1
|
Brand VJ, Milder MT, Christianen ME, de Vries KC, Hoogeman MS, Incrocci L, Froklage FE. First-in-Men Online Adaptive Robotic Stereotactic Body Radiation Therapy: Toward Ultrahypofractionation for High-Risk Prostate Cancer Patients. Adv Radiat Oncol 2025; 10:101701. [PMID: 39866592 PMCID: PMC11758839 DOI: 10.1016/j.adro.2024.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/22/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Ultrahypofractionation presents challenges for a subset of high-risk prostate cancer patients due to the large planning target volume (PTV) margin required for the seminal vesicles. Online adaptive radiation therapy could potentially reduce this margin. This paper focuses on the development, preclinical validation, and clinical testing of online adaptive robotic stereotactic body radiation therapy for this patient group. Methods and Materials An online adaptive workflow was developed for the CyberKnife with integrated in-room CT-on-rails. Preclinical validation involved comparing deep learning-based auto-contouring with deformable or rigid contour propagation in terms of subsequent editing time. A fast treatment planning method was implemented and compared with the conventional method in terms of optimization time and adherence to planning constraints. Clinical testing was conducted in the first study patients of the UPRATE trial, which investigates the feasibility of seminal vesicle PTV margin reduction in low-volume metastasized prostate cancer patients. Treatment time and patient experience were recorded. Results Rigid registration for prostate and deep-learning auto-contouring for seminal vesicles and organs at risk were selected based on editing time and robustness for anatomic changes. The fast treatment planning method reduced the optimization time from 10 to 3.5 minutes (P = .005). No significant differences in dose parameters were observed compared with the conventional plans. During clinical testing, 53 of 60 fast treatment plans adhered to the planning constraints, and all 60 were clinically accepted and delivered. The average total treatment time was 67.7 minutes, showing a downward trend. The treatment was well-experienced overall. Conclusions Online adaptive stereotactic body radiation therapy using CyberKnife with integrated CT-on-rails is clinically feasible for prostate cancer patients with seminal vesicles included in the target volume. The UPRATE trial outcome will reveal the extent to which online adaptation can reduce the PTV margin of the seminal vesicles.
Collapse
Affiliation(s)
- Victor J. Brand
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maaike T.W. Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Miranda E.M.C. Christianen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kim C. de Vries
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mischa S. Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luca Incrocci
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Femke E. Froklage
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Washington CG, Deville C. Health Disparities and Inequities in the Utilization of Proton Therapy for Prostate Cancer. Cancers (Basel) 2024; 16:3837. [PMID: 39594791 PMCID: PMC11593318 DOI: 10.3390/cancers16223837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Our study sought to review and summarize the reported health disparities and inequities in the utilization of proton beam therapy (PBT) for prostate cancer. We queried the PubMed search engine through 12/2023 for original publications examining disparate utilization of PBT for prostate cancer. The query terms included the following: prostate cancer AND proton AND (disparities OR IMRT OR race OR insurance OR socioeconomic OR inequities)". Studies were included if they involved United States patients, examined PBT in prostate cancer, and addressed health inequities. From this query, 22 studies met the inclusion criteria, comprising 13 population-based analyses, 5 single-institutional analyses, 3 cost/modeling investigations, and 1 survey-based study. The analyses revealed that in addition to age-related and insurance-related disparities, race and socioeconomic status played significant roles in the receipt of PBT. The likelihood of receiving PBT was lower for non-White patients in population-based and single-institution analyses. Socioeconomic metrics, such as higher median income and higher education level, portended an increased likelihood of receiving PBT. Conclusively, substantial age-based, racial, socioeconomic/insurance-related, and facility-associated disparities and inequities existed for PBT utilization in prostate cancer. The identification of these disparities provides a framework to better address these as the utility of PBT continues to expand across the US and globally.
Collapse
Affiliation(s)
- Cyrus Gavin Washington
- Department of Radiation Oncology, University of Miami-Sylvester Comprehensive Cancer Center, Jackson Memorial Hospital, Miami, FL 33136, USA;
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Jiang D, Yang C, Sun S, Wang D, Xiao Z, Hu J, Mei Z, Xie C, Liu H, Qiu H, Wang X. First implementation and results of online adaptive radiotherapy for cervical cancer based on CT-Linac combination. Front Oncol 2024; 14:1399468. [PMID: 39610921 PMCID: PMC11602513 DOI: 10.3389/fonc.2024.1399468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose To assess the dosimetric effectiveness of image-guided radiation treatment (IGRT) and online adaptive radiation therapy (oART) for cervical cancer. As well as survival follow-up was conducted to validated the safety and efficacy of oART. Methods A total of 15 cervical cancer patients were enrolled. oART was performed on a CT-integrated linear accelerator. The initial plan was revised to include the distribution of IGRT dose using daily fan-beam CT (FBCT) images, after which the distinctions between ART and IGRT in terms of target coverage and organs at risk (OARs) sparing were analyzed. Survival follow-up was conducted to validated the safety and efficacy of oART in this group. Results PTV Dmax value decreased by 1.23 Gy in the ART plan when compared to that in the IGRT plan; PTV D95 increased by 1.34 Gy; PTV V50 coverage increased by 4.86%; CTV coverage increased by 3.02%; PTV D2cc of the colon, rectum, and small intestine decreased by 1.24 Gy, 1.29 Gy, and 1.12 Gy, respectively. The V10 and V30 of the pelvis increased by 1.27% and 0.56%, respectively, while the V30 of the left and right femoral heads dropped by 2.82% and 3.41%, respectively. Except for the pelvic changes, all other differences were statistically significant (p < 0.01). The average time for the ART procedure was 21.22 min (range: 18.72-24.90 min). The median follow-up time is 28.0 months. Median event-free survival and overall survival were not reached. EFS rate and OS rate at 3 years were 79.4% and 92.9%. Conclusion Online ART for cervical cancer can minimize the dose of OARs and enhance the target volume coverage significantly when compared to IGRT with satisfied survival time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui Qiu
- *Correspondence: Xiaoyong Wang, ; Hui Qiu,
| | | |
Collapse
|
4
|
Wang G, Wang Z, Zhang Y, Sun X, Sun Y, Guo Y, Zeng Z, Zhou B, Hu K, Qiu J, Yan J, Zhang F. Daily Online Adaptive Radiation Therapy of Postoperative Endometrial and Cervical Cancer With PTV Margin Reduction to 5 mm: Dosimetric Outcomes, Acute Toxicity, and First Clinical Experience. Adv Radiat Oncol 2024; 9:101510. [PMID: 38826155 PMCID: PMC11140188 DOI: 10.1016/j.adro.2024.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose This study evaluated the first clinical implementation of daily iterative cone beam computed tomography (iCBCT)-guided online adaptive radiation therapy (oART) in the postoperative treatment of endometrial and cervical cancer. Methods and Materials Seventeen consecutive patients treated with daily iCBCT-guided oART were enrolled in this prospective study, with a reduced uniform 3-dimensional PTV margin of 5 mm. Treatment plans were designed to deliver 45 or 50.4 Gy in 1.8 Gy daily fractions to PTV. Pre- and posttreatment ultrasound and iCBCT scans were performed to record intrafractional bladder and rectal volume changes. The accuracy of contouring, oART procedure time, dosimetric outcomes, and acute toxicity were evaluated. Results The average time from first iCBCT acquisition to completion of treatment was 22 minutes and 26 seconds. During this period, bladder volume increased by 44 cm3 using iCBCT contouring, whereas rectal volume remained stable (62.9 cm3 pretreatment vs 61.9 cm3 posttreatment). A total of 91.6% of influencers and 88.1% of CTVs required no or minor edits. The adapted plan was selected in all (434) fractions and significantly improved the dosimetry coverage for CTV and PTV, especially the vaginal PTV coverage by nearly 7% (P < .05). The adapted bladder Dmean was 104.61 cGy, and the rectum Dmean was 123.67 cGy, significantly lower than the scheduled plan of 108.24 and 128.19 cGy, respectively. The bone marrow and femur head left and right dosimetry were also improved with adaptation. Grade 2 acute gastrointestinal and genitourinary toxicities were 24% and 0, respectively. There was a grade 3 acute toxicity of decreased white blood cell count in 1 patient. Conclusions Daily oART was associated with favorable dosimetry improvement and low acute toxicity, supporting its safety and efficacy for postoperative treatment of endometrial and cervical cancer. These results need to be validated in a larger prospective randomized controlled cohort.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiqun Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiansong Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuliang Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuping Guo
- Tumor Hospital affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Zeng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bing Zhou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Gonsalves D, Ocanto A, Meilan E, Gomez A, Dominguez J, Torres L, Pascual CF, Teja M, Linde MM, Guijarro M, Rivas D, Begara J, González JA, Andreescu J, Holgado E, Alcaraz D, López E, Dzhugashvli M, Lopez-Campos F, Alongi F, Couñago F. Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers (Basel) 2024; 16:1685. [PMID: 38730637 PMCID: PMC11083553 DOI: 10.3390/cancers16091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This observational, descriptive, longitudinal, and prospective basket-type study (Registry #5289) prospectively evaluated the feasibility and acute toxicity of hypo-fractionated radiotherapy on the first 0.35T MR-LINAC in Spain. A total of 37 patients were included between August and December 2023, primarily with prostate tumors (59.46%), followed by pancreatic tumors (32.44%). Treatment regimens typically involved extreme hypo-fractionated radiotherapy, with precise dose delivery verified through quality assurance measures. Acute toxicity assessment at treatment completion revealed manageable cystitis, with one case persisting at the three-month follow-up. Gastrointestinal toxicity was minimal. For pancreatic tumors, daily adaptation of organ-at-risk (OAR) and gross tumor volume (GTV) was practiced, with median doses to OAR within acceptable limits. Three patients experienced gastrointestinal toxicity, mainly nausea. Overall, the study demonstrates the feasibility and safety of extreme hypo-fractionated radiotherapy on a 0.35T MR-LINAC, especially for challenging anatomical sites like prostate and pancreatic tumors. These findings support the feasibility of MR-LINAC-based radiotherapy in delivering precise treatments with minimal toxicity, highlighting its potential for optimizing cancer treatment strategies.
Collapse
Affiliation(s)
- Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Eduardo Meilan
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Alberto Gomez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Jesus Dominguez
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Castalia Fernández Pascual
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Miguel Montijano Linde
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Daniel Rivas
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Jose Begara
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | | | - Jon Andreescu
- Department of Radiation Oncology, GenesisCare Cordoba, 14012 Madrid, Spain;
| | - Esther Holgado
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Diego Alcaraz
- Department of Medical Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (E.H.); (D.A.)
| | - Escarlata López
- Department of Radiation Oncology, GenesisCare Málaga, 29018 Madrid, Spain; (D.R.); (J.B.); (E.L.)
| | - Maia Dzhugashvli
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Fernando Lopez-Campos
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy;
- Radiation Oncology School, University of Brescia, 25121 Brescia, Italy
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (A.O.); (L.T.); (C.F.P.); (M.T.); (M.M.L.); (M.G.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain; (E.M.); (A.G.); (M.D.); (F.L.-C.)
