1
|
Brazel AJ, Manoj NS, Turck F, Ó'Maoiléidigh DS. Measuring CO 2 assimilation of Arabidopsis thaliana whole plants and seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112295. [PMID: 39423916 DOI: 10.1016/j.plantsci.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Photosynthesis is an essential process in plants that synthesizes sugars used for growth and development, highlighting the importance of establishing robust methods to monitor photosynthetic activity. Infrared gas analysis (IRGA) can be used to track photosynthetic rates by measuring plant CO2 assimilation and release. Although much progress has been made in the development of IRGA technologies, challenges remain when using this technique on small herbaceous plants such as Arabidopsis thaliana. The use of whole plant chambers can overcome the difficulties associated with applying bulky leaf clamps to small delicate leaves. However, respiration from the roots and from soil-based microorganisms may skew these gas exchange measurements. Here, we present a simple method to efficiently perform IRGA on A. thaliana plants using a whole plant chamber that removes the confounding effects of respiration from roots and soil-based microorganisms from the measurements. We show that this method can be used to detect subtle changes in photosynthetic rates measured at different times of day, under different growth conditions, and between wild-type and plants with deficiencies in the photosynthetic machinery. Furthermore, we show that this method can be used to detect changes in photosynthetic rates even at very young developmental stages such as 10 d-old seedlings. This method contributes to the array of techniques currently used to perform IRGA on A. thaliana and can allow for the monitoring of photosynthetic rates of whole plants from young ages.
Collapse
Affiliation(s)
- Ailbhe J Brazel
- Department of Biology, Maynooth University, W23 F2K6, Ireland; Max Plank Institute for Plant Breeding Research, Cologne D-50829, Germany.
| | | | - Franziska Turck
- Max Plank Institute for Plant Breeding Research, Cologne D-50829, Germany.
| | - Diarmuid S Ó'Maoiléidigh
- Department of Biology, Maynooth University, W23 F2K6, Ireland; Department of Biochemistry and Systems Biology, The University of Liverpool, L69 7ZB, United Kingdom.
| |
Collapse
|
2
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Garen JC, Michaletz ST. Fast Assimilation-Temperature Response: a FAsTeR method for measuring the temperature dependence of leaf-level photosynthesis. THE NEW PHYTOLOGIST 2024; 241:1361-1372. [PMID: 37984070 DOI: 10.1111/nph.19405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
We present the Fast Assimilation-Temperature Response (FAsTeR) method, a new method for measuring plant assimilation-temperature (AT) response that reduces measurement time and increases data density compared with conventional methods. The FAsTeR method subjects plant leaves to a linearly increasing temperature ramp while taking rapid, nonequilibrium measurements of gas exchange variables. Two postprocessing steps are employed to correct measured assimilation rates for nonequilibrium effects and sensor calibration drift. Results obtained with the new method are compared with those from two conventional stepwise methods. Our new method accurately reproduces results obtained from conventional methods, reduces measurement time by a factor of c. 3.3 (from c. 90 to 27 min), and increases data density by a factor of c. 55 (from c. 10 to c. 550 observations). Simulation results demonstrate that increased data density substantially improves confidence in parameter estimates and drastically reduces the influence of noise. By improving measurement speed and data density, the FAsTeR method enables users to ask fundamentally new kinds of ecological and physiological questions, expediting data collection in short-field campaigns, and improving the representativeness of data across species in the literature.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Nandal A, Yadav SS, Rao AS, Meena RS, Lal R. Advance methodological approaches for carbon stock estimation in forest ecosystems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:315. [PMID: 36662314 DOI: 10.1007/s10661-022-10898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The forests are a key player in maintaining ecological balance on the earth. They not only conserve biodiversity, reduce soil erosion, and protect watersheds but also promote the above and below-ground ecosystem services. Forests are known as air cleaners on the planet and play a significant role in mitigating greenhouse gas (GHG) emissions into the atmosphere. As per programs launched in the Conference of Parties (COP) 26, there is a need to promote policies and programs to reduce the atmospheric carbon (C) through the forest ecosystem; it is because forests can capture the atmospheric CO2 for a long time and help to achieve the goals of net-zero emission CO2 on the earth. Therefore, there is an urgent need to know the advanced technological approaches for estimating C stock in forest ecosystems. Hence, the present article is aimed at providing a comprehensive protocol for the four C stock estimation approaches. An effort has also been made to compare these methods. This review suggests that tree allometry is the most common method used for the quantification of C stock, but this method has certain limitations. However, the review shows that accurate results can be produced by a combination of two or more methods. We have also analyzed the results of 42 research studies conducted for C stock assessment along with the factors determining the amount of C in different types of forests. The C stock in vegetation is affected by temporal and spatial variation, plantation age, land use, cropping pattern, management practices and elevation, etc. Nevertheless, the available results have a large degree of uncertainty mainly due to the limitations of the methods used. The review supports the conclusion that the uncertainty in C stock measurements can be addressed by the integration of the above-mentioned methods.
