1
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
2
|
Takabatake K, Tsujigiwa H, Nakano K, Chang A, Piao T, Inada Y, Arashima T, Morimatsu A, Tanaka A, Kawai H, Nagatsuka H. Effect of Scaffold Geometrical Structure on Macrophage Polarization during Bone Regeneration Using Honeycomb Tricalcium Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4108. [PMID: 39203286 PMCID: PMC11356497 DOI: 10.3390/ma17164108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
The polarization balance of M1/M2 macrophages with different functions is important in osteogenesis and bone repair processes. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 μm pore diameters (300TCP and 500TCP) induced bone formation within the pores. However, the details of the influence of macrophage polarization on bone formation using engineered biomaterials, especially with respect to the geometric structure of the artificial biomaterials, are unknown. In this study, we examined whether differences in bone tissue formation due to differences in TCP geometry were due to the polarity of the assembling macrophages. Immunohistochemistry for IBA-1, iNOS, and CD163 single staining was performed. The 300TCP showed a marked infiltration of iNOS-positive cells, which are thought to be M1 macrophages, during the osteogenesis process, while no involvement of CD163-positive cells, which are thought to be M2 macrophages, was observed in the TCP pores. In addition, 500TCP showed a clustering of iNOS-positive cells and CD163-positive cells at 2 weeks, suggesting the involvement of M2 macrophages in the formation of bone tissue in the TCP pores. In conclusion, we demonstrated for the first time that the geometrical structure of the artificial biomaterial, i.e., the pore size of honeycomb TCP, affects the polarization of M1/2 macrophages and bone tissue formation in TCP pores.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan;
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Anqi Chang
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Tianyan Piao
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Yasunori Inada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Takuma Arashima
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Morimatsu
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Tanaka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| |
Collapse
|
3
|
Strelova MS, Danilovtseva EN, Zelinskiy SN, Pal'shin VA, Annenkov VV. Biomimetic Calcium Phosphate Nanoparticles: Biomineralization Models and Precursors for Composite Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39140326 DOI: 10.1021/acs.langmuir.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The formation of calcium phosphate under the control of water-soluble polymers is important for understanding bone growth in living organisms. These experiments also have spin-offs in the creation of composite materials, including for regenerative medicine applications. The formation of calcium phosphate (hydroxyapatite) from calcium chloride and diammonium phosphate was studied in the presence of polymers containing carboxyl, amine, and imidazole groups. Depending on the polymer composition, solid products and stable dispersions of positively or negatively charged nanoparticles were obtained. Oppositely charged nanoparticles can interact with each other to form a macroporous composite material, which holds promise as a filler for bone defects. The formation of a calcium phosphate layer around a living cell (dinoflagellate Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg) using positive composite nanoparticles is a one-step approach to cell mineralization.
Collapse
Affiliation(s)
- Mariya S Strelova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| |
Collapse
|
4
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
5
|
Llorente JJ, Junquera L, Gallego L, Pérez-Basterrechea M, Suárez LI, Llorente S. Design, In Vitro Evaluation and In Vivo Biocompatibility of Additive Manufacturing Three-Dimensional Printing of β beta-Tricalcium Phosphate Scaffolds for Bone Regeneration. Biomedicines 2024; 12:1049. [PMID: 38791011 PMCID: PMC11118782 DOI: 10.3390/biomedicines12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The reconstruction of bone deficiencies remains a challenge due to the limitations of autologous bone grafting. The objective of this study is to evaluate the bone regeneration efficacy of additive manufacturing of tricalcium phosphate (TCP) implants using lithography-based ceramic manufacturing (LCM). LCM uses LithaBone TCP 300 slurry for 3D printing, producing cylindrical scaffolds. Four models of internal scaffold geometry were developed and compared. The in vitro studies included cell culture, differentiation, seeding, morphological studies and detection of early osteogenesis. The in vivo studies involved 42 Wistar rats divided into four groups (control, membrane, scaffold (TCP) and membrane with TCP). In each animal, unilateral right mandibular defects with a total thickness of 5 mm were surgically performed. The animals were sacrificed 3 and 6 months after surgery. Bone neoformation was evaluated by conventional histology, radiology, and micro-CT. Model A (spheres with intersecting and aligned arrays) showed higher penetration and interconnection. Histological and radiological analysis by micro-CT revealed increased bone formation in the grafted groups, especially when combined with a membrane. Our innovative 3D printing technology, combined with precise scaffold design and efficient cleaning, shows potential for bone regeneration. However, further refinement of the technique and long-term clinical studies are crucial to establish the safety and efficacy of these advanced 3D printed scaffolds in human patients.