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
6
|
Snyder J, Smith B, Aubin JS, Shepard A, Hyer D. Simulating an intra-fraction adaptive workflow to enable PTV margin reduction in MRIgART volumetric modulated arc therapy for prostate SBRT. Front Oncol 2024; 13:1325105. [PMID: 38260830 PMCID: PMC10800949 DOI: 10.3389/fonc.2023.1325105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose This study simulates a novel prostate SBRT intra-fraction re-optimization workflow in MRIgART to account for prostate intra-fraction motion and evaluates the dosimetric benefit of reducing PTV margins. Materials and methods VMAT prostate SBRT treatment plans were created for 10 patients using two different PTV margins, one with a 5 mm margin except 3 mm posteriorly (standard) and another using uniform 2 mm margins (reduced). All plans were prescribed to 36.25 Gy in 5 fractions and adapted onto each daily MRI dataset. An intra-fraction adaptive workflow was simulated for the reduced margin group by synchronizing the radiation delivery with target position from cine MRI imaging. Intra-fraction delivered dose was reconstructed and prostate DVH metrics were evaluated under three conditions for the reduced margin plans: Without motion compensation (no-adapt), with a single adapt prior to treatment (ATP), and lastly for intra-fraction re-optimization during delivery (intra). Bladder and rectum DVH metrics were compared between the standard and reduced margin plans. Results As expected, rectum V18 Gy was reduced by 4.4 ± 3.9%, D1cc was reduced by 12.2 ± 6.8% (3.4 ± 2.3 Gy), while bladder reductions were 7.8 ± 5.6% for V18 Gy, and 9.6 ± 7.3% (3.4 ± 2.5 Gy) for D1cc for the reduced margin reference plans compared to the standard PTV margin. For the intrafraction replanning approach, average intra-fraction optimization times were 40.0 ± 2.9 seconds, less than the time to deliver one of the four VMAT arcs (104.4 ± 9.3 seconds) used for treatment delivery. When accounting for intra-fraction motion, prostate V36.25 Gy was on average 96.5 ± 4.0%, 99.1 ± 1.3%, and 99.6 ± 0.4 for the non-adapt, ATP, and intra-adapt groups, respectively. The minimum dose received by the prostate was less than 95% of the prescription dose in 84%, 36%, and 10% of fractions, for the non-adapt, ATP, and intra-adapt groups, respectively. Conclusions Intra-fraction re-optimization improves prostate coverage, specifically the minimum dose to the prostate, and enables PTV margin reduction and subsequent OAR sparing. Fast re-optimizations enable uninterrupted treatment delivery.
Collapse
Affiliation(s)
- Jeffrey Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
7
|
Nicosia L, Ravelli P, Rigo M, Giaj-Levra N, Mazzola R, Pastorello E, Ricchetti F, Allegra AG, Ruggieri R, Alongi F. Prostate volume variation during 1.5T MR-guided adaptive stereotactic body radiotherapy (SBRT) and correlation with treatment toxicity. Radiother Oncol 2024; 190:110043. [PMID: 38056694 DOI: 10.1016/j.radonc.2023.110043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION To evaluate prostate volume change during daily-adaptive prostate SBRT on 1.5 T MR-linac and to correlate it with treatment toxicity. METHODS a series of patients affected by low-to-intermediate risk prostate cancer was treated by 5-fraction SBRT within a prospective study (Prot. n° 23748). Total dose was 35 Gy and 36.25 Gy delivered every day or on alternate days. Treatment toxicity was recorded with the following patient reported outcomes (PROMs): IPSS, ICIQ-SF, and EPIC-26. RESULTS 254 patients were included in the analysis. Baseline median CTV volume was 55 cc (range 15.3-163.3). Mean prostate volume were 58.9 cc, and 62.7 cc at first and last fraction respectively (mean volume increase 6.4 %; p = <0.0001). We observed prostate swelling (mean 15.4 % increase) in 50 % of cases, stable volume (≤5% volume change) in 39 % of patients, and prostate shrinkage in 11 % of cases (mean 12.2 % reduction). Baseline CTV > 55 cc showed a trend towards higher CTV shrinkage (-10.5 % versus -14.5 %; p = 0.052). We found no correlation between CTV change and PROMs. Prostate swelling was generally compensated by the planned PTV expansion, even though the mean setup volume dropped from 47.4 cc to 38.9 cc at last fraction, with few cases not covered by initial setup margins. CONCLUSION The present study reported a significant prostate volume change during prostate SBRT on 1.5T MR-linac. We observed both prostate swelling in half of cases and few cases of prostate shrinkage. No correlations were found with PROMs in this population treatment with daily-adaptive strategy.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy.
| | - Paolo Ravelli
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Edoardo Pastorello
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Andrea Gaetano Allegra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy; University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Sandoval ML, Rishi A, Latifi K, Grass GD, Torres-Roca J, Rosenberg SA, Yamoah K, Johnstone PAS. Clinical Outcomes of Prostate SBRT Using Non-adaptive MR-Guided Radiotherapy. Cancer Control 2024; 31:10732748241270595. [PMID: 39206515 PMCID: PMC11363040 DOI: 10.1177/10732748241270595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Stereotactic body radiotherapy (SBRT) is widely used for localized prostate cancer and implementation of MR-guided radiotherapy has the advantage of tighter margins and improved sparing of organs at risk. Here we evaluate outcomes and time required to treat using non-adaptive MR-guided SBRT (MRgSBRT) for localized prostate cancer at our institution. METHODS From 9/2019 to 11/2021 we conducted a retrospective review of 80 consecutive patients who were treated with MRgSBRT to the prostate. Patients included low (LR) (5%), favorable intermediate (FIR) (40%), unfavorable intermediate (UIR) (49%), and high risk (HR) (6%). Short-term androgen deprivation therapy was used in 32% of patients. Target volumes included prostate gland and proximal seminal vesicles with an isotropic 3 mm margin. Treatment was prescribed to 36.25 Gy in 5 fractions every other day with urethral sparing. Hydrogel spacer was used in 18% of patients. Time on the linac was recorded as beam on time (BOT) plus total treatment time (TTT) including gating. Analyzed outcomes included PSA response and patient reported outcomes scored by the American Urological Association (AUA) questionnaire and toxicity per CTCAE v5. General linear regression model was used to analyze factors affecting PSA and AUA in longitudinal follow up, and chi-square test was used to assess factors affecting toxicity. RESULTS Median follow up was 19.3 months (3.8 - 36.6). Median BOT was 4.6 min (2.6 - 7.2) with a median TTT of 11 min (7.6 - 15.8). Pre-treatment vs post-RT median PSA was 6.36 (2.20 - 19.6) vs 0.85 (0.19 - 3.6), respectively (P < 0.001). PSA decrease differed significantly when patients were stratified by risk category, favoring LR/FIR vs UIF/HR group (P = 0.019). Four (5%) patients experienced a biochemical failure (BCF), with a median time to BCF of 20.4 months (7.9 - 34.5). Median biochemical failure free survival (BCFFS) was not reached, with 2-yr and 4-yr BCFFS of 97.1% and 72.1%, respectively. Patients with LR/FIR disease had 100% 2-yr and 4-yr BCFFS, whereas patients with UIF/HR had 95% and 41% 2-yr and 4-yr BCFFS (P = 0.05). Mean pre-treatment AUA was 7.3 (1 - 25) vs 11.3 (1 - 26) at first follow-up; however, AUA normalized to baseline over time. Urethral Dmax ≥35 Gy trended to lower AUA score at all follow-ups (P = 0.07). Forty-one (51%) patients reported grade 1-2 genitourinary toxicities at the 1 month follow up. Grade 3 toxicity (proctitis) was noted in 1 patient. There was no decrease in any grade rectal toxicity with use of hydrogel spacer (3 vs 6, P = 0.2). No grade ≥4 toxicities was observed. CONCLUSIONS MRgSBRT has the potential for treatment adaptation but this comes at the cost of increased resource utilization. Our experience with non-adaptive MRgSBRT of the prostate highlights its short treatment times as well as efficacy with good PSA control and low toxicity profile.
Collapse
Affiliation(s)
- Maria L. Sandoval
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Anupam Rishi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - G. Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Javier Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| | - Peter A. S. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL, USA
| |
Collapse
|
9
|
Waters M, Price A, Laugeman E, Henke L, Hugo G, Stowe H, Andruska N, Brenneman R, Hao Y, Green O, Robinson C, Gay H, Michalski J, Baumann BC. CT-based online adaptive radiotherapy improves target coverage and organ at risk (OAR) avoidance in stereotactic body radiation therapy (SBRT) for prostate cancer. Clin Transl Radiat Oncol 2024; 44:100693. [PMID: 38021093 PMCID: PMC10663731 DOI: 10.1016/j.ctro.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Stereotactic body radiation therapy (SBRT) is an emerging treatment modality for clinically localized prostate cancer (PCa). Online daily adaptive radiotherapy (ART) could potentially improve the therapeutic ratio of prostate SBRT by accounting for inter-fraction variation in target and OAR volumes. To our knowledge, no group has evaluated the clinical utility of a novel AI-augmented CT-based ART system for prostate SBRT. In this study we hypothesized that adaptive prostate SBRT plans would result in improved target coverage and lower dose to OARs in comparison to unadapted treatment plans. Methods Seven patients with favorable intermediate to oligometastatic PCa treated with 5-fx prostate adaptive SBRT were retrospectively reviewed. Patients were treated with 3625 cGy to the prostate and seminal vesicles. 6 patients additionally received 2500 cGy to the pelvic nodes, 5 patients underwent a boost to 4000 cGy to the prostate. For each fraction, a CBCT was acquired and OARs (rectum, bladder, bowel, sigmoid, femurs) were segmented/deformed using AI. CTVs were rigidly registered. Volumes were adjusted manually and PTV expansions added. Adaptive treatment plans were developed based on the contoured targets and OARs and dose to these volumes for the adapted vs. initial plans were compared for each fraction. V100 and the D0.03 cc between scheduled and adapted treatment plans were compared using a Student's t-test, with significance threshold of P < 0.05. Results Seven patients completed 35 Fx's of adaptive RT. Daily adaptation resulted in a statistically significant mean improvement in PTV V100 for all targets: [21.4 % ± 4.3 % for PTV 4000 (p < 0.0001); 8.7 % ± 1.1 % for PTV 3625 (p < 0.0001); and 11.5 % ± 3.1 % for PTV 2500 (p = 0.0013)]. Mean rectal D0.03 was significantly reduced by 38.8 cGy ± 5.95 cGy (p < 0.0001) per fraction (194 cGy/5 fractions) compared to the initial plans. There was a modest increase in bladder dose of 10.9 cGy ± 4.93 cGy per fraction (p = 0.0424) for the adaptive plans. The adaptive plans met bladder constraints for every fraction. There were no statistically significant differences between sigmoid or bowel dose for adapted vs. initial plans. No patients experienced acute CTCAE grade ≥ 3 GI/GU adverse events (median F/U 9.5 months). All statistically significant differences were maintained in the presence and absence of rectal hydrogel spacer (p < 0.05). Conclusions CT-based online adaptive SBRT resulted in statistically significant and clinically meaningful improvements in PTV coverage and D0.03 cc dose to the rectum. A trial evaluating CT adaptive whole-pelvis prostate SBRT is underway.
Collapse
Affiliation(s)
- Michael Waters
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Alex Price
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Lauren Henke
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Geoff Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Hayley Stowe
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Randall Brenneman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Clifford Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Hiram Gay
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Brian C. Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Tanaka S, Kadoya N, Ishizawa M, Katsuta Y, Arai K, Takahashi H, Xiao Y, Takahashi N, Sato K, Takeda K, Jingu K. Evaluation of Unity 1.5 T MR-linac plan quality in patients with prostate cancer. J Appl Clin Med Phys 2023; 24:e14122. [PMID: 37559561 PMCID: PMC10691646 DOI: 10.1002/acm2.14122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The Unity magnetic resonance (MR) linear accelerator (MRL) with MR-guided adaptive radiotherapy (MRgART) is capable of online MRgART where images are acquired on the treatment day and the radiation treatment plan is immediately replanned and performed. We evaluated the MRgART plan quality and plan reproducibility of the Unity MRL in patients with prostate cancer. There were five low- or moderate-risk and five high-risk patients who received 36.25 Gy or 40 Gy, respectively in five fractions. All patients underwent simulation magnetic resonance imaging (MRI) and five online adaptive MRI. We created plans for 5, 7, 9, 16, and 20 beams and for 60, 100, and 150 segments. We evaluated the target and organ doses for different number of beams and segments, respectively. Variation in dose constraint between the simulation plan and online adaptive plan was measured for each patient to assess plan reproducibility. The plan quality improved with the increasing number of beams. However, the proportion of significantly improved dose constraints decreased as the number of beams increased. For some dose parameters, there were statistically significant differences between 60 and 100 segments, and 100 and 150 segments. The plan of five beams exhibited limited reproducibility. The number of segments had minimal impact on plan reproducibility, but 60 segments sometimes failed to meet dose constraints for online adaptive plan. The optimization and delivery time increased with the number of beams and segments. We do not recommend using five or fewer beams for a reproducible and high-quality plan in the Unity MRL. In addition, many number of segments and beams may help meet dose constraints during online adaptive plan. Treatment with the Unity MRL should be performed with the appropriate number of beams and segments to achieve a good balance among plan quality, delivery time, and optimization time.
