1
|
Okamura T, Hamaguchi M, Kobayashi G, Ichikawa T, Hasegawa Y, Miyoshi T, Senmaru T, Nakanishi N, Sasano R, Fukui M. A multi-omics approach to overeating and inactivity-induced muscle atrophy in db/db mice. J Cachexia Sarcopenia Muscle 2024; 15:2030-2045. [PMID: 39001701 PMCID: PMC11446703 DOI: 10.1002/jcsm.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Overeating and inactivity are associated with type 2 diabetes. This study aimed to investigate its pathological basis using integrated omics and db/db/mice, a model representing this condition. METHODS The study involved housing 8-week-old db/m and db/db mice for 8 weeks. Various analyses were conducted, including gene expression in skeletal muscle and small intestine using next-generation sequencing; cytokine arrays of serum; assessment of metabolites in skeletal muscle, stool, and serum; and analysis of the gut microbiota. Histone modifications in small intestinal epithelial cells were profiled using CUT&Tag. RESULTS Compared with db/m mice, db/db mice had 22.4% lower grip strength and approximately five times the visceral fat weight (P < 0.0001). Serum cytokine arrays showed a 2.8-fold relative concentration of VEGF-A in db/db mice (P < 0.0001) and lower concentrations of several other cytokines. mRNA sequencing revealed downregulation of Myh expression in skeletal muscle, upregulation of lipid and glucose transporters, and downregulation of amino acid transporters in the small intestine of db/db/mice. The concentrations of saturated fatty acids in skeletal muscle were significantly higher, and the levels of essential amino acids were lower in db/db mice. Analysis of the gut microbiota, 16S rRNA sequencing, revealed lower levels of the phylum Bacteroidetes (59.7% vs. 44.9%) and higher levels of the phylum Firmicutes (20.9% vs. 31.4%) in db/db mice (P = 0.003). The integrated signal of histone modifications of lipid and glucose transporters was higher, while the integrated signal of histone modifications of amino acid transporters was lower in the db/db mice. CONCLUSIONS The multi-omics approach provided insights into the epigenomic alterations in the small intestine, suggesting their involvement in the pathogenesis of inactivity-induced muscle atrophy in obese mice.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Genki Kobayashi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Takahiro Ichikawa
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Yuka Hasegawa
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Tomoki Miyoshi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Diabetes and EndocrinologyKyoto Okamoto Memorial HospitalKuzeJapan
| | - Takafumi Senmaru
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Naoko Nakanishi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | | | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| |
Collapse
|
2
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
3
|
Richardson LA, Basu A, Chien LC, Pang T, Alman AC, Snell-Bergeon JK. Longitudinal associations of the alternative healthy eating index with coronary artery calcification and pericardial adiposity in US adults with and without type 1 diabetes. Nutr Metab Cardiovasc Dis 2024; 34:1741-1750. [PMID: 38670920 PMCID: PMC11164634 DOI: 10.1016/j.numecd.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND AIM Long-term associations between the alternative healthy eating index (AHEI) score and two predictive indicators for CVD, pericardial adipose tissue (PAT) and coronary artery calcification (CAC) volume, are lacking. Our study aims to investigate the longitudinal associations of the AHEI score with measures of CAC and PAT in adults with and without type 1 diabetes (T1D). METHODS AND RESULTS The prospective Coronary Artery Calcification in T1D (CACTI) study included 652 people with T1D and 764 people without diabetes (non-DM) (19-56 years old) and was conducted in 2000-2002, 2003-2004, and 2006-2007. At each visit, food frequency questionnaires were collected and PAT and CAC were measured using electron beam computed tomography. Two variables were used for CAC analyses: a continuous variable for the square-root tranformed volume (SRV) for each visit and a second variable identified CAC progression from baseline to visit 3. Mixed effect models and a logistic regression model were used to conduct statistical analyses. A one-point increase in the AHEI score was significantly associated with a -0.12 cm3 (95% CI: -0.17, -0.08; p-value<0.0001) decrease in PAT volume in combined analyses, a -0.16 cm3 (95% CI: -0.22, -0.09; p-value<0.0001) decrease in the non-DM group, a marginally significant -0.07 cm3 (95% CI: -0.14, 0.002; p-value = 0.0571) decrease in the T1D group, and was not associated with either CAC outcome. CONCLUSION The AHEI score is inversely associated with PAT; the association revealed greater magnitude of PAT reduction in the non-DM group. The AHEI score did not associate with CAC progression.
