1
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
2
|
Seessle J, Liebisch G, Staffer S, Tuma-Kellner S, Merle U, Herrmann T, Chamulitrat W. Enterocyte-specific FATP4 deficiency elevates blood lipids via a shift from polar to neutral lipids in distal intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G202-G216. [PMID: 38915276 DOI: 10.1152/ajpgi.00109.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.
Collapse
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Herrmann
- Department of Medical Clinic 1, Westkuesten Hospital, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Kumar M, Knapp JA, Gupta K, Ryan TA. Isolation and Lipidomic Profiling of Neuronal Lipid Droplets: Unveiling the Lipid Landscape for insights into Neurodegenerative Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571527. [PMID: 38168251 PMCID: PMC10760103 DOI: 10.1101/2023.12.13.571527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Recent advances have expanded the role of lipid droplets (LDs) beyond passive lipid storage, implicating their involvement in various metabolic processes across mammalian tissues. Neuronal LDs, long debated in existence, have been identified in several neural structures, raising questions about their contribution to neurodegenerative disorders. Elucidating the specific chemical makeup of these organelles within neurons is critical for understanding their implication in neural pathologies. This study outlines an improved methodology to stimulate and isolate mature LDs from cultured primary neurons, offering insights into their unique lipid-protein composition. Integrating this method with high-throughput techniques may unveil disease-specific alterations in lipid metabolism, providing avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Justin A Knapp
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kallol Gupta
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
4
|
Assante G, Tourna A, Carpani R, Ferrari F, Prati D, Peyvandi F, Blasi F, Bandera A, Le Guennec A, Chokshi S, Patel VC, Cox IJ, Valenti L, Youngson NA. Reduced circulating FABP2 in patients with moderate to severe COVID-19 may indicate enterocyte functional change rather than cell death. Sci Rep 2022; 12:18792. [PMID: 36335131 PMCID: PMC9637119 DOI: 10.1038/s41598-022-23282-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
Abstract
The gut is of importance in the pathology of COVID-19 both as a route of infection, and gut dysfunction influencing the severity of disease. Systemic changes caused by SARS-CoV-2 gut infection include alterations in circulating levels of metabolites, nutrients and microbial products which alter immune and inflammatory responses. Circulating plasma markers for gut inflammation and damage such as zonulin, lipopolysaccharide and β-glycan increase in plasma along with severity of disease. However, Intestinal Fatty Acid Binding Protein / Fatty Acid Binding Protein 2 (I-FABP/FABP2), a widely used biomarker for gut cell death, has paradoxically been shown to be reduced in moderate to severe COVID-19. We also found this pattern in a pilot cohort of mild (n = 18) and moderately severe (n = 19) COVID-19 patients in Milan from March to June 2020. These patients were part of the first phase of COVID-19 in Europe and were therefore all unvaccinated. After exclusion of outliers, patients with more severe vs milder disease showed reduced FABP2 levels (median [IQR]) (124 [368] vs. 274 [558] pg/mL, P < 0.01). A reduction in NMR measured plasma relative lipid-CH3 levels approached significance (median [IQR]) (0.081 [0.011] vs. 0.073 [0.024], P = 0.06). Changes in circulating lipid levels are another feature commonly observed in severe COVID-19 and a weak positive correlation was observed in the more severe group between reduced FABP2 and reduced relative lipid-CH3 and lipid-CH2 levels. FABP2 is a key regulator of enterocyte lipid import, a process which is inhibited by gut SARS-CoV-2 infection. We propose that the reduced circulating FABP2 in moderate to severe COVID-19 is a marker of infected enterocyte functional change rather than gut damage, which could also contribute to the development of hypolipidemia in patients with more severe disease.
Collapse
Affiliation(s)
- G Assante
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College, London, UK
| | - A Tourna
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College, London, UK
| | - R Carpani
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - F Ferrari
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - D Prati
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - F Peyvandi
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - F Blasi
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - A Bandera
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - A Le Guennec
- Randall Centre for Cell & Molecular Biophysics, King's College, London, UK
| | - S Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College, London, UK
| | - V C Patel
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College, London, UK
- Institute of Liver Studies, King's College Hospital, London, UK
| | - I J Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK.
- Faculty of Life Sciences & Medicine, King's College, London, UK.
| | - L Valenti
- Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy.
| | - N A Youngson
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK.