Collapse
Affiliation(s)
- Shohei Tanaka
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Noriyuki Kadoya
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Miyu Ishizawa
- Department of Radiological TechnologySchool of Health SciencesFaculty of MedicineTohoku UniversitySendaiJapan
| | - Yoshiyuki Katsuta
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazuhiro Arai
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Haruna Takahashi
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yushan Xiao
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Noriyoshi Takahashi
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kiyokazu Sato
- Radiation TechnologyTohoku University HospitalSendaiJapan
| | - Ken Takeda
- Department of Radiological TechnologySchool of Health SciencesFaculty of MedicineTohoku UniversitySendaiJapan
| | - Keiichi Jingu
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
11
|
Zhong J, Kobus M, Maitre P, Datta A, Eccles C, Dubec M, McHugh D, Buckley D, Scarsbrook A, Hoskin P, Henry A, Choudhury A. MRI-guided Pelvic Radiation Therapy: A Primer for Radiologists. Radiographics 2023; 43:e230052. [PMID: 37796729 DOI: 10.1148/rg.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose. Radiologists should be familiar with the potential uses of MRI in planning pelvic RT; the various RT techniques used, such as brachytherapy and external beam RT; and the impact of MRIgRT on treatment paradigms. Current clinical experience with and the evidence base for MRIgRT in the settings of prostate, cervical, and bladder cancer are discussed, and examples of treated cases are illustrated. In addition, the benefits of MRIgRT, such as real-time online adaptation of RT (during treatment) and interfraction and/or intrafraction adaptation to organ motion, as well as how MRIgRT can decrease toxic effects and improve oncologic outcomes, are highlighted. MRIgRT is particularly beneficial for treating mobile pelvic structures, and real-time adaptive RT for tumors can be achieved by using advanced MRI-guided linear accelerator systems to spare organs at risk. Future opportunities for development of biologically driven adapted RT with use of functional MRI sequences and radiogenomic approaches also are outlined. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jim Zhong
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Marta Kobus
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Priyamvada Maitre
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Anubhav Datta
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Cynthia Eccles
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Michael Dubec
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Damien McHugh
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - David Buckley
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Andrew Scarsbrook
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Peter Hoskin
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ann Henry
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ananya Choudhury
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| |
Collapse
|
12
|
Boldrini L, Romano A, Chiloiro G, Corradini S, De Luca V, Verusio V, D'Aviero A, Castelluccia A, Alitto AR, Catucci F, Grimaldi G, Trapp C, Hörner-Rieber J, Marchesano D, Frascino V, Mattiucci GC, Valentini V, Gentile P, Gambacorta MA. Magnetic resonance guided SBRT reirradiation in locally recurrent prostate cancer: a multicentric retrospective analysis. Radiat Oncol 2023; 18:84. [PMID: 37218005 PMCID: PMC10201772 DOI: 10.1186/s13014-023-02271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
AIMS Reirradiation of prostate cancer (PC) local recurrences represents an emerging challenge for current radiotherapy. In this context, stereotactic body radiation therapy (SBRT) allows the delivery of high doses, with curative intent. Magnetic Resonance guided Radiation Therapy (MRgRT) has shown promising results in terms of safety, feasibility and efficacy of delivering SBRT thanks to the enhanced soft tissue contrast and the online adaptive workflow. This multicentric retrospective analysis evaluates the feasibility and efficacy of PC reirradiation, using a 0.35 T hybrid MR delivery unit. METHODS Patients affected by local recurrences of PC and treated in five institutions between 2019 and 2022 were retrospectively collected. All patients had undergone previous Radiation Therapy (RT) in definitive or adjuvant setting. Re-treatment MRgSBRT was delivered with a total dose ranging from 25 to 40 Gy in 5 fractions. Toxicity according to CTCAE v 5.0 and treatment response were assessed at the end of the treatment and at follow-up. RESULTS Eighteen patients were included in this analysis. All patients had previously undergone external beam radiation therapy (EBRT) up to a total dose of 59.36 to 80 Gy. Median cumulative biologically effective dose (BED) of SBRT re-treatment was 213,3 Gy (103,1-560), considering an α/β of 1.5. Complete response was achieved in 4 patients (22.2%). No grade ≥ 2 acute genitourinary (GU) toxicity events were recorded, while gastrointestinal (GI) acute toxicity events occurred in 4 patients (22.2%). CONCLUSION The low rates of acute toxicity of this experience encourages considering MRgSBRT a feasibile therapeutic approach for the treatment of clinically relapsed PC. Accurate gating of target volumes, the online adaptive planning workflow and the high definition of MRI treatment images allow delivering high doses to the PTV while efficiently sparing organs at risk (OARs).
Collapse
Affiliation(s)
- Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Viola De Luca
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valeria Verusio
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Andrea D'Aviero
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy
| | - Alessandra Castelluccia
- Radiation Oncology, Ospedale San Pietro Fatebenefratelli di Roma, Rome, Italy
- Radiation Oncology, Department of Radiotherapy, Hospital "A. Perrino", ASL Brindisi, Brindisi, Italy
| | - Anna Rita Alitto
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Gianmarco Grimaldi
- Radiation Oncology, Ospedale San Pietro Fatebenefratelli di Roma, Rome, Italy
| | - Christian Trapp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Domenico Marchesano
- Radiation Oncology, Ospedale San Pietro Fatebenefratelli di Roma, Rome, Italy
| | - Vincenzo Frascino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gian Carlo Mattiucci
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Piercarlo Gentile
- Radiation Oncology, Ospedale San Pietro Fatebenefratelli di Roma, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Nicosia L, Mazzola R, Rigo M, Giaj-Levra N, Pastorello E, Ricchetti F, Vitale C, Figlia V, Cuccia F, Ruggieri R, Alongi F. Linac-based versus MR-guided SBRT for localized prostate cancer: a comparative evaluation of acute tolerability. LA RADIOLOGIA MEDICA 2023; 128:612-618. [PMID: 37055672 DOI: 10.1007/s11547-023-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
AIM This study aims to compare acute toxicity of prostate cancer (PCa) stereotactic body radiotherapy (SBRT) delivered by MR-guided radiotherapy (MRgRT) with 1.5-T MR-linac or by volumetric modulated arc (VMAT) with conventional linac. METHODS Patients with low-to-favorable intermediate risk class PCa were treated with exclusive SBRT (35 Gy in five fractions). Patients treated with MRgRT were enrolled in an Ethical Committee (EC) approved trial (Prot. n° 23,748), while patients treated with conventional linac were enrolled in an EC approved phase II trial (n° SBRT PROG112CESC). The primary end-point was the acute toxicity. Patients were included in the analysis if they had at least 6 months of follow-up for the primary end-point evaluation. Toxicity assessment was performed according to CTCAE v5.0 scale. International Prostatic Symptoms Score (IPSS) was also performed. RESULTS A total of 135 patients were included in the analysis. Seventy-two (53.3%) were treated with MR-linac and 63 (46.7%) with conventional linac. The median initial PSA before RT was 6.1 ng/ml (range 0.49-19). Globally, acute G1, G2, and G3 toxicity occurred in 39 (28.8%), 20 (14.5%), and 5 (3.7%) patients. At the univariate analysis, acute G1 toxicity did not differ between MR-linac and conventional linac (26.4% versus 31.8%), as well as G2 toxicity (12.5% versus 17.5%; p = 0.52). Acute G2 gastrointestinal (GI) toxicity occurred in 7% and 12.5% of cases in MR-linac and conventional linac group, respectively (p = 0.06), while acute G2 genitourinary toxicity occurred in 11% and 12.8% in MR-linac and conventional linac, respectively (p = 0.82). The median IPSS before and after SBRT was 3 (1-16) and 5 (1-18). Acute G3 toxicity occurred in two cases in the MR-linac and three cases in the conventional linac group (p = n.s.). CONCLUSION Prostate SBRT with 1.5-T MR-linac is feasible and safe. Compared to conventional linac, MRgRT might to potentially reduce the overall G1 acute toxicity at 6 months, and seems to show a trend toward a lower incidence of grade 2 GI toxicity. A longer follow-up is necessary to assess the late efficacy and toxicity.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy.
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Edoardo Pastorello
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Claudio Vitale
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Via Don Sempreboni 5, 37034, Negrar Di Valpolicella, Verona, Italy
- University of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Trnkova P, Zhang Y, Toshito T, Heijmen B, Richter C, Aznar MC, Albertini F, Bolsi A, Daartz J, Knopf AC, Bertholet J. A survey of practice patterns for adaptive particle therapy for interfractional changes. Phys Imaging Radiat Oncol 2023; 26:100442. [PMID: 37197154 PMCID: PMC10183663 DOI: 10.1016/j.phro.2023.100442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Background and purpose Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.
Collapse
Affiliation(s)
- Petra Trnkova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Corresponding author.
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Marianne C. Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Antje C. Knopf
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
15
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
16
|
Liu X, Li Z, Yin Y. Clinical application of MR-Linac in tumor radiotherapy: a systematic review. Radiat Oncol 2023; 18:52. [PMID: 36918884 PMCID: PMC10015924 DOI: 10.1186/s13014-023-02221-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Recent years have seen both a fresh knowledge of cancer and impressive advancements in its treatment. However, the clinical treatment paradigm of cancer is still difficult to implement in the twenty-first century due to the rise in its prevalence. Radiotherapy (RT) is a crucial component of cancer treatment that is helpful for almost all cancer types. The accuracy of RT dosage delivery is increasing as a result of the quick development of computer and imaging technology. The use of image-guided radiation (IGRT) has improved cancer outcomes and decreased toxicity. Online adaptive radiotherapy will be made possible by magnetic resonance imaging-guided radiotherapy (MRgRT) using a magnetic resonance linear accelerator (MR-Linac), which will enhance the visibility of malignancies. This review's objectives are to examine the benefits of MR-Linac as a treatment approach from the perspective of various cancer patients' prognoses and to suggest prospective development areas for additional study.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
17
|
Teunissen FR, Hehakaya C, Meijer RP, van Melick HHE, Verkooijen HM, van der Voort van Zyp JRN. Patient preferences for treatment modalities for localised prostate cancer. BJUI COMPASS 2023; 4:214-222. [PMID: 36816141 PMCID: PMC9931535 DOI: 10.1002/bco2.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives To assess the patient preferences and utility scores for the different conventional and innovative treatment modalities for localised prostate cancer (PCa). Subjects and Methods Patients treated for localised PCa and healthy volunteers were invited to fill out a treatment-outcome scenario questionnaire. Participants ranked six different treatments for localised PCa from most to least favourable, prior to information. In a next step, treatment procedures, toxicity, risk of biochemical recurrence and follow-up regimen were comprehensibly described for each of the six treatments (i.e. treatment-outcome scenarios), after which patients re-ranked the six treatments. Additionally, participants gave a visual analogue scale (VAS) and time trade-off (TTO) score for each scenario. Differences between utility scores were tested by Friedman tests with post hoc Wilcoxon signed-rank tests. Results Eighty patients and twenty-nine healthy volunteers were included in the study. Before receiving treatment-outcome scenario information, participants ranked magnetic resonance-guided adaptive radiotherapy most often as their first choice (35%). After treatment information was received, active surveillance was most often ranked as the first choice (41%). Utility scores were significantly different between the six treatment-outcome scenarios, and active surveillance, non- and minimal-invasive treatments received higher scores. Conclusions Active surveillance and non-invasive treatment for localised PCa were the most preferred options by PCa patients and healthy volunteers and received among the highest utility scores. Treatment preferences change after treatment information is received.