Collapse
Affiliation(s)
- Leigh Ann Richardson
- Department of Epidemiology and Biostatistics, University of Nevada at Las Vegas, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, USA.
| | - Lung-Chang Chien
- Department of Epidemiology and Biostatistics, University of Nevada at Las Vegas, USA
| | - Tiantian Pang
- College of Public Health, University of South Florida, USA
| | - Amy C Alman
- College of Public Health, University of South Florida, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, USA
| |
Collapse
|
4
|
Shi F, Liu Q, Yue D, Zhang Y, Wei X, Wang Y, Ma W. Exploring the effects of the dietary fiber compound mediated by a longevity dietary pattern on antioxidation, characteristic bacterial genera, and metabolites based on fecal metabolomics. Nutr Metab (Lond) 2024; 21:18. [PMID: 38575955 PMCID: PMC10993571 DOI: 10.1186/s12986-024-00787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Age-related dysbiosis of the microbiota has been linked to various negative health outcomes. This study aims to investigate the effects of a newly discovered dietary fiber compound (DFC) on aging, intestinal microbiota, and related metabolic processes. The DFC was identified through in vitro fermentation screening experiments, and its dosage and composition were determined based on a longevity dietary pattern. METHODS Aged SPF C57BL/6 J mice (65 weeks old) and young mice (8 weeks old) were divided into three groups: a subgroup without dietary fiber (NDF), a low DFC dose subgroup (LDF, 10% DFC), and a high DFC dose subgroup (HDF, 20% DFC). The total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) activity, malondialdehyde (MDA) content, and glutathione peroxidase (GSH-Px) activity in liver and serum samples of the mice were measured according to the manufacturer's protocol. The expression levels of characteristic bacterial genera and fecal metabolite concentrations in mice were determined using quantitative real-time PCR (qPCR) and nuclear magnetic resonance hydrogen spectroscopy (1H NMR). Metabolomics analysis was further conducted to identify biological functions and potential pathways related to aging. RESULTS After an 8-weeks dietary intervention, DFC supplementation significantly attenuated age-related weight loss, organ degeneration, and oxidative stress. And promoted the growth of Lactobacillus and Bifidobacterium and inhibited the growth of Escherichia coli (E. coli) and Bacteroides (p < 0.05) in the intestinal tracts of aged mice. Metabolomic analysis identified glycolipid and amino acid metabolic pathway biomarkers associated with aging that were differentially regulated by DFC consumption. Correlation analysis between the identified microbial flora and the biomarkers revealed potential mechanistic links between altered microbial composition and metabolic activity with aging markers. CONCLUSIONS In conclusion, this study revealed an important mechanism by which DFC consumption impacts healthspan and longevity, shedding light on optimizing dietary fiber or developing fiber-based interventions to improve human health.
Collapse
Affiliation(s)
- Fengcui Shi
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China
| | - Qingli Liu
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China
| | - Dayong Yue
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China
| | - Yanan Zhang
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China
| | - Xueying Wei
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China
| | - Ying Wang
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China.
| | - WenJian Ma
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong, China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
5
|
Hashimoto Y, Okamura T, Bamba R, Yoshimura Y, Munekawa C, Kaji A, Miki A, Majima S, Senmaru T, Ushigome E, Takakuwa H, Sasano R, Nakanishi N, Hamaguchi M, Fukui M. Miso, fermented soybean paste, suppresses high-fat/high-sucrose diet-induced muscle atrophy in mice. J Clin Biochem Nutr 2024; 74:63-69. [PMID: 38292116 PMCID: PMC10822755 DOI: 10.3164/jcbn.23-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 02/01/2024] Open
Abstract
This study investigated the effects of miso, a traditional fermented soybean food in Japan, on muscle mass atrophy. Eight week old male C57BL/6J mice were fed high fat/high sucrose diet with or without miso for 12 weeks. A miso diet increased soleus muscle weights (p<0.05) and reduced intraperitoneal glucose tolerance and insulin tolerance (p<0.05). The miso diet downregulated the Tnfα and Ccl2 expression, related to inflammation, and Trim63 and Fbxo32 expression, related to muscle atrophy, in the soleus muscle (p<0.05). The miso diet increased short-chain fatty acids levels, including acetic, propanoic, and butanoic acids, in the feces, serum, and soleus muscle (p<0.05). According to the LEfSe analysis, the miso diet increased family Prevotellaceae, family Christensenellaceae, family Dehalobacterium, family Desulfitibacter; family Deferribacteraceae, order Deferribacterales, class Deferribacteres; and family Gemmatimonadaceae, order Gemmatimonadetes, and class Gemmatimonadales, whereas the miso diet decreased family Microbacteriaceae, order Micrococcales, class Actinobacteria, and family Lactobacillaceae. Miso suppressed high fat/high sucrose diet induced impaired glucose tolerance, low muscle strength, and muscle atrophy by improving dysbiosis and increasing short-chain fatty acids production and provides new insights into the preventive effects of fermented foods on sarcopenia.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55, Sotojima-cho, Moriguchi, Osaka 570-8540, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryo Bamba