- Faculty of Life Sciences & Medicine, King's College, London, UK.
| |
Collapse
|
5
|
Dedousis N, Teng L, Kanshana JS, Kohan AB. A single-day mouse mesenteric lymph surgery in mice: an updated approach to study dietary lipid absorption, chylomicron secretion, and lymphocyte dynamics. J Lipid Res 2022; 63:100284. [PMID: 36152881 PMCID: PMC9646667 DOI: 10.1016/j.jlr.2022.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 μl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.
Collapse
Affiliation(s)
- Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Lihong Teng
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jitendra S Kanshana
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alison B Kohan
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Coméra C, Cartier C, Gaultier E, Catrice O, Panouille Q, El Hamdi S, Tirez K, Nelissen I, Théodorou V, Houdeau E. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO 2 particles: an in vivo and ex vivo study in mice. Part Fibre Toxicol 2020; 17:26. [PMID: 32527323 PMCID: PMC7345522 DOI: 10.1186/s12989-020-00357-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Background Food-grade TiO2 (E171 in the EU) is widely used as a coloring agent in foodstuffs, including sweets. Chronic dietary exposure raises concerns for human health due to proinflammatory properties and the ability to induce and promote preneoplastic lesions in the rodent gut. Characterization of intestinal TiO2 uptake is essential for assessing the health risk in humans. We studied in vivo the gut absorption kinetics of TiO2 in fasted mice orally given a single dose (40 mg/kg) to assess the ability of intestinal apical surfaces to absorb particles when available without entrapment in the bolus. The epithelial translocation pathways were also identified ex vivo using intestinal loops in anesthetized mice. Results The absorption of TiO2 particles was analyzed in gut tissues by laser-reflective confocal microscopy and ICP-MS at 4 and 8 h following oral administration. A bimodal pattern was detected in the small intestine: TiO2 absorption peaked at 4 h in jejunal and ileal villi before returning to basal levels at 8 h, while being undetectable at 4 h but significantly present at 8 h in the jejunal Peyer’s patches (PP). Lower absorption occurred in the colon, while TiO2 particles were clearly detectable by confocal microscopy in the blood at 4 and 8 h after treatment. Ex vivo, jejunal loops were exposed to the food additive in the presence and absence of pharmacological inhibitors of paracellular tight junction (TJ) permeability or of transcellular (endocytic) passage. Thirty minutes after E171 addition, TiO2 absorption by the jejunal villi was decreased by 66% (p < 0.001 vs. control) in the presence of the paracellular permeability blocker triaminopyrimidine; the other inhibitors had no significant effect. Substantial absorption through a goblet cell (GC)-associated pathway, insensitive to TJ blockade, was also detected. Conclusions After a single E171 dose in mice, early intestinal uptake of TiO2 particles mainly occurred through the villi of the small intestine, which, in contrast to the PP, represent the main absorption surface in the small intestine. A GC-associated passage and passive diffusion through paracellular TJ spaces between enterocytes appeared to be major absorption routes for transepithelial uptake of dietary TiO2.
Collapse
Affiliation(s)
- Christine Coméra
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France.
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Olivier Catrice
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Quentin Panouille
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Sarah El Hamdi
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Kristof Tirez
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| |
Collapse
|
9
|
Bittel AJ, Bittel DC, Mittendorfer B, Patterson BW, Okunade AL, Yoshino J, Porter LC, Abumrad NA, Reeds DN, Cade WT. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia 2020; 63:611-623. [PMID: 31873788 PMCID: PMC7002271 DOI: 10.1007/s00125-019-05070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Adam J Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA.