Collapse
Affiliation(s)
- Frederik R. Teunissen
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charisma Hehakaya
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Richard P. Meijer
- Department of Oncological UrologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Helena M. Verkooijen
- Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Utrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
18
|
Jayarathna S, Shen X, Chen RC, Li HH, Guida K. The effect of integrating knowledge-based planning with multicriteria optimization in treatment planning for prostate SBRT. J Appl Clin Med Phys 2023:e13940. [PMID: 36827178 DOI: 10.1002/acm2.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Knowledge-based planning (KBP) and multicriteria optimization (MCO) are two powerful tools to assist treatment planners in achieving optimal target coverage and organ-at-risk (OAR) sparing. The purpose of this work is to investigate if integrating MCO with conventional KBP can further improve treatment plan quality for prostate cancer stereotactic body radiation therapy (SBRT). A two-phase study was designed to investigate the impact of MCO and KBP in prostate SBRT treatment planning. The first phase involved the creation of a KBP model based on thirty clinical SBRT plans, generated by manual optimization (KBP_M). A ten-patient validation cohort was used to compare manual, MCO, and KBP_M optimization techniques. The next phase involved replanning the original model cohort with additional tradeoff optimization via MCO to create a second model, KBP_MCO. Plans were then generated using linear integration (KBP_M+MCO), non-linear integration (KBP_MCO), and a combination of integration methods (KBP_MCO+MCO). All plans were analyzed for planning target volume (PTV) coverage, OAR constraints, and plan quality metrics. Comparisons were generated to evaluate plan and model quality. Phase 1 highlighted the necessity of KBP and MCO in treatment planning, as both optimization methods improved plan quality metrics (Conformity and Heterogeneity Indices) and reduced mean rectal dose by 2 Gy, as compared to manual planning. Integrating MCO with KBP did not further improve plan quality, as little significance was seen over KBP or MCO alone. Principal component score (PCS) fitting showed KBP_MCO improved bladder and rectum estimated and modeled dose correlation by 5% and 22%, respectively; however, model improvements did not significantly impact plan quality. KBP and MCO have shown to reduce OAR dose while maintaining desired PTV coverage in this study. Further integration of KBP and MCO did not show marked improvements in treatment plan quality while requiring increased time in model generation and optimization time.
Collapse
Affiliation(s)
- Sandun Jayarathna
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinglei Shen
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Kenny Guida
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Lombardo E, Rabe M, Xiong Y, Nierer L, Cusumano D, Placidi L, Boldrini L, Corradini S, Niyazi M, Reiner M, Belka C, Kurz C, Riboldi M, Landry G. Evaluation of real-time tumor contour prediction using LSTM networks for MR-guided radiotherapy. Radiother Oncol 2023; 182:109555. [PMID: 36813166 DOI: 10.1016/j.radonc.2023.109555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging guided radiotherapy (MRgRT) with deformable multileaf collimator (MLC) tracking would allow to tackle both rigid displacement and tumor deformation without prolonging treatment. However, the system latency must be accounted for by predicting future tumor contours in real-time. We compared the performance of three artificial intelligence (AI) algorithms based on long short-term memory (LSTM) modules for the prediction of 2D-contours 500ms into the future. MATERIALS AND METHODS Models were trained (52 patients, 3.1h of motion), validated (18 patients, 0.6h) and tested (18 patients, 1.1h) with cine MRs from patients treated at one institution. Additionally, we used three patients (2.9h) treated at another institution as second testing set. We implemented 1) a classical LSTM network (LSTM-shift) predicting tumor centroid positions in superior-inferior and anterior-posterior direction which are used to shift the last observed tumor contour. The LSTM-shift model was optimized both in an offline and online fashion. We also implemented 2) a convolutional LSTM model (ConvLSTM) to directly predict future tumor contours and 3) a convolutional LSTM combined with spatial transformer layers (ConvLSTM-STL) to predict displacement fields used to warp the last tumor contour. RESULTS The online LSTM-shift model was found to perform slightly better than the offline LSTM-shift and significantly better than the ConvLSTM and ConvLSTM-STL. It achieved a 50% Hausdorff distance of 1.2mm and 1.0mm for the two testing sets, respectively. Larger motion ranges were found to lead to more substantial performance differences across the models. CONCLUSION LSTM networks predicting future centroids and shifting the last tumor contour are the most suitable for tumor contour prediction. The obtained accuracy would allow to reduce residual tracking errors during MRgRT with deformable MLC-tracking.
Collapse
Affiliation(s)
- Elia Lombardo
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Yuqing Xiong
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Davide Cusumano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany; German Cancer Consortium (DKTK), Munich 81377, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany
| | - Marco Riboldi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. München 85748, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81377, Germany.
| |
Collapse
|
20
|
Gao LR, Tian Y, Wang MS, Xia WL, Qin SR, Song YW, Wang SL, Tang Y, Fang H, Tang Y, Qi SN, Yan LL, Liu YP, Jing H, Chen B, Xing NZ, Li YX, Lu NN. Assessment of delivered dose in prostate cancer patients treated with ultra-hypofractionated radiotherapy on 1.5-Tesla MR-Linac. Front Oncol 2023; 13:1039901. [PMID: 36741014 PMCID: PMC9893501 DOI: 10.3389/fonc.2023.1039901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Objective To quantitatively characterize the dosimetric effects of long on-couch time in prostate cancer patients treated with adaptive ultra-hypofractionated radiotherapy (UHF-RT) on 1.5-Tesla magnetic resonance (MR)-linac. Materials and methods Seventeen patients consecutively treated with UHF-RT on a 1.5-T MR-linac were recruited. A 36.25 Gy dose in five fractions was delivered every other day with a boost of 40 Gy to the whole prostate. We collected data for the following stages: pre-MR, position verification-MR (PV-MR) in the Adapt-To-Shape (ATS) workflow, and 3D-MR during the beam-on phase (Bn-MR) and at the end of RT (post-MR). The target and organ-at-risk contours in the PV-MR, Bn-MR, and post-MR stages were projected from the pre-MR data by deformable image registration and manually adapted by the physician, followed by dose recalculation for the ATS plan. Results Overall, 290 MR scans were collected (85 pre-MR, 85 PV-MR, 49 Bn-MR and 71 post-MR scans). With a median on-couch time of 49 minutes, the mean planning target volume (PTV)-V95% of all scans was 97.83 ± 0.13%. The corresponding mean clinical target volume (CTV)-V100% was 99.93 ± 0.30%, 99.32 ± 1.20%, 98.59 ± 1.84%, and 98.69 ± 1.85%. With excellent prostate-V100% dose coverage, the main reason for lower CTV-V100% was slight underdosing of seminal vesicles (SVs). The median V29 Gy change in the rectal wall was -1% (-20%-17%). The V29 Gy of the rectal wall increased by >15% was observed in one scan. A slight increase in the high dose of bladder wall was noted due to gradual bladder growth during the workflow. Conclusions This 3D-MR-based dosimetry analysis demonstrated clinically acceptable estimated dose coverage of target volumes during the beam-on period with adaptive ATS workflow on 1.5-T MR-linac, albeit with a relatively long on-couch time. The 3-mm CTV-PTV margin was adequate for prostate irradiation but occasionally insufficient for SVs. More attention should be paid to restricting high-dose RT to the rectal wall when optimizing the ATS plan.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Shuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Long Xia
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-Rui Qin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Wen Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Tang
- GCP Center/Clinical Research Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Fang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Nan Qi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Ling Yan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Ping Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nian-Zeng Xing
- Department of Urology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Ning-Ning Lu, ; Ye-Xiong Li, ; Nian-Zeng Xing,
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Ning-Ning Lu, ; Ye-Xiong Li, ; Nian-Zeng Xing,
| | - Ning-Ning Lu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Ning-Ning Lu, ; Ye-Xiong Li, ; Nian-Zeng Xing,
| |
Collapse
|
21
|
Poon DMC, Yang B, Geng H, Wong OL, Chiu ST, Cheung KY, Yu SK, Chiu G, Yuan J. Analysis of online plan adaptation for 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer. J Cancer Res Clin Oncol 2023; 149:841-850. [PMID: 35199189 PMCID: PMC8866042 DOI: 10.1007/s00432-022-03950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To analyze and characterize the online plan adaptation of 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer (PC). METHODS PC patients (n = 107) who received adaptive 1.5 Tesla MRgSBRT were included. Online plan adaptation was implemented by either the adapt-to-position (ATP) or adapt-to-shape (ATS) methods. Patients were assigned to the ATS group if they underwent ≥ 1 ATS fraction (n = 51); the remainder were assigned to the ATP group (n = 56). The online plan adaptation records of 535 (107 × 5) fractions were retrospectively reviewed. Rationales for ATS decision-making were determined and analyzed using predefined criteria. Statistics of ATS fractions were summarized. Associations of patient characteristics and clinical factors with ATS utilization were investigated. RESULTS There were 87 (16.3%) ATS fractions and 448 ATP fractions (83.7%). The numbers of ATS adoptions in fractions 1-5 were 29 (29/107, 27.1%), 18 (16.8%), 15 (14.0%), 16 (15.0%), and 9 (8.4%), respectively, with significant differences in adoption frequency between fractions (p = 0.007). Other baseline patient characteristics and clinical factors were not significantly associated with ATS classification (all p > 0.05). Underlying criteria for the determination of ATS implementation comprised anatomical changes (77 fractions in 50 patients) and discrete multiple targets (15 fractions in 3 patients). No ATS utilization was determined using dosimetric or online quality assurance criteria. CONCLUSIONS This study contributes to facilitating the establishment of a standardized protocol for online MR-guided adaptive radiotherapy in PC.
Collapse
Affiliation(s)
- Darren M. C. Poon
- grid.414329.90000 0004 1764 7097Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Bin Yang
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Hui Geng
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Oi Lei Wong
- grid.414329.90000 0004 1764 7097Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Sin Ting Chiu
- grid.414329.90000 0004 1764 7097Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Kin Yin Cheung
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Siu Ki Yu
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - George Chiu
- grid.414329.90000 0004 1764 7097Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Jing Yuan
- grid.414329.90000 0004 1764 7097Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| |
Collapse
|
22
|
Gelbart Pridan O, Ben David MA, Zalmanov S, Lipski Y, Grinberg V, Levin D, Apter S, Guindi M, Epstein D, Radus R, Arsenault O, Hod K, Tamami Q, Pfeffer R. Outcome of the first 200 patients with prostate cancer treated with MRI-Linac at Assuta MC. Front Oncol 2023; 13:1151256. [PMID: 37035136 PMCID: PMC10076851 DOI: 10.3389/fonc.2023.1151256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background We present our experience with MR-guided stereotactic body radiotherapy (SBRT) for 200 consecutive patients with prostate cancer with minimum 3-month follow-up. Methods Treatment planning included fusion of the 0.35-Tesla planning MRI with multiparametric MRI and PET-PSMA for Group Grade (GG) 2 or higher and contour review with an expert MRI radiologist. No fiducials or rectal spacers were used. Prescription dose was 36.25 Gy in 5 fractions over 2 weeks to the entire prostate with 3-mm margins. Daily plan was adapted if tumor and organs at risk (OAR) doses differed significantly from the original plan. The prostate was monitored during treatment that was automatically interrupted if the target moved out of the PTV range. Results Mean age was 72 years. Clinical stage was T1c, 85.5%; T2, 13%; and T3, 1.5%. In addition, 20% were GG1, 50% were GG2, 14.5% were GG3, 13% were GG4, and one patient was GG5. PSA ranged from 1 to 77 (median, 6.2). Median prostate volume was 57cc, and 888/1000 (88%) fractions required plan adaptation. The most common acute GU toxicity was Grade I, 31%; dysuria and acute gastrointestinal toxicity were rare. Three patients required temporary catheterization. Prostate size of over 100cc was associated with acute fatigue, urinary hesitance, and catheter insertion. Prostate Specific Antigen (PSA) decreased in 99% of patients, and one patient had regional recurrence. Conclusion MR-guided prostate SBRT shows low acute toxicity and excellent short-term outcomes. Real-time MRI ensures accurate positioning and SBRT delivery.
