1
|
Liu R, Collier JM, Abdul-Rahman NH, Capuk O, Zhang Z, Begum G. Dysregulation of Ion Channels and Transporters and Blood-Brain Barrier Dysfunction in Alzheimer's Disease and Vascular Dementia. Aging Dis 2024; 15:1748-1770. [PMID: 38300642 PMCID: PMC11272208 DOI: 10.14336/ad.2023.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jenelle M Collier
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Okan Capuk
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
3
|
Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci 2023; 24:15679. [PMID: 37958666 PMCID: PMC10648501 DOI: 10.3390/ijms242115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.
Collapse
Affiliation(s)
- Laura Carrero
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
- PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28222 Madrid, Spain;
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Gutierrez
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Municio
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| |
Collapse
|
4
|
Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, Pragana A, Taylor M, Kalugin PN, Zawadzki ME, Alturkistani O, Shipley FB, Dani N, Fame RM, Wurie Z, Talati P, Schleicher RL, Klein EM, Zhang Y, Holtzman MJ, Moore CI, Lin PY, Patel AB, Warf BC, Kimberly WT, Steen H, Andermann ML, Lehtinen MK. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron 2023; 111:1591-1608.e4. [PMID: 36893755 PMCID: PMC10198810 DOI: 10.1016/j.neuron.2023.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Post-hemorrhagic hydrocephalus (PHH) refers to a life-threatening accumulation of cerebrospinal fluid (CSF) that occurs following intraventricular hemorrhage (IVH). An incomplete understanding of this variably progressive condition has hampered the development of new therapies beyond serial neurosurgical interventions. Here, we show a key role for the bidirectional Na-K-Cl cotransporter, NKCC1, in the choroid plexus (ChP) to mitigate PHH. Mimicking IVH with intraventricular blood led to increased CSF [K+] and triggered cytosolic calcium activity in ChP epithelial cells, which was followed by NKCC1 activation. ChP-targeted adeno-associated viral (AAV)-NKCC1 prevented blood-induced ventriculomegaly and led to persistently increased CSF clearance capacity. These data demonstrate that intraventricular blood triggered a trans-choroidal, NKCC1-dependent CSF clearance mechanism. Inactive, phosphodeficient AAV-NKCC1-NT51 failed to mitigate ventriculomegaly. Excessive CSF [K+] fluctuations correlated with permanent shunting outcome in humans following hemorrhagic stroke, suggesting targeted gene therapy as a potential treatment to mitigate intracranial fluid accumulation following hemorrhage.
Collapse
Affiliation(s)
- Cameron Sadegh
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Osama Alturkistani
- Cellular Imaging Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zainab Wurie
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pratik Talati
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Riana L Schleicher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Eric M Klein
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Christopher I Moore
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Karimy JK, Newville JC, Sadegh C, Morris JA, Monuki ES, Limbrick DD, McAllister Ii JP, Koschnitzky JE, Lehtinen MK, Jantzie LL. Outcomes of the 2019 hydrocephalus association workshop, "Driving common pathways: extending insights from posthemorrhagic hydrocephalus". Fluids Barriers CNS 2023; 20:4. [PMID: 36639792 PMCID: PMC9838022 DOI: 10.1186/s12987-023-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Hydrocephalus Association (HA) workshop, Driving Common Pathways: Extending Insights from Posthemorrhagic Hydrocephalus, was held on November 4 and 5, 2019 at Washington University in St. Louis. The workshop brought together a diverse group of basic, translational, and clinical scientists conducting research on multiple hydrocephalus etiologies with select outside researchers. The main goals of the workshop were to explore areas of potential overlap between hydrocephalus etiologies and identify drug targets that could positively impact various forms of hydrocephalus. This report details the major themes of the workshop and the research presented on three cell types that are targets for new hydrocephalus interventions: choroid plexus epithelial cells, ventricular ependymal cells, and immune cells (macrophages and microglia).