Collapse
Affiliation(s)
- Abhishek Nandal
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Amrender Singh Rao
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ram Swaroop Meena
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rattan Lal
- CFAES Rattan Lal Centre for Carbon Management & Sequestration, The Ohio State University, Columbus, 43210, USA
| |
Collapse
|
6
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
7
|
Patono DL, Eloi Alcatrāo L, Dicembrini E, Ivaldi G, Ricauda Aimonino D, Lovisolo C. Technical advances for measurement of gas exchange at the whole plant level: Design solutions and prototype tests to carry out shoot and rootzone analyses in plants of different sizes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111505. [PMID: 36270511 DOI: 10.1016/j.plantsci.2022.111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 05/24/2023]
Abstract
To measure gas exchange at the whole plant (WP) level, design solutions were provided and prototypes of gas-exchange systems (GESs) were tested to carry out shoot and rootzone analyses in plants of different sizes. A WP-GES for small herbaceous plants was tested on the ability to maximize the net assimilation rate of CO2 in lettuce plants grown either under blue-red light or upon full spectrum artificial light. A WP-GES for large woody plants was tested during an experiment describing the drought stress inhibition of grapevine transpiration and photosynthesis. Technical advances pointed to optimize: i) the choice of cuvette material and its technical configuration to allow hermetic isolation of the interface shoot-rootzone, to avoid contamination between the two compartments, and to allow climate control of both shoot and rootzone cuvettes, ii) accurate measurements of the mass air-flow entering both cuvettes, and iii) an adequate homogenization of the cuvette air volume for stable and accurate detection of CO2 and H2O concentration in cuvettes before and after CO2 and H2O contamination of the air volumes exerted by plant organs.
Collapse
Affiliation(s)
- Davide L Patono
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Leandro Eloi Alcatrāo
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Emilio Dicembrini
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Giorgio Ivaldi
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Claudio Lovisolo
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy; Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.
| |
Collapse
|
8
|
Ishihara H, Alseekh S, Feil R, Perera P, George GM, Niedźwiecki P, Arrivault S, Zeeman SC, Fernie AR, Lunn JE, Smith AM, Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. PLANT PHYSIOLOGY 2022; 189:1976-2000. [PMID: 35486376 PMCID: PMC9342969 DOI: 10.1093/plphys/kiac162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Pumi Perera
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gavin M George
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Piotr Niedźwiecki
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Stephanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
9
|
Enzymes degraded under high light maintain proteostasis by transcriptional regulation in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2121362119. [PMID: 35549553 PMCID: PMC9171785 DOI: 10.1073/pnas.2121362119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Photoinhibitory high light stress in plants leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but protein homeostasis (proteostasis) of most enzymes is largely maintained under high light, so we know little about the metabolic consequences of it beyond photosystem damage. We developed a technique to look for rapid protein turnover events in response to high light through 13C partial labeling and detailed peptide mass spectrometry. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of photosystem II, to replace key protein degradation targets in plants and ensure proteostasis under high light stress. Photoinhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light–induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of the photosystem II (PSII) D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.