Collapse
Affiliation(s)
| | - Luis Junquera
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Central University Hospital, 33011 Oviedo, Spain
| | - Lorena Gallego
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Cabueñes University Hospital, 33394 Gijón, Spain
| | | | | | | |
Collapse
|
6
|
Ali Akbari Ghavimi S, Faulkner TJ, Tata RR, Hemmerla AJ, Huddleston SE, Rezaei F, Lungren ES, Zhang R, Bumann EE, Ulery BD. Hydrogen Sulfide Delivery to Enhance Bone Tissue Engineering Cell Survival. Pharmaceuticals (Basel) 2024; 17:585. [PMID: 38794155 PMCID: PMC11124412 DOI: 10.3390/ph17050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be employed as a cytoprotective molecule to enhance mesenchymal stem cell (MSC) tolerance to cytotoxic Ca2+/Pi concentrations. Varied concentrations of sodium hydrogen sulfide (NaSH), a fast-releasing H2S donor, were applied to assess the influence of H2S on MSC proliferation. The results suggested a toxicity limit of 4 mM for NaSH and that 1 mM of NaSH could improve cell proliferation and differentiation in the presence of cytotoxic levels of Ca2+ (32 mM) and/or Pi (16 mM). To controllably deliver H2S over time, a novel donor molecule (thioglutamic acid-GluSH) was synthesized and evaluated for its H2S release profile. Excitingly, GluSH successfully maintained cytoprotective level of H2S over 7 days. Furthermore, MSCs exposed to cytotoxic Ca2+/Pi concentrations in the presence of GluSH were able to thrive and differentiate into osteoblasts. These findings suggest that the incorporation of a sustained H2S donor such as GluSH into CaP-based bone graft substitutes can facilitate considerable cytoprotection, making it an attractive option for complex bone regenerative engineering applications.
Collapse
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Trent J. Faulkner
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Rama Rao Tata
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - August J. Hemmerla
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Samantha E. Huddleston
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Farnoushsadat Rezaei
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Ethan S. Lungren
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rui Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
| | - Erin E. Bumann
- Department of Oral and Craniofacial Sciences, University of Missouri, Kansas City, MO 64110, USA;
| | - Bret D. Ulery
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA; (S.A.A.G.); (R.R.T.); (S.E.H.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
- Materials Science & Engineering Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Theodosaki AM, Tzemi M, Galanis N, Bakopoulou A, Kotsiomiti E, Aggelidou E, Kritis A. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev Rep 2024; 20:938-966. [PMID: 38407793 PMCID: PMC11087324 DOI: 10.1007/s12015-024-10696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The aim of the study is to determine the effectiveness of stem cells in scaffolds in the treatment of bone deficits, in regard of bone regeneration, safety, rehabilitation and quality of life in humans. The systematic review was conducted in accordance with PRISMA 2020. A systematic search was conducted in three search engines and two registries lastly in 29-9-2022.for studies of the last 15 years. The risk of bias was assessed with RoB-2, ROBINS- I and NIH Quality of Before-After (Pre-Post) Studies with no Control group. The certainty of the results was assessed with the GRADE assessment tool. Due to heterogeneity, the results were reported in tables, graphs and narratively. The study protocol was published in PROSPERO with registration number CRD42022359049. Of the 10,091 studies retrieved, 14 were meeting the inclusion criteria, and were qualitatively analyzed. 138 patients were treated with mesenchymal stem cells in scaffolds, showing bone healing in all cases, and even with better results than the standard care. The adverse events were mild in most cases and in accordance with the surgery received. When assessed, there was a rehabilitation of the deficit and a gain in quality of life was detected. Although the heterogeneity between the studies and the small number of patients, the administration of mesenchymal stem cells in scaffolds seems safe and effective in the regeneration of bone defects. These results pave the way for the conduction of more clinical trials, with greater number of participants, with more standardized procedures.
Collapse
Affiliation(s)
- Astero Maria Theodosaki
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece.
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- , Thessaloniki, Greece.