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Family Medicine, Mountain Area Health Education Center - Boone, North Carolina, 28607, USA
| | - Jessie C Newville
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Cameron Sadegh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, MA, Boston, 02114, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, Neuroscience Center, National Institutes of Health, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD, 20892, USA
| | - Edwin S Monuki
- Departments of Pathology & Laboratory Medicine and Developmental & Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - James P McAllister Ii
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Lauren L Jantzie
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- Kennedy Krieger Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24010878. [PMID: 36614315 PMCID: PMC9821203 DOI: 10.3390/ijms24010878] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The glymphatic system, a fluid-clearance pathway involved in brain waste clearance, is known to be impaired in neurological disorders, including Alzheimer's disease (AD). For this reason, it is important to understand the specific mechanisms and factors controlling glymphatic function. This pathway enables the flow of cerebrospinal fluid (CSF) into the brain and subsequently the brain interstitium, supported by aquaporins (AQPs). Continuous CSF transport through the brain parenchyma is critical for the effective transport and drainage of waste solutes, such as toxic proteins, through the glymphatic system. However, a balance between CSF production and secretion from the choroid plexus, through AQP regulation, is also needed. Thus, any condition that affects CSF homeostasis will also interfere with effective waste removal through the clearance glymphatic pathway and the subsequent processes of neurodegeneration. In this review, we highlight the role of AQPs in the choroid plexus in the modulation of CSF homeostasis and, consequently, the glymphatic clearance pathway, with a special focus on AD.
Collapse
|
7
|
Heiss JD. Cerebrospinal Fluid Hydrodynamics in Chiari I Malformation and Syringomyelia: Modeling Pathophysiology. Neurosurg Clin N Am 2023; 34:81-90. [PMID: 36424067 PMCID: PMC9708110 DOI: 10.1016/j.nec.2022.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anatomic MRI, MRI flow studies, and intraoperative ultrasonography demonstrate that the Chiari I malformation obstructs CSF pathways at the foramen magnum and prevents normal CSF movement through the foramen magnum. Impaired CSF displacement across the foramen magnum during the cardiac cycle increases pulsatile hindbrain motion, pressure transmission to the spinal subarachnoid space, and the amplitude of CSF subarachnoid pressure waves driving CSF into the spinal cord. Central canal septations in adults prevent syrinx formation by CSF directly transmitting its pressure wave from the fourth ventricle to the central canal.
Collapse
Affiliation(s)
- John D Heiss
- Clinical Unit, Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, MSC-1414, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Huang B, Wang H, Yang B. Non-Aquaporin Water Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:331-342. [PMID: 36717505 DOI: 10.1007/978-981-19-7415-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water transport through membrane is so intricate that there are still some debates. AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters, however, are also concerned in water homeostasis. UT-B has a single-channel water permeability that is similar to AQP1. CFTR was initially thought as a water channel but now not believed to transport water directly. By cotransporters, such as KCC4, NKCC1, SGLT1, GAT1, EAAT1, and MCT1, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs.
Collapse
Affiliation(s)
- Boyue Huang
- Laboratory of Neuroscience and Tissue Engineering, Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Laboratory of Regenerative Rehabilitation and Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
10
|
Zhao L, Tannenbaum A, Bakker ENTP, Benveniste H. Physiology of Glymphatic Solute Transport and Waste Clearance from the Brain. Physiology (Bethesda) 2022; 37:0. [PMID: 35881783 PMCID: PMC9550574 DOI: 10.1152/physiol.00015.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022] Open
Abstract
This review focuses on the physiology of glymphatic solute transport and waste clearance, using evidence from experimental animal models as well as from human studies. Specific topics addressed include the biophysical characteristics of fluid and solute transport in the central nervous system, glymphatic-lymphatic coupling, as well as the role of cerebrospinal fluid movement for brain waste clearance. We also discuss the current understanding of mechanisms underlying increased waste clearance during sleep.
Collapse
Affiliation(s)
- Lucy Zhao
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
12
|
Molecular and Cellular Analysis of the Repair of Zebrafish Optic Tectum Meninges Following Laser Injury. Cells 2022; 11:cells11132016. [PMID: 35805100 PMCID: PMC9266167 DOI: 10.3390/cells11132016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
We studied cell recruitment following optic tectum (OT) injury in zebrafish (Danio rerio), which has a remarkable ability to regenerate many of its organs, including the brain. The OT is the largest dorsal layered structure in the zebrafish brain. In juveniles, it is an ideal structure for imaging and dissection. We investigated the recruited cells within the juvenile OT during regeneration in a Pdgfrβ-Gal4:UAS-EGFP line in which pericytes, vascular, circulating, and meningeal cells are labeled, together with neurons and progenitors. We first performed high-resolution confocal microscopy and single-cell RNA-sequencing (scRNAseq) on EGFP-positive cells. We then tested three types of injury with very different outcomes (needle (mean depth in the OT of 200 µm); deep-laser (depth: 100 to 200 µm depth); surface-laser (depth: 0 to 100 µm)). Laser had the additional advantage of better mimicking of ischemic cerebral accidents. No massive recruitment of EGFP-positive cells was observed following laser injury deep in the OT. This type of injury does not perturb the meninx/brain–blood barrier (BBB). We also performed laser injuries at the surface of the OT, which in contrast create a breach in the meninges. Surprisingly, one day after such injury, we observed the migration to the injury site of various EGFP-positive cell types at the surface of the OT. The migrating cells included midline roof cells, which activated the PI3K-AKT pathway; fibroblast-like cells expressing numerous collagen genes and most prominently in 3D imaging; and a large number of arachnoid cells that probably migrate to the injury site through the activation of cilia motility genes, most likely being direct targets of the FOXJ1a gene. This study, combining high-content imaging and scRNAseq in physiological and pathological conditions, sheds light on meninges repair mechanisms in zebrafish that probably also operate in mammalian meninges.