Collapse
Affiliation(s)
| | - Merav Akiva Ben David
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- *Correspondence: Merav Akiva Ben David,
| | - Svetlana Zalmanov
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | - Yoav Lipski
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | | | - Daphne Levin
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | - Sara Apter
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Guindi
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Innovation Division, Assuta Medical Center, Tel Aviv, Israel
| | - Dan Epstein
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | - Roman Radus
- Radiation Oncology Department, Rabin Medical Center, Petah-Tikva, Israel
| | - Orit Arsenault
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | - Keren Hod
- Department of Academy and Research, Assuta Medical Center, Tel Aviv, Israel
| | - Qusai Tamami
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
| | - Raphael Pfeffer
- Radiation Oncology Department, Assuta Medical Center, Tel Aviv, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
23
|
1.5T MR-Guided Daily-Adaptive SBRT for Prostate Cancer: Preliminary Report of Toxicity and Quality of Life of the First 100 Patients. J Pers Med 2022; 12:jpm12121982. [PMID: 36556203 PMCID: PMC9785799 DOI: 10.3390/jpm12121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: The present study reports the preliminary outcomes in terms of adverse events and quality of life in the first 100 patients treated with 1.5T MR-guided daily-adaptive stereotactic body radiotherapy for prostate cancer. Methods: From October 2019 to December 2020, 100 patients, enrolled in a prospective study, received MR-guided SBRT for prostate cancer. Rectal spacer insertion was optional and administered in 37 patients. In total, 32 patients received androgen deprivation therapy in accordance with international guidelines. A prospective collection of data regarding toxicity and quality of life was performed. Results: The median age was 71 years (range, 52-84). The median total dose delivered was 35 Gy (35-36.25 Gy) in five sessions, either on alternate days (n = 25) or consecutive days (n = 75). For acute toxicity, we recorded: seven cases of acute G2 urinary pain and four cases of G2 gastrointestinal events. The median follow-up was 12 months (3-20), recording three late G2 urinary events and one G3 case, consisting of a patient who required a TURP 8 months after the treatment. For gastrointestinal toxicity, we observed 3 G ≥ 2 GI events, including one patient who received argon laser therapy for radiation-induced proctitis. Up to the last follow-up, all patients are alive and with no evidence of biochemical relapse, except for an M1 low-volume patient in distant progression two months after radiotherapy. QoL evaluation reported a substantial resolution of any discomfort within the second follow-up after radiotherapy, with the only exception being sexual items. Notably, after one year, global health items were improved compared to the baseline assessment. Conclusions: This study reports very promising outcomes in terms of adverse events and QoL, supporting the role of 1.5T MR-guided SBRT for prostate cancer. To date, this series is one of the first and largest available in the literature. Long-term results are warranted.
Collapse
|
24
|
Chuong MD, Ann Clark M, Henke LE, Kishan AU, Portelance L, Parikh PJ, Bassetti MF, Nagar H, Rosenberg SA, Mehta MP, Refaat T, Rineer JM, Smith A, Seung S, Zaki BI, Fuss M, Mak RH. Patterns of Utilization and Clinical Adoption of 0.35 Tesla MR-guided Radiation Therapy in the United States - Understanding the Transition to Adaptive, Ultra-Hypofractionated Treatments. Clin Transl Radiat Oncol 2022; 38:161-168. [DOI: 10.1016/j.ctro.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
|
25
|
Emergence of MR-Linac in Radiation Oncology: Successes and Challenges of Riding on the MRgRT Bandwagon. J Clin Med 2022; 11:jcm11175136. [PMID: 36079065 PMCID: PMC9456673 DOI: 10.3390/jcm11175136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The special issue of JCM on “Advances of MRI in Radiation Oncology” provides a unique forum for scientific literature related to MR imaging in radiation oncology. This issue covered many aspects, such as MR technology, motion management, economics, soft-tissue–air interface issues, and disease sites such as the pancreas, spine, sarcoma, prostate, head and neck, and rectum from both camps—the Unity and MRIdian systems. This paper provides additional information on the success and challenges of the two systems. A challenging aspect of this technology is low throughput and the monumental task of education and training that hinders its use for the majority of therapy centers. Additionally, the cost of this technology is too high for most institutions, and hence widespread use is still limited. This article highlights some of the difficulties and how to resolve them.
Collapse
|
26
|
Castelluccia A, Mincarone P, Tumolo MR, Sabina S, Colella R, Bodini A, Tramacere F, Portaluri M, Leo CG. Economic Evaluations of Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710800. [PMID: 36078513 PMCID: PMC9517760 DOI: 10.3390/ijerph191710800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 05/06/2023]
Abstract
OBJECTIVES This review systematically summarizes the evidence on the economic impact of magnetic resonance image-guided RT (MRIgRT). METHODS We systematically searched INAHTA, MEDLINE, and Scopus up to March 2022 to retrieve health economic studies. Relevant data were extracted on study type, model inputs, modeling methods and economic results. RESULTS Five studies were included. Two studies performed a full economic assessment to compare the cost-effectiveness of MRIgRT with other forms of image-guided radiation therapy. One study performed a cost minimization analysis and two studies performed an activity-based costing, all comparing MRIgRT with X-ray computed tomography image-guided radiation therapy (CTIgRT). Prostate cancer was the target condition in four studies and hepatocellular carcinoma in one. Considering the studies with a full economic assessment, MR-guided stereotactic body radiation therapy was found to be cost effective with respect to CTIgRT or conventional or moderate hypofractionated RT, even with a low reduction in toxicity. Conversely, a greater reduction in toxicity is required to compete with extreme hypofractionated RT without MR guidance. CONCLUSIONS This review highlights the great potential of MRIgRT but also the need for further evidence, especially for late toxicity, whose reduction is expected to be the real added value of this technology.
Collapse
Affiliation(s)
- Alessandra Castelluccia
- Radiation Oncology, Department of Radiotherapy, Hospital “A. Perrino”, ASL Brindisi, 72100 Brindisi, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population and Social Policies, National Research Council, 72100 Brindisi, Italy
- MOVE-Mentis s.r.l., 47522 Cesena, Italy
- Correspondence: ; Tel.: +39-3289168745
| | - Maria Rosaria Tumolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy
| | - Saverio Sabina
- MOVE-Mentis s.r.l., 47522 Cesena, Italy
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy
| | - Riccardo Colella
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Antonella Bodini
- Institute for Applied Mathematics and Information Technologies “E. Magenes”, National Research Council, 20133 Milan, Italy
| | - Francesco Tramacere
- Radiation Oncology, Department of Radiotherapy, Hospital “A. Perrino”, ASL Brindisi, 72100 Brindisi, Italy
| | - Maurizio Portaluri
- Radiation Oncology, Department of Radiotherapy, Hospital “A. Perrino”, ASL Brindisi, 72100 Brindisi, Italy
| | - Carlo Giacomo Leo
- MOVE-Mentis s.r.l., 47522 Cesena, Italy
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy
| |
Collapse
|
27
|
Delpon G, Barateau A, Beneux A, Bessières I, Latorzeff I, Welmant J, Tallet A. [What do we need to deliver "online" adapted radiotherapy treatment plans?]. Cancer Radiother 2022; 26:794-802. [PMID: 36028418 DOI: 10.1016/j.canrad.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
During the joint SFRO/SFPM session of the 2019 congress, a state of the art of adaptive radiotherapy announced a strong impact in our clinical practice, in particular with the availability of treatment devices coupled to an MRI system. Three years later, it seems relevant to take stock of adaptive radiotherapy in practice, and especially the "online" strategy because it is indeed more and more accessible with recent hardware and software developments, such as coupled accelerators to a three-dimensional imaging device and algorithms based on artificial intelligence. However, the deployment of this promising strategy is complex because it contracts the usual time scale and upsets the usual organizations. So what do we need to deliver adapted treatment plans with an "online" strategy?
Collapse
Affiliation(s)
- G Delpon
- Institut de cancérologie de l'Ouest, Saint-Herblain et IMT Atlantique, Nantes université, CNRS/IN2P3, Subatech, Nantes, France.
| | - A Barateau
- Université Rennes, CLCC Eugène-Marquis, Inserm, LTSI-UMR 1099, Rennes, France
| | - A Beneux
- Hospices Civils de Lyon, Lyon, France
| | - I Bessières
- Centre Georges-François Leclerc, Dijon, France
| | | | - J Welmant
- Institut du cancer de Montpellier, Montpellier, France
| | - A Tallet
- Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
28
|
Turkkan G, Bilici N, Sertel H, Keskus Y, Alkaya S, Tavli B, Ozkirim M, Fayda M. Clinical utility of a 1.5 T magnetic resonance imaging-guided linear accelerator during conventionally fractionated and hypofractionated prostate cancer radiotherapy. Front Oncol 2022; 12:909402. [PMID: 36052268 PMCID: PMC9424496 DOI: 10.3389/fonc.2022.909402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose To report our initial experience with 1.5 T magnetic resonance imaging (MRI) linear accelerator (LINAC) in prostate cancer radiotherapy in terms of its use in a radiation oncology clinic. Methods The medical records of 14 prostate cancer patients treated with MRI-guided radiotherapy were retrospectively evaluated. The fraction time, adapt-to-position (ATP):adapt-to-shape (ATS) usage rate, machine-associated treatment interruption rate, median gamma pass rate, the percentage of planning target volume receiving at least 95% of the prescription dose coverage value of each ATS fraction, the effect of the learning curve on the fraction time and radiation-related acute gastrointestinal and genitourinary toxicities were evaluated. Results Fourteen patients have completed their treatment receiving a total of 375 fractions. Six patients (42%) were treated with the moderately hypofractionated regimen, five patients (36%) with conventionally fractionated, and three patients (22%) with the ultra-hypofractionated radiotherapy regimens. The ATP : ATS usage ratio was 3:372. The median fraction time was 46 min (range, 24-81 min). For the 3%/3 mm criterion, median gamma pass rate was 99.4% (range, 94.6–100%). Machine-related treatment interruptions were observed in 11 (2.9%) of 375 fractions, but this interruption rate decreased from 4.1% to 0.8%, after an upgrade. Three patients (22%) had gastrointestinal and five patients (36%) had genitourinary toxicity. No ≥grade 3 toxicity was observed. Conclusion 1.5 T MRI-LINAC device could be used as a conventional LINAC device, when the conditions of the radiotherapy center are appropriate. MRI-guided prostate radiotherapy is safe and feasible, and high-quality studies with a larger number of patients and long-term results are needed to better evaluate this new technology.
Collapse
Affiliation(s)
- Gorkem Turkkan
- Department of Radiation Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
- *Correspondence: Gorkem Turkkan, ;
| | - Nazli Bilici
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Huseyin Sertel
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Yavuz Keskus
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Sercan Alkaya
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Busra Tavli
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Muge Ozkirim
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Merdan Fayda
- Department of Radiation Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| |
Collapse
|
29
|
Wegener D, Thome A, Paulsen F, Gani C, Boldt J, Butzer S, Thorwarth D, Moennich D, Nachbar M, Müller AC, Zips D, Boeke S. First Experience and Prospective Evaluation on Feasibility and Acute Toxicity of Online Adaptive Radiotherapy of the Prostate Bed as Salvage Treatment in Patients with Biochemically Recurrent Prostate Cancer on a 1.5T MR-Linac. J Clin Med 2022; 11:jcm11164651. [PMID: 36012885 PMCID: PMC9410121 DOI: 10.3390/jcm11164651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Novel MRI-linear accelerator hybrids (MR-Linacs, MRL) promise an optimization of radiotherapy (RT) through daily MRI imaging with enhanced soft tissue contrast and plan adaptation on the anatomy of the day. These features might potentially improve salvage RT of prostate cancer (SRT), where the clinical target volume is confined by the mobile organs at risk (OAR) rectum and bladder. So far, no data exist about the feasibility of the MRL technology for SRT. In this study, we prospectively examined patients treated with SRT on a 1.5 T MRL and report on workflow, feasibility and acute toxicity. Patients and Methods: Sixteen patients were prospectively enrolled within the MRL-01 study (NCT: NCT04172753). All patients were staged and had an indication for SRT after radical prostatectomy according to national guidelines. RT consisted of 66 Gy in 33 fractions or 66.5/70 Gy in 35 fractions in case of a defined high-risk region. On the 1.5 T MRL, daily plan adaption was performed using one of two workflows: adapt to shape (ATS, using contour adaptation and replanning) or adapt to position (ATP, rigid replanning onto the online anatomy with virtual couch shift). Duration of treatment steps, choice of workflow and treatment failure were recorded for each fraction of each patient. Patient-reported questionnaires about patient comfort were evaluated as well as extensive reporting of acute toxicity (patient reported and clinician scored). Results: A total of 524/554 (94.6%) of fractions were successfully treated on the MRL. No patient-sided treatment failures occurred. In total, ATP was chosen in 45.7% and ATS in 54.3% of fractions. In eight cases, ATP was performed on top of the initial ATS workflow. Mean (range) duration of all fractions (on-table time until end of treatment) was 25.1 (17.6–44.8) minutes. Mean duration of the ATP workflow was 20.60 (17.6–25.2) minutes and of the ATS workflow 31.3 (28.2–34.1) minutes. Patient-reported treatment experience questionnaires revealed high rates of tolerability of the treatment procedure. Acute toxicity (RTOG, CTC as well as patient-reported CTC, IPSS and ICIQ) during RT and 3 months after was mild to moderate with a tendency of recovery to baseline levels at 3 months post RT. No G3+ toxicity was scored for any item. Conclusions: In this first report on SRT of prostate cancer patients on a 1.5 T MRL, we could demonstrate the feasibility of both available workflows. Daily MR-guided adaptive SRT of mean 25.1 min per fraction was well tolerated in this pretreated collective, and we report low rates of acute toxicity for this treatment. This study suggests that SRT on a 1.5 T MRL can be performed in clinical routine and it serves as a benchmark for future analyses.