| | - Daniel C Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Adewole L Okunade
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Lane C Porter
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| |
Collapse
|
10
|
Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
|
11
|
Traber MG, Leonard SW, Ebenuwa I, Violet PC, Wang Y, Niyyati M, Padayatty S, Tu H, Courville A, Bernstein S, Choi J, Shamburek R, Smith S, Head B, Bobe G, Ramakrishnan R, Levine M. Vitamin E absorption and kinetics in healthy women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase crossover design. Am J Clin Nutr 2019; 110:1148-1167. [PMID: 31495886 PMCID: PMC6821549 DOI: 10.1093/ajcn/nqz172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Determining the human vitamin E [α-tocopherol (α-T)] requirement is difficult, and novel approaches to assess α-T absorption and trafficking are needed. OBJECTIVE We hypothesized that the dual-isotope technique, using 2 deuterium-labeled [intravenous (IV) d6- and oral d3-] α-T, would be effective in determining α-T fractional absorption. Further, defined liquid meal (DLM) fat or fasting would modulate α-T fractional absorption and lipoprotein transport. METHODS A 3-phase cr ossover design was used. At 0 h, participants received IV d6-α-T and consumed d3-α-T with a 600-kcal DLM (40% or 0% fat) followed by controlled meals or by the 0% fat DLM, a 12-h fast, and then controlled meals. Blood samples and fecal samples were collected at intervals and analyzed by LC-MS. Pharmacokinetic parameters were calculated from plasma tracer concentrations and enrichments. Fractional absorption was calculated from d3- to d6-α-T areas under the curve, from a novel mathematical model, and from the balance method (oral d3-α-T minus fecal d3-α-T excreted). RESULTS Estimated α-T fractional absorption during the 40% fat intervention was 55% ± 3% (mean ± SEM; n = 10), which was 9% less than during the 0% fat intervention (64% ± 3%, n = 10; P < 0.02). Fasting had no apparent effect (56% ± 3%, n = 7), except it slowed plasma oral d3-α-T appearance. Both balance data and model outcomes confirmed that the DLM fat did not potentiate d3-α-T absorption. During the IV emulsion clearance, HDL rapidly acquired d6-α-T (21 ± 2 nmol/L plasma per minute). During the first 8 h postdosing, triglyceride-rich lipoproteins (TRLs) were preferentially d3-α-T enriched relative to LDL or HDL, showing the TRL precursor role. CONCLUSIONS Quantitatively, α-T absorption is not limited by fat absence or by fasting. However, α-T leaves the intestine by a process that is prolonged during fasting and potentiated by eating, suggesting that α-T absorption is highly dependent on chylomicron assembly processes. This trial was registered at clinicaltrials.gov as NCT00862433.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA,School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA,Address correspondence to MGT (e-mail: )
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Wang
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Padayatty
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber Courville
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Shanna Bernstein
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robert Shamburek
- Cardiovascular Branch, Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheila Smith
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Li D, Rodia CN, Johnson ZK, Bae M, Muter A, Heussinger AE, Tambini N, Longo AM, Dong H, Lee JY, Kohan AB. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III. J Lipid Res 2019; 60:1503-1515. [PMID: 31152000 PMCID: PMC6718441 DOI: 10.1194/jlr.m092460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Chylomicron metabolism is critical for determining plasma levels of triacylglycerols (TAGs) and cholesterol, both of which are risk factors for CVD. The rates of chylomicron secretion and remnant clearance are controlled by intracellular and extracellular factors, including apoC-III. We have previously shown that human apoC-III overexpression in mice (apoC-IIITg mice) decreases the rate of chylomicron secretion into lymph, as well as the TAG composition in chylomicrons. We now find that this decrease in chylomicron secretion is not due to the intracellular effects of apoC-III, but instead that primary murine enteroids are capable of taking up TAG from TAG-rich lipoproteins (TRLs) on their basolateral surface; and via Seahorse analyses, we find that mitochondrial respiration is induced by basolateral TRLs. Furthermore, TAG uptake into the enterocyte is inhibited when excess apoC-III is present on TRLs. In vivo, we find that dietary TAG is diverted from the cytosolic lipid droplets and driven toward mitochondrial FA oxidation when plasma apoC-III is high (or when basolateral substrates are absent). We propose that this pathway of basolateral lipid substrate transport (BLST) plays a physiologically relevant role in the maintenance of dietary lipid absorption and chylomicron secretion. Further, when apoC-III is in excess, it inhibits BLST and chylomicron secretion.
Collapse
Affiliation(s)
- Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Cayla N Rodia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Zania K Johnson
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Angelika Muter
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Amy E Heussinger
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Nicholas Tambini
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Austin M Longo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
13
|
Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carrière V. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:199-211. [PMID: 29196159 DOI: 10.1016/j.bbalip.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Sara Ghezzal
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Caroline Truntzer
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Plateforme de Lipidomique, INSERM UMR1231, Université de Bourgogne Franche Comté, F-21000 Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France; EPHE, PSL Research University, F-75006 Paris, France
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Armelle Leturque
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Véronique Carrière
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France.
| |
Collapse
|
14
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|