Collapse
|
13
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
14
|
Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans. Neuroimage 2021; 245:118755. [PMID: 34826596 PMCID: PMC7612938 DOI: 10.1016/j.neuroimage.2021.118755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo. We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T2s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.
Collapse
|
15
|
Koike S, Tanaka Y, Morishita Y, Ishibashi K. Effects of osmolality on the expression of brain aquaporins in AQP11-null mice. Biochimie 2021; 188:2-6. [PMID: 33794341 DOI: 10.1016/j.biochi.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Water transport in the brain is tightly controlled by blood-brain-barrier (BBB) composed of capillary endothelial cells expressing AQP1/AQP11 and glial foot processes expressing AQP4. Here we examined each AQP mRNA expression in acute hyponatremic and hypernatremic mouse models of wild type (WT) and AQP11 KO mice (KO). The expressions of AQP1, AQP4 and AQP11 mRNAs were quantified by real-time qRT-PCR analysis of whole brain RNA. Acute hyponatremia enhanced AQP4 expression without changing AQP1 expression in KO, whereas it did not change the expression of all AQPs in WT. On the other hand, acute hypernatremia increased AQP4 but decreased AQP1 expression by half in KO, whereas it decreased AQP1 and AQP11 by half without changing AQP4 expression in WT. Enhanced AQP4 expression by osmotic challenges with sodium in KO seems to be a compensation for the loss of AQP11. A stronger hypertonic stimulation with mannitol decreased all AQPs by 30-80% in WT. Since AQP4 plays an important role in the regulation of brain edema at BBB, the results suggest that AQP11 may also be involved in the osmotic regulation of the brain.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Chemistry, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuko Tanaka
- Department of Pathophysiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Pathophysiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
16
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
17
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Zhan Y, Wu H, Liu L, Lin J, Zhang S. Organic solvent-based tissue clearing techniques and their applications. JOURNAL OF BIOPHOTONICS 2021; 14:e202000413. [PMID: 33715302 DOI: 10.1002/jbio.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.
Collapse
Affiliation(s)
- Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della Syau, Cui J, Shipley FB, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Warf BC, Lin PY, Lehtinen MK. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 2021; 12:447. [PMID: 33469018 PMCID: PMC7815709 DOI: 10.1038/s41467-020-20666-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) provides vital support for the brain. Abnormal CSF accumulation, such as hydrocephalus, can negatively affect perinatal neurodevelopment. The mechanisms regulating CSF clearance during the postnatal critical period are unclear. Here, we show that CSF K+, accompanied by water, is cleared through the choroid plexus (ChP) during mouse early postnatal development. We report that, at this developmental stage, the ChP showed increased ATP production and increased expression of ATP-dependent K+ transporters, particularly the Na+, K+, Cl-, and water cotransporter NKCC1. Overexpression of NKCC1 in the ChP resulted in increased CSF K+ clearance, increased cerebral compliance, and reduced circulating CSF in the brain without changes in intracranial pressure in mice. Moreover, ChP-specific NKCC1 overexpression in an obstructive hydrocephalus mouse model resulted in reduced ventriculomegaly. Collectively, our results implicate NKCC1 in regulating CSF K+ clearance through the ChP in the critical period during postnatal neurodevelopment in mice.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Cameron Sadegh
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher Naranjo
- Summer Honors Undergraduate Research Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Della Syau
- Summer Honors Undergraduate Research Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Amanda Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fan Gao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Bioinformatics Resource Center in the Beckman Institute at Caltech, Pasadena, CA, 91125, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|