Collapse
Affiliation(s)
- Daniel Wegener
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Correspondence:
| | - Alexandra Thome
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Moennich
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Charité Berlin, 10117 Berlin, Germany
| | - Simon Boeke
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
30
|
MRI-guided Radiotherapy (MRgRT) for treatment of Oligometastases: Review of clinical applications and challenges. Int J Radiat Oncol Biol Phys 2022; 114:950-967. [PMID: 35901978 DOI: 10.1016/j.ijrobp.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver MR-guided radiation therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiotherapy (SBRT) in treatment of oligometastatic disease. Here we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiotherapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance (QA) of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS The promising early indications of safety and effectiveness of MRgRT for SBRT-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.
Collapse
|
31
|
Teunissen FR, Willigenburg T, Meijer RP, van Melick HHE, Verkooijen HM, van der Voort van Zyp JRN. The first patient-reported outcomes from the Utrecht Prostate Cohort (UPC): the first platform facilitating 'trials within cohorts' (TwiCs) for the evaluation of interventions for prostate cancer. World J Urol 2022; 40:2205-2212. [PMID: 35861861 PMCID: PMC9427931 DOI: 10.1007/s00345-022-04092-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To describe the development and first outcomes of the Utrecht Prostate Cohort (UPC): the first ‘trials within cohorts’ (TwiCs) platform for prostate cancer (PCa). Methods All non-metastasized, histologically proven PCa patients who are planned to receive standard of care are eligible for inclusion in UPC. Patients provide informed consent for the collection of clinical and technical patient data, physician-reported outcomes, and patient-reported outcomes (PROs) up to 10 years post-treatment. Additionally, patients may provide broad consent for future randomization for experimental-intervention trials (TwiCs). Changes in PROs (EPIC-26 questionnaire domains) of the participants who received standard of care were analyzed using Wilcoxon signed-rank tests. Results In two years, 626 patients were enrolled, 503 (80.4%) of whom provided broad consent for future randomization. Among these, 293 (46.8%) patients underwent magnetic resonance-guided adaptive radiotherapy (MRgRT), 116 (18.5%) CT-guided external beam radiation therapy (EBRT), 109 (17.4%) robot-assisted radical prostatectomy (RARP), and 65 (10.4%) patients opted for active surveillance. Patients treated with MRgRT and CT-guided EBRT showed a transient but significant decline in urinary irritative/obstructive and bowel domain scores at 1-month follow-up. RARP patients showed a significant deterioration of urinary incontinence domain scores between baseline and all follow-up moments and significant improvement of urinary irritative/obstructive domain scores between baseline and 9- and 12-month follow-up. All radical treatment groups showed a significant decline in sexual domain scores during follow-up. Active surveillance patients showed no significant deterioration over time in all domains. Conclusion The first results from the UPC study show distinct differences in PROs between treatment options for PCa. Registration No.: NCT04228211. Supplementary Information The online version contains supplementary material available at 10.1007/s00345-022-04092-2.
Collapse
Affiliation(s)
- Frederik R Teunissen
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CZ, Utrecht, The Netherlands.
| | - Thomas Willigenburg
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CZ, Utrecht, The Netherlands
| | - Richard P Meijer
- Department of Oncologic Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harm H E van Melick
- Department of Urology, St. Antonius Hospital, Nieuwegein, Utrecht, The Netherlands
| | - Helena M Verkooijen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
32
|
Yang B, Yuan J, Poon DM, Geng H, Lam WW, Cheung KY, Yu SK. Assessment of planning target volume margins in 1.5 T magnetic resonance‐guided stereotactic body radiation therapy for localized prostate cancer. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bin Yang
- Medical Physics Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Jing Yuan
- Research Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Darren M.C. Poon
- Comprehensive Oncology Centre Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Hui Geng
- Medical Physics Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Wai Wang Lam
- Medical Physics Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Kin Yin Cheung
- Medical Physics Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| | - Siu Ki Yu
- Medical Physics Department Hong Kong Sanatorium & Hospital Happy Valley Hong Kong China
| |
Collapse
|
33
|
SBRT for Localized Prostate Cancer: CyberKnife vs. VMAT-FFF, a Dosimetric Study. Life (Basel) 2022; 12:life12050711. [PMID: 35629378 PMCID: PMC9144859 DOI: 10.3390/life12050711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, stereotactic body radiation therapy (SBRT) has gained popularity among clinical methods for the treatment of medium and low risk prostate cancer (PCa), mainly as an alternative to surgery. The hypo-fractionated regimen allows the administration of high doses of radiation in a small number of fractions; such a fractionation is possible by exploiting the different intrinsic prostate radiosensitivity compared with the surrounding healthy tissues. In addition, SBRT treatment guaranteed a better quality of life compared with surgery, avoiding risks, aftermaths, and possible complications. At present, most stereotactic prostate treatments are performed with the CyberKnife (CK) system, which is an accelerator exclusively dedicated for stereotaxis and it is not widely spread in every radiotherapy centre like a classic linear accelerator (LINAC). To be fair, a stereotactic treatment is achievable also by using a LINAC through Volumetric Modulated Arc Therapy (VMAT), but some precautions must be taken. The aim of this work is to carry out a dosimetric comparison between these two methodologies. In order to pursue such a goal, two groups of patients were selected at Instituto Nazionale Tumori—IRCCS Fondazione G. Pascale: the first group consisting of ten patients previously treated with a SBRT performed with CK; the second one was composed of ten patients who received a hypo-fractionated VMAT treatment and replanned in VMAT-SBRT flattening filter free mode (FFF). The two SBRT techniques were rescaled at the same target coverage and compared by normal tissue sparing, dose distribution parameters and delivery time. All organs at risk (OAR) constraints were achieved by both platforms. CK exhibits higher performances in terms of dose delivery; nevertheless, the general satisfying dosimetric results and the significantly shorter delivery time make VMAT-FFF an attractive and reasonable alternative SBRT technique for the treatment of localized prostate cancer.
Collapse
|
34
|
Cuccia F, Rigo M, Figlia V, Giaj-Levra N, Mazzola R, Nicosia L, Ricchetti F, Trapani G, De Simone A, Gurrera D, Naccarato S, Sicignano G, Ruggieri R, Alongi F. 1.5T MR-Guided Daily Adaptive Stereotactic Body Radiotherapy for Prostate Re-Irradiation: A Preliminary Report of Toxicity and Clinical Outcomes. Front Oncol 2022; 12:858740. [PMID: 35494082 PMCID: PMC9043550 DOI: 10.3389/fonc.2022.858740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Prostate re-irradiation is an attractive treatment option in the case of local relapse after previous radiotherapy, either in the definitive or in the post-operative setting. In this scenario, the introduction of MR-linacs may represent a helpful tool to improve the accuracy and precision of the treatment. Methods This study reports the preliminary data of a cohort of 22 patients treated with 1.5T MR-Linacs for prostate or prostate bed re-irradiation. Toxicity was prospectively assessed and collected according to CTCAE v5.0. Survival endpoints were measured using Kaplan-Meier method. Results From October 2019 to October 2021, 22 patients received 1.5T MR-guided stereotactic body radiotherapy for prostate or prostate-bed re-irradiation. In 12 cases SBRT was delivered to the prostate, in 10 to the prostate bed. The median time to re-RT was 72 months (range, 12-1460). SBRT was delivered concurrently with ADT in 4 cases. Acute toxicity was: for GU G1 in 11/22 and G2 in 4/22; for GI G1 in 7/22, G2 in 4/22. With a median follow-up of 8 months (3-21), late G1 and G2 GU events were respectively 11/22 and 4/22. Regarding GI toxicity, G1 were 6/22, while G2 3/22. No acute/late G≥3 GI/GU events occurred. All patients are alive. The median PSA-nadir was 0.49 ng/ml (0.08-5.26 ng/ml), for 1-year BRFS and DPFS rates of 85.9%. Twenty patients remained free from ADT with 1-year ADT-free survival rates of 91.3%. Conclusions Our experience supports the use of MR-linacs for prostate or prostate bed re-irradiation as a feasible and safe treatment option with minimal toxicity and encouraging results in terms of clinical outcomes.
Collapse
Affiliation(s)
- Francesco Cuccia
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Luca Nicosia
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Giovanna Trapani
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Antonio De Simone
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Davide Gurrera
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Stefania Naccarato
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Gianluisa Sicignano
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy.,University of Brescia, Brescia, Italy
| |
Collapse
|
35
|
Naccarato S, Rigo M, Pellegrini R, Voet P, Akhiat H, Gurrera D, De Simone A, Sicignano G, Mazzola R, Figlia V, Ricchetti F, Nicosia L, Giaj-Levra N, Cuccia F, Stavreva N, Pressyanov DS, Stavrev P, Alongi F, Ruggieri R. Automated Planning for Prostate Stereotactic Body Radiation Therapy on the 1.5 T MR-Linac. Adv Radiat Oncol 2022; 7:100865. [PMID: 35198836 PMCID: PMC8850203 DOI: 10.1016/j.adro.2021.100865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Adaptive stereotactic body radiation therapy (SBRT) for prostate cancer (PC) by the 1.5 T MR-linac currently requires online planning by an expert user. A fully automated and user-independent solution to adaptive planning (mCycle) of PC-SBRT was compared with user's plans for the 1.5 T MR-linac. Methods and Materials Fifty adapted plans on daily magnetic resonance imaging scans for 10 patients with PC treated by 35 Gy (prescription dose [Dp]) in 5 fractions were reoptimized offline from scratch, both by an expert planner (manual) and by mCycle. Manual plans consisted of multicriterial optimization (MCO) of the fluence map plus manual tweaking in segmentation, whereas in mCycle plans, the objectives were sequentially optimized by MCO according to an a-priori assigned priority list. The main criteria for planning approval were a dose ≥95% of the Dp to at least 95% of the planning target volume (PTV), V33.2 (PTV) ≥ 95%, a dose less than the Dp to the hottest cubic centimeter (V35 ≤ 1 cm3) of rectum, bladder, penile bulb, and urethral planning risk volume (ie, urethra plus 3 mm isotropically), and V32 ≤ 5%, V28 ≤ 10%, and V18 ≤ 35% to the rectum. Such dose-volume metrics, plus some efficiency and deliverability metrics, were used for the comparison of mCycle versus manual plans. Results mCycle plans improved target dose coverage, with V33.2 (PTV) passing on average (±1 SD) from 95.7% (±1.0%) for manual plans to 97.5% (±1.3%) for mCycle plans (P < .001), and rectal dose sparing, with significantly reduced V32, V28, and V18 (P ≤ .004). Although at an equivalent number of segments, mCycle plans consumed moderately more monitor units (+17%) and delivery time (+9%) (P < .001), whereas they were generally faster (–19%) in terms of optimization times (P < .019). No significant differences were found for the passing rates of locally normalized γ (3 mm, 3%) (P = .059) and γ (2 mm, 2%) (P = .432) deliverability metrics. Conclusions In the offline setting, mCycle proved to be a trustable solution for automated planning of PC-SBRT on the 1.5 T MR-linac. mCycle integration in the online workflow will free the user from the challenging online-optimization task.