Collapse
|
10
|
Salvatori N, Giorgio A, Muller O, Rascher U, Peressotti A. A low-cost automated growth chamber system for continuous measurements of gas exchange at canopy scale in dynamic conditions. PLANT METHODS 2021; 17:69. [PMID: 34193215 PMCID: PMC8243713 DOI: 10.1186/s13007-021-00772-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obtaining instantaneous gas exchanges data is fundamental to gain information on photosynthesis. Leaf level data are reliable, but their scaling up to canopy scale is difficult as they are acquired in standard and/or controlled conditions, while natural environments are extremely dynamic. Responses to dynamic environmental conditions need to be considered, as measurements at steady state and their related models may overestimate total carbon (C) plant uptake. RESULTS In this paper, we describe an automatic, low-cost measuring system composed of 12 open chambers (60 × 60 × 150 cm; around 400 euros per chamber) able to measure instantaneous CO2 and H2O gas exchanges, as well as environmental parameters, at canopy level. We tested the system's performance by simulating different CO2 uptake and respiration levels using a tube filled with soda lime or pure CO2, respectively, and quantified its response time and measurement accuracy. We have been also able to evaluate the delayed response due to the dimension of the chambers, proposing a method to correct the data by taking into account the response time ([Formula: see text]) and the residence time (τ). Finally, we tested the system by growing a commercial soybean variety in fluctuating and non-fluctuating light, showing the system to be fast enough to capture fast dynamic conditions. At the end of the experiment, we compared cumulative fluxes with total plant dry biomass. CONCLUSIONS The system slightly over-estimated (+ 7.6%) the total C uptake, even though not significantly, confirming its ability in measuring the overall CO2 fluxes at canopy scale. Furthermore, the system resulted to be accurate and stable, allowing to estimate the response time and to determine steady state fluxes from unsteady state measured values. Thanks to the flexibility in the software and to the dimensions of the chambers, even if only tested in dynamic light conditions, the system is thought to be used for several applications and with different plant canopies by mimicking different environmental conditions.
Collapse
Affiliation(s)
- Nicole Salvatori
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - Alberti Giorgio
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str, 52425, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str, 52425, Jülich, Germany
| | - Alessandro Peressotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
11
|
Beatrice P, Terzaghi M, Chiatante D, Scippa GS, Montagnoli A. Morpho-Physiological Responses of Arabidopsis thaliana L. to the LED-Sourced CoeLux ® System. PLANTS 2021; 10:plants10071310. [PMID: 34203336 PMCID: PMC8309105 DOI: 10.3390/plants10071310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The CoeLux® lighting system reproduces the true effect of natural sunlight entering through an opening in the ceiling, with a realistic sun perceived at an infinite distance surrounded by a clear blue sky. It has already been demonstrated that this new lighting system generates long-term positive effects on human beings; however, there are no investigations so far concerning the plant responses to CoeLux® lighting. To fill this gap, the model plant Arabidopsis thaliana L. was grown at four different distances from the light source, corresponding to four different light intensities (120, 70, 30, 20 μmol m−2 s−1). High-pressure sodium lamps were used as control light. Plant phenology and morpho-physiological traits were monitored to assess for the first time the ability of plants to grow and develop under the light spectrum and intensity of the CoeLux® system. Plants grown at the lower light intensities showed a delayed life cycle and were significantly smaller than plants grown with more light. Furthermore, plants grown under the CoeLux® light type showed an additional deficit when compared to control plants. Overall, our results show that both the light spectrum and intensity of the CoeLux® system had a strong impact on A. thaliana growth performance.
Collapse
Affiliation(s)
- Peter Beatrice
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese (VA), Italy; (D.C.); (A.M.)
- Correspondence:
| | - Mattia Terzaghi
- Department of Chemistry and biology ‘A. Zambelli’, University of Salerno, 84084 Fisciano (SA), Italy;
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese (VA), Italy; (D.C.); (A.M.)
| | | | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese (VA), Italy; (D.C.); (A.M.)
| |
Collapse
|
12
|
Carrera DÁ, George GM, Fischer-Stettler M, Galbier F, Eicke S, Truernit E, Streb S, Zeeman SC. Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3739-3755. [PMID: 33684221 PMCID: PMC8628874 DOI: 10.1093/jxb/erab099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/01/2021] [Indexed: 05/31/2023]
Abstract
Plastid metabolism is critical in both photoautotrophic and heterotrophic plant cells. In chloroplasts, fructose-1,6-bisphosphate aldolase (FBA) catalyses the formation of both fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate within the Calvin-Benson cycle. Three Arabidopsis genes, AtFBA1-AtFBA3, encode plastidial isoforms of FBA, but the contribution of each isoform is unknown. Phylogenetic analysis indicates that FBA1 and FBA2 derive from a recently duplicated gene, while FBA3 is a more ancient paralog. fba1 mutants are phenotypically indistinguishable from the wild type, while both fba2 and fba3 have reduced growth. We show that FBA2 is the major isoform in leaves, contributing most of the measurable activity. Partial redundancy with FBA1 allows both single mutants to survive, but combining both mutations is lethal, indicating a block of photoautotrophy. In contrast, FBA3 is expressed predominantly in heterotrophic tissues, especially the leaf and root vasculature, but not in the leaf mesophyll. We show that the loss of FBA3 affects plastidial glycolytic metabolism of the root, potentially limiting the biosynthesis of essential compounds such as amino acids. However, grafting experiments suggest that fba3 is dysfunctional in leaf phloem transport, and we suggest that a block in photoassimilate export from leaves causes the buildup of high carbohydrate concentrations and retarded growth.