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuta Yoshimura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Chihiro Munekawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Akane Miki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Takakuwa
- Agilent Technologies, Chromatography Mass Spectrometry Sales Department, Life Science and Applied Markets Group, 9-1, Takakura-cho, Hachioji, Tokyo 192-8510, Japan
| | - Ryoichi Sasano
- AiSTI Science Co., Ltd., 18-3, Arimoto, Wakayama 640-8390, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
6
|
Baba Y, Saito Y, Kadowaki M, Azuma N, Tsuge D. Effect of Continuous Ingestion of Bifidobacteria and Inulin on Reducing Body Fat: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Study. Nutrients 2023; 15:5025. [PMID: 38140284 PMCID: PMC10745352 DOI: 10.3390/nu15245025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have several positive health effects, including improved defecation frequency and reduced visceral fat. It is known that combined intake of GCL2505 and inulin increases the total number of bifidobacteria compared with ingestion of GCL2505 alone. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that consumption of GCL2505 and inulin reduces abdominal fat (n = 120). Participants consumed a test beverage containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. A change in the visceral fat area (VFA) was set as the primary endpoint. There were significant reductions in VFA and total fat area. The intervention significantly increased the total number of bifidobacteria and affected the levels of several lipid markers. Regression analysis of bifidobacteria and measured parameters showed that total bifidobacteria correlated with VFA and body mass index (BMI), while endogenous bifidobacteria and Bifidobacterium animalis subsp. lactis correlated only with BMI, suggesting that increases in both contributed to the decrease in VFA. These results suggest that combined intake of GCL2505 and inulin improves the intestinal environment and reduces abdominal fat in association with the SCFA-mediated pathway.
Collapse
Affiliation(s)
- Yuhei Baba
- Dairy Business Division, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan
| | - Yasuo Saito
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Mei Kadowaki
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Naoki Azuma
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Daisuke Tsuge
- Shinagawa Season Terrace Health Care Clinic, Shinagawa Season Terrace (5F), 1-2-70 Konan, Minato-Ku, Tokyo 108-0075, Japan;
| |
Collapse
|
7
|
Azuma N, Mawatari T, Saito Y, Tsukamoto M, Sampei M, Iwama Y. Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:4175. [PMID: 37836458 PMCID: PMC10574581 DOI: 10.3390/nu15194175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have some positive effects on health, including improved defecation frequency and reduced visceral fat. These effects are thought to be due to GCL2505's unique ability to reach the intestine in a viable form and proliferate after a single intake. This leads to an increased number of intestinal bifidobacteria. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that intake of GCL2505 and inulin (a prebiotic) improve cognitive function (n = 80). Participants consumed test drinks containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. The change in cognitive function assessment scores was set as the primary endpoint. There were significant improvements in scores in the neurocognitive index domain, which is an assessment of overall cognitive function, in addition to overall attention, cognitive flexibility, and executive function domains. The intervention significantly increased the number of fecal bifidobacteria and affected the levels of several inflammatory markers. These results suggest that intake of GCL2505 and inulin improves cognitive function by improving the intestinal environment and alleviating inflammation.
Collapse
Affiliation(s)
- Naoki Azuma
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5, Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (M.T.); (M.S.)
| | - Takashi Mawatari
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5, Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (M.T.); (M.S.)
| | - Yasuo Saito
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5, Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (M.T.); (M.S.)
| | - Masashi Tsukamoto
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5, Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (M.T.); (M.S.)
| | - Masatoshi Sampei
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5, Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (M.T.); (M.S.)
| | - Yoshitaka Iwama
- Nihonbashi Cardiology Clinic, Kyodo Bldg. #201, 13-4 Nihonbashi Kodenmacho, Chuo-Ku, Tokyo 103-0001, Japan;
| |
Collapse
|
8
|
Salles J, Gueugneau M, Patrac V, Malnero-Fernandez C, Guillet C, Le Bacquer O, Giraudet C, Sanchez P, Collin ML, Hermet J, Pouyet C, Boirie Y, Jacobs H, Walrand S. Associating Inulin with a Pea Protein Improves Fast-Twitch Skeletal Muscle Mass and Muscle Mitochondrial Activities in Old Rats. Nutrients 2023; 15:3766. [PMID: 37686798 PMCID: PMC10490296 DOI: 10.3390/nu15173766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.
