiently, virtually every step of the virus replicative cycle. Among antiviral restriction factors, the family of interferon-induced transmembrane proteins (IFITMs) has emerged as a crucial component of cellular innate defenses for their ability to interfere with both early and late phases of viral replication by inhibiting cellular and viral membranes fusion. Here, we review the enormous advances made since the discovery of IFITMs as interferon-regulated genes more than thirty years ago, with a particular focus on HIV-1 and on the elements that modulate its susceptibility or resistance towards members of this family. Given the recent advances of the field in the elucidation of the mechanism of IFITM inhibition and on the mechanism(s) of viral resistance, we expect that future years will bring novel insights into the definition of the multiple facets of IFITMs and on their possible use for novel therapeutical approaches.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
47
|
Dίaz E. Beyond the AMPA receptor: Diverse roles of SynDIG/PRRT brain-specific transmembrane proteins at excitatory synapses. Curr Opin Pharmacol 2021; 58:76-82. [PMID: 33964729 PMCID: PMC8195862 DOI: 10.1016/j.coph.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are responsible for fast excitatory transmission in the brain. Deficits in synaptic transmission underlie a variety of neurological and psychiatric disorders. However, drugs that target AMPARs are challenging to develop, given the central role played in neurotransmission. Targeting AMPAR auxiliary factors offers an innovative approach for achieving specificity without altering baseline synaptic transmission. This review focuses on the SynDIG/proline-rich transmembrane protein (PRRT) family of AMPAR-associated transmembrane proteins. Although these factors are related based on sequence similarity, the proteins have evolved diverse actions at excitatory synapses that are not limited to the traditional role ascribed to an AMPAR auxiliary factor. SynDIG4/PRRT1 acts as a typical AMPAR auxiliary protein, while PRRT2 functions at presynaptic sites to regulate synaptic vesicle dynamics and is the causative gene for neurological paroxysmal disorders in humans. SynDIG/PRRT proteins are members of a larger superfamily that also include antiviral proteins known to restrict fusion between host and viral membranes and share some interesting characteristics.
Collapse
Affiliation(s)
- Elva Dίaz
- Department of Pharmacology, University of California Davis School of Medicine, 451 Health, Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
48
|
CD225 Proteins: A Family Portrait of Fusion Regulators. Trends Genet 2021; 37:406-410. [DOI: 10.1016/j.tig.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
|
49
|
Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Kerridge C, Doores KJ, Swanson CM, Neil SJD. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. J Virol 2021; 95:e02422-20. [PMID: 33563656 PMCID: PMC8104117 DOI: 10.1128/jvi.02422-20] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The cellular entry of severe acute respiratory syndrome-associated coronaviruses types 1 and 2 (SARS-CoV-1 and -2) requires sequential protease processing of the viral spike glycoprotein. The presence of a polybasic cleavage site in SARS-CoV-2 spike at the S1/S2 boundary has been suggested to be a factor in the increased transmissibility of SARS-CoV-2 compared to SARS-CoV-1 by facilitating maturation of the spike precursor by furin-like proteases in the producer cells rather than endosomal cathepsins in the target. We investigate the relevance of the polybasic cleavage site in the route of entry of SARS-CoV-2 and the consequences this has for sensitivity to interferons (IFNs) and, more specifically, the IFN-induced transmembrane (IFITM) protein family that inhibit entry of diverse enveloped viruses. We found that SARS-CoV-2 is restricted predominantly by IFITM2, rather than IFITM3, and the degree of this restriction is governed by route of viral entry. Importantly, removal of the cleavage site in the spike protein renders SARS-CoV-2 entry highly pH and cathepsin dependent in late endosomes, where, like SARS-CoV-1 spike, it is more sensitive to IFITM2 restriction. Furthermore, we found that potent inhibition of SARS-CoV-2 replication by type I but not type II IFNs is alleviated by targeted depletion of IFITM2 expression. We propose that the polybasic cleavage site allows SARS-CoV-2 to mediate viral entry in a pH-independent manner, in part to mitigate against IFITM-mediated restriction and promote replication and transmission. This suggests that therapeutic strategies that target furin-mediated cleavage of SARS-CoV-2 spike may reduce viral replication through the activity of type I IFNs.IMPORTANCE The furin cleavage site in the spike protein is a distinguishing feature of SARS-CoV-2 and has been proposed to be a determinant for the higher transmissibility between individuals, compared to SARS-CoV-1. One explanation for this is that it permits more efficient activation of fusion at or near the cell surface rather than requiring processing in the endosome of the target cell. Here, we show that SARS-CoV-2 is inhibited by antiviral membrane protein IFITM2 and that the sensitivity is exacerbated by deletion of the furin cleavage site, which restricts viral entry to low pH compartments. Furthermore, we find that IFITM2 is a significant effector of the antiviral activity of type I interferons against SARS-CoV-2 replication. We suggest that one role of the furin cleavage site is to reduce SARS-CoV-2 sensitivity to innate immune restriction, and thus, it may represent a potential therapeutic target for COVID-19 treatment development.
Collapse
Affiliation(s)
- Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Maria Jose Lista
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Alisha C Reid
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Clement Bouton
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Claire Kerridge
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
50
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|