Collapse
Affiliation(s)
| | - Gavin M George
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | - Simona Eicke
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | | |
Collapse
|
13
|
Krahmer J, Abbas A, Mengin V, Ishihara H, Romanowski A, Furniss JJ, Moraes TA, Krohn N, Annunziata MG, Feil R, Alseekh S, Obata T, Fernie AR, Stitt M, Halliday KJ. Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3263-3278. [PMID: 33544130 DOI: 10.1093/jxb/erab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phytochromes in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multiallele phy mutants to investigate the role of phytochrome in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements, and system modelling to investigate why biomass is decreased in adult multiallele phy mutants. Phytochrome influences the synthesis of stress metabolites such as raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phytochrome in metabolic stress physiology and carbon partitioning, and illustrate that phytochrome action at the seedling stage sets the trajectory for adult biomass production.
Collapse
Affiliation(s)
- Johanna Krahmer
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ammad Abbas
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Andrés Romanowski
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| | - James J Furniss
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | | | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
- Institute of Agriculture and Natural Resources, Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Gosa SC, Lupo Y, Moshelion M. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 282:49-59. [PMID: 31003611 DOI: 10.1016/j.plantsci.2018.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/14/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Plants are autotrophic organisms in which there are linear relationships between the rate at which organic biomass is accumulated and many ambient parameters such as water, nutrients, CO2 and solar radiation. These linear relationships are the result of good feedback regulation between a plants sensing of the environment and the optimization of its performance response. In this review, we suggest that continuous monitoring of the plant physiological profile in response to changing ambient conditions could be a useful new phenotyping tool, allowing the characterization and comparison of different levels of functional phenotypes and productivity. This functional physiological phenotyping (FPP) approach can be integrated into breeding programs, which are facing difficulties in selecting plants that perform well under abiotic stress. Moreover, high-throughput FPP will increase the efficiency of the selection of traits that are closely related to environmental interactions (such as plant water status, water-use efficiency, stomatal conductance, etc.) thanks to its high resolution and dynamic measurements. One of the important advantages of FPP is, its simplicity and effectiveness and compatibility with experimental methods that use load-cell lysimeters and ambient sensors. In the future, this platform could help with phenotyping of complex physiological traits, beneficial for yield gain to enhance functional breeding approaches and guide in crop modeling.
Collapse
Affiliation(s)
- Sanbon Chaka Gosa
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yaniv Lupo
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Menachem Moshelion
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Jauregui I, Rothwell SA, Taylor SH, Parry MAJ, Carmo-Silva E, Dodd IC. Whole plant chamber to examine sensitivity of cereal gas exchange to changes in evaporative demand. PLANT METHODS 2018; 14:97. [PMID: 30410567 PMCID: PMC6211548 DOI: 10.1186/s13007-018-0357-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/08/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Improving plant water use efficiency (WUE) is a major target for improving crop yield resilience to adverse climate change. Identifying genetic variation in WUE usually relies on instantaneous measurements of photosynthesis (An) and transpiration (Tr), or integrative measurements of carbon isotope discrimination, at the leaf level. However, leaf gas exchange measurements alone do not adequately represent whole plant responses, especially if evaporative demand around the plant changes. RESULTS Here we describe a whole plant gas exchange system that can rapidly alter evaporative demand when measuring An, Tr and intrinsic WUE (iWUE) and identify genetic variation in this response. An was not limited by VPD under steady-state conditions but some wheat cultivars restricted Tr under high evaporative demand, thereby improving iWUE. These changes may be ABA-dependent, since the barley ABA-deficient mutant (Az34) failed to restrict Tr under high evaporative demand. Despite higher Tr, Az34 showed lower An than wild-type (WT) barley because of limitations in Rubisco carboxylation activity. Tr and An of Az34 were more sensitive than WT barley to exogenous spraying with ABA, which restricted photosynthesis via substrate limitation and decreasing Rubisco activation. CONCLUSIONS Examining whole plant gas exchange responses to altered VPD can identify genetic variation in whole plant iWUE, and facilitate an understanding of the underlying mechanism(s).