Collapse
Affiliation(s)
- Jérôme Salles
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | | | - Christelle Guillet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Christophe Giraudet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Marie-Laure Collin
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Julien Hermet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
| | - Corinne Pouyet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, PlateForme d’Exploration du Métabolisme, MetaboHUB-Clermont, 63000 Clermont-Ferrand, France
| | - Yves Boirie
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| | - Heidi Jacobs
- Cosucra-Groupe Warcoing S.A., 7740 Warcoing, Belgium; (C.M.-F.); (H.J.)
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (V.P.); (C.G.); (O.L.B.); (C.G.); (P.S.); (M.-L.C.); (J.H.); (C.P.); (Y.B.); (S.W.)
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Nakajima H, Okada H, Kobayashi A, Takahashi F, Okamura T, Hashimoto Y, Nakanishi N, Senmaru T, Ushigome E, Hamaguchi M, Fukui M. Leucine and Glutamic Acid as a Biomarker of Sarcopenic Risk in Japanese People with Type 2 Diabetes. Nutrients 2023; 15:2400. [PMID: 37242283 PMCID: PMC10222500 DOI: 10.3390/nu15102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to identify the serum metabolites associated with sarcopenic risk in Japanese patients with type 2 diabetes, determine the effect of dietary protein intake on the serum metabolic profile, and examine its association with sarcopenia. Ninety-nine Japanese patients with type 2 diabetes were included, and sarcopenic risk was defined as low muscle mass or strength. Seventeen serum metabolites were quantified after gas chromatography-mass spectrometry analysis. The relationship between dietary protein intake and the metabolites concerning sarcopenia was analyzed, and the factors affecting sarcopenic risk were clarified. Twenty-seven patients were classified as being at risk of sarcopenia, the same as the general risk, which was associated with older age, a longer duration of the disease, and a lower body mass index. Low levels of leucine and glutamic acid were significantly associated with low muscle strength (p = 0.002 and p < 0.001, respectively), and leucine was also associated with muscle mass (p = 0.001). Lower levels of glutamic acid had higher odds of sarcopenic risk after being adjusted for age and HbA1c (adjusted OR 4.27, 95% CI 1.07-17.11, p = 0.041), but not for leucine. Leucine and glutamic acid can serve as useful biomarkers for sarcopenia, highlighting potential targets for its prevention.
Collapse
Affiliation(s)
- Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Ayaka Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Fuyuko Takahashi
- Nutrition Division, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Yoshitaka Hashimoto
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Osaka 570-8540, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| |
Collapse
|
11
|
Asparagus Fructans as Emerging Prebiotics. Foods 2022; 12:foods12010081. [PMID: 36613297 PMCID: PMC9818401 DOI: 10.3390/foods12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Commercial fructans (inulin and oligofructose) are generally obtained from crops such as chicory, Jerusalem artichoke or agave. However, there are agricultural by-products, namely asparagus roots, which could be considered potential sources of fructans. In this work, the fructans extracted from asparagus roots and three commercial ones from chicory and agave were studied in order to compare their composition, physicochemical characteristics, and potential health effects. Asparagus fructans had similar chemical composition to the others, especially in moisture, simple sugars and total fructan contents. However, its contents of ash, protein and phenolic compounds were higher. FTIR analysis confirmed these differences in composition. Orafti®GR showed the highest degree of polymerization (DP) of up to 40, with asparagus fructans (up to 25) falling between Orafti®GR and the others (DP 10-11). Although asparagus fructan powder had a lower fructan content and lower DP than Orafti®GR, its viscosity was higher, probably due to the presence of proteins. The existence of phenolic compounds lent antioxidant activity to asparagus fructans. The prebiotic activity in vitro of the four samples was similar and, in preliminary assays, asparagus fructan extract presented health effects related to infertility and diabetes diseases. All these characteristics confer a great potential for asparagus fructans to be included in the prebiotics market.
Collapse
|