Collapse
|
36
|
Willigenburg T, van der Velden JM, Zachiu C, Teunissen FR, Lagendijk JJW, Raaymakers BW, de Boer JCJ, van der Voort van Zyp JRN. Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy. Radiother Oncol 2022; 171:182-188. [PMID: 35489444 DOI: 10.1016/j.radonc.2022.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR)-guided linear accelerators (MR-Linac) enable accurate estimation of delivered doses through dose accumulation using daily MR images and treatment plans. We aimed to assess the association between the accumulated bladder (wall) dose and patient-reported acute urinary toxicity in prostate cancer (PCa) patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS One-hundred-and-thirty PCa patients treated on a 1.5T MR-Linac were included. Patients filled out International Prostate Symptom Scores (IPSS) questionnaires at baseline, 1 month, and 3 months post-treatment. Deformable image registration-based dose accumulation was performed to reconstruct the delivered dose. Dose parameters for both bladder and bladder wall were correlated with a clinically relevant increase in IPSS (≥10 points) and/or start of alpha-blockers within 3 months using logistic regression. RESULTS Thirty-nine patients (30%) experienced a clinically relevant IPSS increase and/or started with alpha-blockers. Bladder D5cm3, V10-35Gy (in %), and Dmean and Bladder wall V10-35Gy (cm3 and %) and Dmean were correlated with the outcome (odds ratios 1.04-1.33, p-values 0.001-0.044). Corrected for baseline characteristics, bladder V10-35Gy (in %) and Dmean and bladder wall V10-35Gy (cm3 and %) and Dmean were still correlated with the outcome (odds ratios 1.04-1.30, p-values 0.001-0.028). Bladder wall parameters generally showed larger AUC values. CONCLUSION This is the first study to assess the correlation between accumulated bladder wall dose and patient-reported urinary toxicity in PCa patients treated with MR-guided SBRT. The dose to the bladder wall is a promising parameter for prediction of patient-reported urinary toxicity and therefore warrants prospective validation and consideration in treatment planning.
Collapse
Affiliation(s)
- Thomas Willigenburg
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands.
| | - Joanne M van der Velden
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Cornel Zachiu
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Frederik R Teunissen
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Jan J W Lagendijk
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Bas W Raaymakers
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Johannes C J de Boer
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | | |
Collapse
|
37
|
Li W, Winter J, Padayachee J, Dang J, Kong V, Chung P. Case Report: MR-Guided Adaptive Radiotherapy, Some Room to Maneuver. Front Oncol 2022; 12:877452. [PMID: 35494044 PMCID: PMC9047540 DOI: 10.3389/fonc.2022.877452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background A magnetic resonance linear accelerator (MR-Linac) provides superior soft tissue contrast to evaluate inter- and intra-fraction motion and facilitate online adaptive radiation therapy (ART). We present here an unusual case of locally advanced castrate-resistant prostate cancer treated with high-dose palliative ultra-hypofractionated radiation therapy on the MR-Linac with significant inter-fraction tumor regression. Case Presentation The patient was a 65-year-old man diagnosed with metastatic prostate cancer to bone and pelvic lymph nodes 7 years prior. At diagnosis, he presented with a PSA of 23 ng/ml and was commenced on a luteinizing hormone-releasing hormone agonist, achieving a PSA nadir of 4.68 ng/ml at 12 months. The patient subsequently had progressive lower urinary tract symptoms, his PSA increased to 47 ng/ml, and there was a markedly enlarged pelvic mass involving the prostate with gross extra-capsular disease and invasion into the posterior bladder wall. The patient was referred for palliative radiation to the pelvic mass due to urinary symptoms, pain, and lower limb paraesthesia. Treatment was planned to be delivered on the MR-Linac with a schedule of 36 Gy over 6 weekly factions allowing for maximal target dose delivery while minimizing surrounding organs at risk (OARs) radiation exposure. Unexpectedly, the target volume had a marked 49% (453 cc to 233 cc) reduction that was accounted for in the online adaptive process. A new reference plan was generated after 3 fractions to add sacral plexus as an OAR, previously not visible due to mass encroachment. The patient reported ongoing reduction in urinary symptoms, pelvic pain, and lower limb paresthesia by the end of treatment. Conclusion Using daily MR-guided ART, improved visualization of the changing target and OARs ensured safe dose escalation. The unexpected positive response of the target and improved patient outcomes demonstrated the added value of the MR-Linac for online adaptive radiotherapy in this setting.
Collapse
Affiliation(s)
- Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Winnie Li,
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jerusha Padayachee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Magnetic Resonance Guided Radiotherapy for Head and Neck Cancers. J Clin Med 2022; 11:jcm11051388. [PMID: 35268479 PMCID: PMC8911481 DOI: 10.3390/jcm11051388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is an integral component of head/neck squamous cell carcinomas (HNSCCs) treatment, and technological developments including advances in image-guided radiotherapy over the past decades have offered improvements in the technical treatment of these cancers. Integration of magnetic resonance imaging (MRI) into image guidance through the development of MR-guided radiotherapy (MRgRT) offers further potential for refinement of the techniques by which HNSCCs are treated. This article provides an overview of the literature supporting the current use of MRgRT for HNSCC, challenges with its use, and developing research areas.
Collapse
|
39
|
Seminal vesicle inter- and intra-fraction motion during radiotherapy for prostate cancer: a review. Radiother Oncol 2022; 169:15-24. [DOI: 10.1016/j.radonc.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023]
|
40
|
Yuan J, Poon DMC, Lo G, Wong OL, Cheung KY, Yu SK. A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer. Quant Imaging Med Surg 2022; 12:1585-1607. [PMID: 35111651 PMCID: PMC8739116 DOI: 10.21037/qims-21-697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 08/24/2023]
Abstract
Magnetic resonance guided radiotherapy (MRgRT), enabled by the clinical introduction of the integrated MRI and linear accelerator (MR-LINAC), is a novel technique for prostate cancer (PCa) treatment, promising to further improve clinical outcome and reduce toxicity. The role of prostate MRI has been greatly expanded from the traditional PCa diagnosis to also PCa screening, treatment and surveillance. Diagnostic prostate MRI has been relatively familiar in the community, particularly with the development of Prostate Imaging - Reporting and Data System (PI-RADS). But, on the other hand, the use of MRI in the emerging clinical practice of PCa MRgRT, which is substantially different from that in PCa diagnosis, has been so far sparsely presented in the medical literature. This review attempts to give a comprehensive overview of MRI acquisition techniques currently used in the clinical workflows of PCa MRgRT, from treatment planning to online treatment guidance, in order to promote MRI practice and research for PCa MRgRT. In particular, the major differences in the MRI acquisition of PCa MRgRT from that of diagnostic prostate MRI are demonstrated and explained. Limitations in the current MRI acquisition for PCa MRgRT are analyzed. The future developments of MRI in the PCa MRgRT are also discussed.
Collapse
Affiliation(s)
- Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Darren M. C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Gladys Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
41
|
Cellini F, Tagliaferri L, Frascino V, Alitto AR, Fionda B, Boldrini L, Romano A, Casà C, Catucci F, Mattiucci GC, Valentini V. Radiation therapy for prostate cancer: What's the best in 2021. Urologia 2022; 89:5-15. [PMID: 34496707 DOI: 10.1177/03915603211042335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Radiotherapy is highly involved in the management of prostate cancer. Its features and potential applications experienced a radical evolution over last decades, as they are associated to the continuous evolution of available technology and current oncological innovations. Some application of radiotherapy like brachytherapy have been recently enriched by innovative features and multidisciplinary dedications. In this report we aim to put some questions regarding the following issues regarding multiple aspects of modern application of radiation oncology: the current application of radiation oncology; the modern role of stereotactic body radiotherapy (SBRT) for both the management of primary lesions and for lymph-nodal recurrence; the management of the oligometastatic presentations; the role of brachytherapy; the aid played by the application of the organ at risk spacer (spacer OAR), fiducial markers, electromagnetic tracking systems and on-line Magnetic Resonance guided radiotherapy (MRgRT), and the role of the new opportunity represented by radiomic analysis.
Collapse
Affiliation(s)
- Francesco Cellini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Luca Tagliaferri
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Vincenzo Frascino
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Rita Alitto
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Bruno Fionda
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Luca Boldrini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Angela Romano
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Calogero Casà
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Gian Carlo Mattiucci
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
- Radiation Oncology, Mater Olbia Hospital, Olbia, Italy
| | - Vincenzo Valentini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
42
|
Dosimetric impact of interfraction prostate and seminal vesicle volume changes and rotation: A post-hoc analysis of a phase III randomized trial of MRI-guided versus CT-guided stereotactic body radiotherapy. Radiother Oncol 2021; 167:203-210. [PMID: 34979212 DOI: 10.1016/j.radonc.2021.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Interfraction volumetric changes/rotations in the prostate and proximal seminal vesicles (SVs) might compromise target coverage when tight margins are used for prostate stereotactic body radiotherapy (SBRT). We investigated on-board MRI images from MRI-guided SBRT to better understand this. MATERIALS AND METHODS Twenty consecutive patients treated with MRI-guided prostate SBRT (40 Gy/5 fractions) enrolled on the MRI arm of a phase III randomized trial were included. A 2 mm isotropic margin was used for prostate and proximal SVPTV. Target volume, prostate dimensions, angles of the proximal SV on axial (angle α) and sagittal view (angle θ) were measured on a 0.35 T simulation MRI and five on-board pre-treatment MRIs. Dice coefficient of the targets and target dosimetry were calculated. RESULTS All patients experienced an isotropic increase in prostate volume during SBRT (p = 0.0016): 0.1%, 9.0%, 12.1%, 15.1%, and 14.2% (median) at fractions 1-5, respectively, regardless of baseline volume, which was significantly reduced with neoadjuvant ADT (p = 0.0042). There was minimal interfraction rotation of prostate, however, considerable variations in proximal SV angle α (median 21.5°) and angle θ (median 17.6°) were seen. Median V100% was 97.5% and 87.1% for prostate and proximal SV CTV, respectively. V95%≥95% was achieved in 94% of fractions for the prostate and in 59% for proximal SV. CONCLUSION Prostate volume consistently increased during SBRT. Interfraction prostatic rotation was minimal while rotation of the proximal SV was considerable. Prostate dosimetry was favorable, but online adaptive therapy may be indicated occasionally to account for prostatic swelling and in particular proximal SV rotations.
Collapse
|
43
|
Elter A, Rippke C, Johnen W, Mann P, Hellwich E, Schwahofer A, Dorsch S, Buchele C, Klüter S, Karger CP. End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom. Phys Med Biol 2021; 66. [PMID: 34845991 DOI: 10.1088/1361-6560/ac3e0c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Objective.In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.Approach.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.Main results.A good agreement of measured and planned dose was found represented by highγ-index passing rates (3%/3mmcriterion) of the PG evaluation of98.9%in the prostate and93.7%in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of-2.3%.Significance.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.
Collapse
Affiliation(s)
- A Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Rippke
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - W Johnen
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - P Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - E Hellwich
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - A Schwahofer
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - S Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - C Buchele
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - S Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - C P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
44
|
Lübeck Christiansen R, Dysager L, Rønn Hansen C, Robenhagen Jensen H, Schytte T, Junker Nyborg C, Smedegaard Bertelsen A, Nielsen Agergaard S, Mahmood F, Hansen S, Hansen O, Brink C, Bernchou U. Online adaptive radiotherapy potentially reduces toxicity for high-risk prostate cancer treatment. Radiother Oncol 2021; 167:165-171. [PMID: 34923034 DOI: 10.1016/j.radonc.2021.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE With daily, MR-guided online adapted radiotherapy (MRgART) it may be possible to reduce the PTV in pelvic RT. This study investigated the potential reduction in normal tissue complication probability (NTCP) of MRgART compared to standard radiotherapy for high-risk prostate cancer. MATERIALS AND METHODS Twenty patients treated with 78 Gy to the prostate and 56 Gy to elective pelvic lymph nodes were included. VMAT plans were generated with standard clinical PTV margins. Additionally to the planning MR, patients had three MRI scans during treatment to simulate an MRgART. A reference plan with PTV margins determined for MRgART was created per patient and adapted to each of the following MRs. Adapted plans were warped to the planning MR for dose accumulation. The standard plan was rigidly registered to each adaptation MR before it was warped to the planning MR for dose accumulation. Dosimetric impact was compared by DVH analysis and potential clinical effects were assessed by NTCP modeling. RESULTS MRgART yielded statistically significant lower doses for the bladder wall, rectum and peritoneal cavity, compared to the standard RT, which translated into reduced median risks of urine incontinence (ΔNTCP 2.8%), urine voiding pain (ΔNTCP 2.8%) and acute gastrointestinal toxicity (ΔNTCP 17.4%). Mean population accumulated doses were as good or better for all investigated OAR when planned for MRgART as standard RT. CONCLUSION Online adapted radiotherapy may reduce the dose to organs at risk in high-risk prostate cancer patients, due to reduced PTV margins. This potentially translates to significant reductions in the risks of acute and late adverse effects.