Collapse
Affiliation(s)
- Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
- Present Address: Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro Bio-Tech, University of Liège, Gembloux, 5030 Belgium
| | - Shane A. Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Samuel H. Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Martin A. J. Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | | | - Ian C. Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| |
Collapse
|
16
|
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of in vivo photosynthesis so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter also organizes current methods into a comparative framework and provides examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. The chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
|
17
|
Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, Arrivault S, Feil R, Lunn JE, Zeeman SC, Smith AM, Stitt M. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. PLANT PHYSIOLOGY 2017; 174:2199-2212. [PMID: 28663333 PMCID: PMC5543966 DOI: 10.1104/pp.17.00601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/24/2017] [Indexed: 05/17/2023]
Abstract
We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed.
Collapse
Affiliation(s)
- Olivier Fernandez
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Gavin M George
- ETH Zürich, Plant Biochemistry, CH-8092 Zurich, Switzerland
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Anna Flis
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dean Sumner
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
18
|
Clark TJ, Friel CA, Grman E, Shachar‐Hill Y, Friesen ML. Modelling nutritional mutualisms: challenges and opportunities for data integration. Ecol Lett 2017; 20:1203-1215. [DOI: 10.1111/ele.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Teresa J. Clark
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Emily Grman
- Biology Department Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI48197 USA
| | - Yair Shachar‐Hill
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| |
Collapse
|
19
|
Scafaro AP, Negrini ACA, O’Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, Badger MR, Millar AH, Atkin OK. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. PLANT METHODS 2017; 13:16. [PMID: 28344635 PMCID: PMC5361846 DOI: 10.1186/s13007-017-0169-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. RESULTS The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant Rdark through dissection and simultaneous measurements of above- and below-ground organs. DISCUSSION Variation in absolute Rdark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or tissue type.
Collapse
Affiliation(s)
- Andrew P. Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Bayer CropScience SA-NV, Technologiepark 38, 9052 Gent (Zwijnaarde), Belgium
| | - A. Clarissa A. Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - F. Azzahra Ahmad Rashid
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - You Zhang
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Vincent Chochois
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Murray R. Badger
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - A. Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
20
|
Scafaro AP, Negrini ACA, O'Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, Badger MR, Millar AH, Atkin OK. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. PLANT METHODS 2017; 13:16. [PMID: 28344635 DOI: 10.1186/s13007-017-0169-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. RESULTS The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant Rdark through dissection and simultaneous measurements of above- and below-ground organs. DISCUSSION Variation in absolute Rdark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or tissue type.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Bayer CropScience SA-NV, Technologiepark 38, 9052 Gent (Zwijnaarde), Belgium
| | - A Clarissa A Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Brendan O'Leary
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - F Azzahra Ahmad Rashid
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - You Zhang
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Vincent Chochois
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
21
|
Sandoval JF, Yoo CY, Gosney MJ, Mickelbart MV. Growth of Arabidopsis thaliana and Eutrema salsugineum in a closed growing system designed for quantification of plant water use. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:110-118. [PMID: 26967004 DOI: 10.1016/j.jplph.2016.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The identification of genetic determinants for water-use efficiency (WUE) and their incorporation into crop plants is critical as world water resources are predicted to become less stable over the coming decades. However, quantification of WUE in small model species such as Arabidopsis is difficult because of low plant water loss relative to root zone evaporation. Furthermore, measurements of long-term WUE are labor-intensive and time-consuming. A novel high-throughput closed-container growing system for measuring plant WUE is described. The system eliminates nearly all water loss from the media and does not require irrigation throughout the duration of a typical experiment. Using the model species Arabidopsis thaliana and Eutrema salsugineum, it was confirmed that under growth chamber conditions, this system: (1) eliminates the need for irrigation for as much as 30 days with media water content remaining above 80% full capacity; (2) allows for quantification of WUE in plants with a leaf area as small as ca. 20 cm(2); (3) does not inhibit plant growth; and (4) does not alter media conditions outside of an acceptable range for these species. The growing system provides an efficient high-throughput system for quantifying plant water loss and WUE.
Collapse
Affiliation(s)
- Jhon F Sandoval
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States.
| | - Chan Yul Yoo
- Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| | - Michael J Gosney
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States; Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| | - Michael V Mickelbart
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States; Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| |
Collapse
|