1
|
Holloway AJ, Saito TB, Naqvi KF, Huante MB, Fan X, Lisinicchia JG, Gelman BB, Endsley JJ, Endsley MA. Inhibition of caspase pathways limits CD4 + T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue. Retrovirology 2024; 21:8. [PMID: 38693565 PMCID: PMC11064318 DOI: 10.1186/s12977-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.
Collapse
Affiliation(s)
- Alex J Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Current at the Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 59840, Hamilton, MT, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Medicine, University of Toledo, 43614, Toledo, OH, USA
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA.
| |
Collapse
|
7
|
Klever AM, Alexander KA, Almeida D, Anderson MZ, Ball RL, Beamer G, Boggiatto P, Buikstra JE, Chandler B, Claeys TA, Concha AE, Converse PJ, Derbyshire KM, Dobos KM, Dupnik KM, Endsley JJ, Endsley MA, Fennelly K, Franco-Paredes C, Hagge DA, Hall-Stoodley L, Hayes D, Hirschfeld K, Hofman CA, Honda JR, Hull NM, Kramnik I, Lacourciere K, Lahiri R, Lamont EA, Larsen MH, Lemaire T, Lesellier S, Lee NR, Lowry CA, Mahfooz NS, McMichael TM, Merling MR, Miller MA, Nagajyothi JF, Nelson E, Nuermberger EL, Pena MT, Perea C, Podell BK, Pyle CJ, Quinn FD, Rajaram MVS, Mejia OR, Rothoff M, Sago SA, Salvador LCM, Simonson AW, Spencer JS, Sreevatsan S, Subbian S, Sunstrum J, Tobin DM, Vijayan KKV, Wright CTO, Robinson RT. The Many Hosts of Mycobacteria 9 (MHM9): A conference report. Tuberculosis (Edinb) 2023; 142:102377. [PMID: 37531864 PMCID: PMC10529179 DOI: 10.1016/j.tube.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.
Collapse
Affiliation(s)
- Abigail Marie Klever
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA; CARACAL/Chobe Research Institute Kasane, Botswana
| | - Deepak Almeida
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Gillian Beamer
- Host Pathogen Interactions and Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paola Boggiatto
- Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Jane E Buikstra
- Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA
| | - Bruce Chandler
- Division of Public Health, Alaska Department of Health, AK, USA
| | - Tiffany A Claeys
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Aislinn E Concha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Keith M Derbyshire
- Division of Genetics, The Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA; Hospital Infantil de México Federico Gómez, México, USA
| | | | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK, USA; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Igor Kramnik
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Aveedisian School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Sandrine Lesellier
- French Agency for Food, Environmental & Occupational Health & Safety (ANSES), Laboratory for Rabies and Wildlife,Nancy, France
| | - Naomi R Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Najmus S Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Marlena R Merling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elizabeth Nelson
- Microbial Paleogenomics Unit, Dept of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Claudia Perea
- Animal & Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Charlie J Pyle
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Fred D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Oscar Rosas Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | | | - Saydie A Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew W Simonson
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Srinand Sreevatsan
- Pathobiology & Diagnostic Investigation Department, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - David M Tobin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - K K Vidya Vijayan
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caelan T O Wright
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA.
| |
Collapse
|
9
|
Lane T, Makarov V, Nelson JAE, Meeker RB, Sanna G, Riabova O, Kazakova E, Monakhova N, Tsedilin A, Urbina F, Jones T, Suchy A, Ekins S. N-Phenyl-1-(phenylsulfonyl)-1 H-1,2,4-triazol-3-amine as a New Class of HIV-1 Non-nucleoside Reverse Transcriptase Inhibitor. J Med Chem 2023; 66:6193-6217. [PMID: 37130343 PMCID: PMC10269403 DOI: 10.1021/acs.jmedchem.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Highly active antiretroviral therapy (HAART) has revolutionized human immunodeficiency virus (HIV) healthcare, turning it from a terminal to a potentially chronic disease, although some patients can develop severe comorbidities. These include neurological complications, such as HIV-associated neurocognitive disorders (HAND), which result in cognitive and/or motor function symptoms. We now describe the discovery, synthesis, and evaluation of a new class of N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) aimed at avoiding HAND. The most promising molecule, 12126065, exhibited antiviral activity against wild-type HIV-1 in TZM cells (EC50 = 0.24 nM) with low in vitro cytotoxicity (CC50 = 4.8 μM) as well as retained activity against clinically relevant HIV mutants. 12126065 also demonstrated no in vivo acute or subacute toxicity, good in vivo brain penetration, and minimal neurotoxicity in mouse neurons up to 10 μM, with a 50% toxicity concentration (TC50) of >100 μM, well below its EC50.
Collapse
Affiliation(s)
- Thomas Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Julie A. E. Nelson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina, NC 27514, USA
| | - Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, Monserrato, 09042, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Natalia Monakhova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Andrey Tsedilin
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Fabio Urbina
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Thane Jones
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Ashley Suchy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| |
Collapse
|