Collapse
Affiliation(s)
- Rasmus Lübeck Christiansen
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital.
| | - Lars Dysager
- Department of Oncology, Odense University Hospital
| | - Christian Rønn Hansen
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | | | - Tine Schytte
- Department of Clinical Research, University of Southern Denmark; Department of Oncology, Odense University Hospital
| | | | | | | | - Faisal Mahmood
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | | | - Olfred Hansen
- Department of Clinical Research, University of Southern Denmark; Department of Oncology, Odense University Hospital
| | - Carsten Brink
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| | - Uffe Bernchou
- Department of Clinical Research, University of Southern Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital
| |
Collapse
|
45
|
de Leon J, Woods A, Twentyman T, Meade M, Sproule V, Chandran S, Christiansen J, Kennedy N, Marney M, Barooshian K, Plit M, Lynch J, Jagavkar R, Ormandy H, Christodouleas J, Pietzsch F, Chan M, Jameson MG. Analysis of data to Advance Personalised Therapy with MR-Linac (ADAPT-MRL). Clin Transl Radiat Oncol 2021; 31:64-70. [PMID: 34646950 PMCID: PMC8495756 DOI: 10.1016/j.ctro.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Analysis of Data to Advance Personalised Therapy with MR-Linac (ADAPT-MRL) is a multi-site, multinational, observational cohort registry designed to collect data on the use of the magnetic resonance linear accelerator (MR-Linac) for radiation therapy and patient outcomes. The registry will provide a linked repository of technical and clinical data that will form a platform for prospective studies and technology assessment. METHODS Design: This registry aims to include an estimated 10,000 eligible participants across Australia and other countries over a 7- to 10-year period. Participants will undergo treatment and assessments in accordance with standard practice. Toxicity and survival outcomes will be assessed at baseline, during treatment, and with 3 monthly follow-up until 24 months, patient reported outcome measures will also be collected. Participants with a variety of cancers will be included. DISCUSSION Data obtained from the ADAPT-MRL registry is expected to provide evidence on the safety and efficacy of the MR-Linac, a new technical innovation in radiation oncology. We expect this registry will generate data that will be used to optimise treatment techniques, MR-Linac software algorithms, evaluate participants' outcomes and toxicities and to create a repository of adapted plans, anatomical and functional MR sequences linked to participants' outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Christodouleas
- Elekta AB, Stockholm, Sweden
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | | | | | - Michael G Jameson
- GenesisCare, Sydney, Australia
- University of New South Wales, Sydney, Australia
| |
Collapse
|
46
|
van Luijtelaar A, Fütterer JJ, Bomers JG. Minimally invasive magnetic resonance image-guided prostate interventions. Br J Radiol 2021; 95:20210698. [PMID: 34723623 PMCID: PMC8978246 DOI: 10.1259/bjr.20210698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole gland prostate cancer treatment, i.e. radical prostatectomy or radiation therapy, is highly effective but also comes with a significant impact on quality of life and possible overtreatment in males with low to intermediate risk disease. Minimal-invasive treatment strategies are emerging techniques. Different sources of energy are used to aim for targeted treatment in order to reduce treatment-related complications and morbidity. Imaging plays an important role in targeting and monitoring of treatment approaches preserving parts of the prostatic tissue. Multiparametric magnetic resonance imaging (mpMRI) is widely used during image-guided interventions due to the multiplanar and real-time anatomical imaging while providing an improved treatment accuracy. This review evaluates the available image-guided prostate cancer treatment options using MRI or magnetic resonance imaging/transrectal ultrasound (MRI/TRUS)-fusion guided imaging. The discussed minimal invasive image-guided prostate interventions may be considered as safe and feasible partial gland ablation in patients with (recurrent) prostate cancer. However, most studies focusing on minimally invasive prostate cancer treatments only report early stages of research and subsequent high-level evidence is still needed. Ensuring a safe and appropriate utilization in patients that will benefit the most, and applied by physicians with relevant training, has become the main challenge in minimally invasive prostate cancer treatments.
Collapse
Affiliation(s)
- Annemarijke van Luijtelaar
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen J Fütterer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce Gr Bomers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Wada Y, Monzen H, Otsuka M, Doi H, Nakamatsu K, Nishimura Y. Difference in VMAT dose distribution for prostate cancer with/without rectal gas removal and/or adaptive replanning. Med Dosim 2021; 47:87-91. [PMID: 34702634 DOI: 10.1016/j.meddos.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
We investigated differences in the volumetric-modulated arc therapy (VMAT) dose distribution in prostate cancer patients treated by rectal gas removal and/or adaptive replanning. Cone-beam computed tomography (CBCT) scans were performed daily for 22 treatments in eight prostate cancer patients with excessive rectal gas, and the CBCT images were analyzed. Rectal gas removal was performed, and irradiation was delivered after prostate matching. We compared dose-volume histograms for the daily CBCT images before and after rectal gas removal. Plan A was the original plan on CBCT images before rectal gas removal. Plan B was a single reoptimized plan on CBCT images before rectal gas removal. Plan C was the original plan on CBCT images after rectal gas removal. Plan D was a single reoptimized plan on CBCT images after rectal gas removal. D95 of the planning target volume (PTV) minus the rectum of Plan C (94.7% ± 6.6%) was significantly higher than that of Plan A (88.5% ± 10.4%). All dosimetric parameters of Plan C were improved by rectal gas removal compared with Plan A, regardless of the initial rectal gas volume. Dosimetric parameters of PTV minus the rectum of Plan B were significantly improved compared with Plan C. Additionally, the V78 of the rectal wall of Plan B (0.2% ± 0.5%) was significantly improved compared with Plan C (3.9% ± 6.3%, p = 0.003). The dosimetric parameters of Plan D were not significantly different from Plan B. The dose distribution of prostate VMAT was improved by rectal gas removal and/or adaptive replanning. An adaptive replanning on daily CBCT images might be a better method than rectal gas removal for prostate cancer patients with excessive rectal gas.
Collapse
Affiliation(s)
- Yutaro Wada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, 589-8511, Japan.
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| | - Masakazu Otsuka
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
48
|
Calvo-Ortega JF, Moragues-Femenía S, Laosa-Bello C, Torices-Caballero J, Hermida-López M, Casals-Farran J. Clinical Experience in Prostate Ultrahypofractionated Radiation Therapy With an Online Adaptive Method. Pract Radiat Oncol 2021; 12:e144-e152. [PMID: 34670139 DOI: 10.1016/j.prro.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to describe the feasibility of the online adaptive radiation therapy (oART) method developed at the Hospital Quirónsalud Barcelona for prostate cancer, using a standard C-arm linear accelerator (linac) and without the support of artificial intelligence. METHODS AND MATERIALS The first 18 patients treated at the Hospital Quirónsalud Barcelona with the developed oART method were included. An ultrahypofractionated radiation therapy scheme consisting of 7 × 6.1 Gy was used. Patients were treated on 2 conventional Varian C-arm linacs. For each patient, a reference plan based on a planning computed tomography (pCT) scan was generated using the Eclipse system. On each treatment session, the pCT scan was rigidly registered with the daily cone beam computed tomography (CT) scan. The pCT-based target (prostate) and organs at risk were mapped onto the cone beam CT images and manually adapted to take into account the anatomy of the day. The reference plan was then copied to the cone beam CT scan, and a full reoptimization was done for the current anatomy (adapted plan). For each treatment session, the unaltered reference plan was recomputed on the daily cone beam CT scan by mimicking the soft-tissue alignment performed per our standard procedure (nonadapted plan). Over the 126 adapted sessions from the 18 patients, a dosimetric comparison of adapted against nonadapted plans was done. RESULTS A significant difference in the target coverage was found between the adapted and nonadapted plans (97.1 vs 90.4; P < .001) in favor of adapting. Without online adaptation, the optimal coverage of the prostate was not attained in 35% of fractions. Adapting allows for the improvement of the target coverage with compliance of all organ-at-risk dose constraints in all treatment fractions. CONCLUSIONS The oART technique described in this study is technically feasible with a C-arm linac. To our knowledge, this is the first clinical experience with oART for prostate cancer including full replanning and delivered with a C-arm linac without artificial intelligence capability.
Collapse
Affiliation(s)
| | | | - Coral Laosa-Bello
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | | | - Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joan Casals-Farran
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| |
Collapse
|
49
|
1.5T Magnetic Resonance-Guided Stereotactic Body Radiotherapy for Localized Prostate Cancer: Preliminary Clinical Results of Clinician- and Patient-Reported Outcomes. Cancers (Basel) 2021; 13:cancers13194866. [PMID: 34638348 PMCID: PMC8508440 DOI: 10.3390/cancers13194866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) offers the potential for achieving better prostate cancer (PC) treatment outcomes. This study reports the preliminary clinical results of 1.5T MRgSBRT in localized PC, based on both clinician-reported outcome measurement (CROM) and patient-reported outcome measurement (PROM). METHODS Fifty-one consecutive localized PC patients were prospectively enrolled with a median follow-up of 199 days. MRgSBRT was delivered in five fractions of 7.25-8 Gy with daily online adaptation. Clinician-reported gastrointestinal (GI) and genitourinary (GU) adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) Scale v. 5.0 were assessed. The Expanded Prostate Cancer Index Composite Questionnaire was collected at baseline, 1 month, and every 3 months thereafter. Serial prostate-specific antigen measurements were longitudinally recorded. RESULTS The maximum cumulative clinician-reported grade ≥ 2 acute GU and GI toxicities were 11.8% (6/51) and 2.0% (1/51), respectively, while grade ≥ 2 subacute GU and GI toxicities were 2.3% (1/43) each. Patient-reported urinary, bowel, and hormonal domain summary scores were reduced at 1 month, then gradually returned to baseline levels, with the exception of the sexual domain. Domain-specific subscale scores showed similar longitudinal changes. All patients had early post-MRgSBRT biochemical responses. CONCLUSIONS The finding of low toxicity supports the accumulation of clinical evidence for 1.5T MRgSBRT in localized PC.
Collapse
|
50
|
Schaule J, Chamberlain M, Wilke L, Baumgartl M, Krayenbühl J, Zamburlini M, Mayinger M, Andratschke N, Tanadini-Lang S, Guckenberger M. Intrafractional stability of MR-guided online adaptive SBRT for prostate cancer. Radiat Oncol 2021; 16:189. [PMID: 34565439 PMCID: PMC8474766 DOI: 10.1186/s13014-021-01916-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background MR-guided online adaptive stereotactic body radiation therapy (SBRT) for prostate cancer aims to reduce toxicity by full compensation of interfractional uncertainties. However, the process of online adaptation currently takes approximately 45 min during which intrafractional movements remain unaccounted for. This study aims to analyze the dosimetric benefit of online adaptation and to evaluate its robustness over the duration of one treatment fraction. Methods Baseline MR-scans at a MR-linear accelerator were acquired for ten healthy male volunteers for generation of mock-prostate SBRT plans with a dose prescription of 5 × 7.25 Gy. On a separate day, online MR-guided adaptation (ViewRay® MRIdian) was performed, and thereafter MR images were acquired every 15 min for 1 h to assess the stability of the adapted plan. Results A dosimetric benefit of online MR-guided adaptive re-planning was observed in 90% of volunteers. The median D95CTV- and D95PTV-coverage was improved from 34.8 to 35.5 Gy and from 30.7 to 34.6 Gy, respectively. Improved target coverage was not associated with higher dose to the organs at risk, most importantly the rectum (median D1ccrectum baseline plan vs. adapted plan 33.3 Gy vs. 32.3 Gy). The benefit of online adaptation remained stable over 45 min for all volunteers. However, at 60 min, CTV-coverage was below a threshold of 32.5 Gy in 30% of volunteers (30.6 Gy, 32.0 Gy, 32.3 Gy). Conclusion The dosimetric benefit of MR-guided online adaptation for prostate SBRT was robust over 45 min in all volunteers. However, intrafractional uncertainties became dosimetrically relevant at 60 min and we therefore recommend verification imaging before delivery of MR-guided online adapted SBRT. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01916-0.
Collapse
Affiliation(s)
- J Schaule
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - M Chamberlain
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - L Wilke
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - M Baumgartl
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - J Krayenbühl
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - M Zamburlini
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - M Mayinger
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - N Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - S Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - M Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|