| | - Maria Tzemi
- Research Methodology in Medicine and Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Postgraduate program of Research Methodology in Medicine and Health Sciences, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- 1st Orthopaedic Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Eleni Kotsiomiti
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| |
Collapse
|
8
|
Rojas-Rojas L, Tozzi G, Guillén-Girón T. A Comprehensive Mechanical Characterization of Subject-Specific 3D Printed Scaffolds Mimicking Trabecular Bone Architecture Biomechanics. Life (Basel) 2023; 13:2141. [PMID: 38004281 PMCID: PMC10672154 DOI: 10.3390/life13112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
This study presents a polymeric scaffold designed and manufactured to mimic the structure and mechanical compressive characteristics of trabecular bone. The morphological parameters and mechanical behavior of the scaffold were studied and compared with trabecular bone from bovine iliac crest. Its mechanical properties, such as modulus of elasticity and yield strength, were studied under a three-step monotonic compressive test. Results showed that the elastic modulus of the scaffold was 329 MPa, and the one for trabecular bone reached 336 MPa. A stepwise dynamic compressive test was used to assess the behavior of samples under various loading regimes. With microcomputed tomography (µCT), a three-dimensional reconstruction of the samples was obtained, and their porosity was estimated as 80% for the polymeric scaffold and 88% for trabecular bone. The full-field strain distribution of the samples was measured using in situ µCT mechanics and digital volume correlation (DVC). This provided information on the local microdeformation mechanism of the scaffolds when compared to that of the tissue. The comprehensive results illustrate the potential of the fabricated scaffolds as biomechanical templates for in vitro studies. Furthermore, there is potential for extending this structure and fabrication methodology to incorporate suitable biocompatible materials for both in vitro and in vivo clinical applications.
Collapse
Affiliation(s)
- Laura Rojas-Rojas
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham ME4 4TB, UK;
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Tecnológico de Costa Rica, Cartago 30109, Costa Rica;
| |
Collapse
|
9
|
Tosounidis T, Pape HC. The use of a new grafting material (b.Bone™) for the management of severely depressed tibial plateau fractures: Preliminary report of three cases. Trauma Case Rep 2023; 47:100893. [PMID: 37601554 PMCID: PMC10436172 DOI: 10.1016/j.tcr.2023.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
Tibial plateau fractures are often complex injuries that result from high-energy trauma affecting the articular congruity of the knee. Managing tibial plateau fractures can be challenging because of severe depression of the subchondral cancellous bone and concomitant cartilage injury. Bone substitutes are commonly used to fill such defects as part of the surgical treatment of tibial plateau fractures. We describe three cases of tibial plateau fractures managed with a synthetic bone substitute (b.Bone™, GreenBone ORTHO S.p.A Faenza, Italy) with a highly interconnected and porous 3D structure to mimic the hierarchical architecture and morphology of natural human bone.
Collapse
Affiliation(s)
- T.H. Tosounidis
- Department of Orthopaedic Surgery, University Hospital, Heraklion, Crete, Greece
| | - H.-C. Pape
- Department of Trauma Surgery, University Hospital of Zurich, Switzerland
| |
Collapse
|
10
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
11
|
Krobot Š, Melčová V, Menčík P, Kontárová S, Rampichová M, Hedvičáková V, Mojžišová E, Baco A, Přikryl R. Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing. Polymers (Basel) 2023; 15:polym15102404. [PMID: 37242979 DOI: 10.3390/polym15102404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
In the presented work, poly(3-hydroxybutyrate)-PHB-based composite blends for bone medical applications and tissue engineering are prepared and characterized. PHB used for the work was in two cases commercial and, in one case, was extracted by the chloroform-free route. PHB was then blended with poly(lactic acid) (PLA) or polycaprolactone (PCL) and plasticized by oligomeric adipate ester (Syncroflex, SN). Tricalcium phosphate (TCP) particles were used as a bioactive filler. Prepared polymer blends were processed into the form of 3D printing filaments. The samples for all the tests performed were prepared by FDM 3D printing or compression molding. Differential scanning calorimetry was conducted to evaluate the thermal properties, followed by optimization of printing temperature by temperature tower test and determination of warping coefficient. Tensile test, three-point flexural test, and compression test were performed to study the mechanical properties of materials. Optical contact angle measurement was conducted to determine the surface properties of these blends and their influence on cell adhesion. Cytotoxicity measurement of prepared blends was conducted to find out whether the prepared materials were non-cytotoxic. The best temperatures for 3D printing were 195/190, 195/175, and 195/165 °C for PHB-soap/PLA-SN, PHB/PCL-SN, and PHB/PCL-SN-TCP, respectively. Their mechanical properties (strengths ~40 MPa, moduli ~2.5 GPa) were comparable with human trabecular bone. The calculated surface energies of all blends were ~40 mN/m. Unfortunately, only two out of three materials were proven to be non-cytotoxic (both PHB/PCL blends).
Collapse
Affiliation(s)
- Štěpán Krobot
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Veronika Melčová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Přemysl Menčík
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Soňa Kontárová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Michala Rampichová
- Institute of Experimental Medicine, CAS, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Věra Hedvičáková
- Institute of Experimental Medicine, CAS, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Ema Mojžišová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Andrej Baco
- PANARA, a.s., Krškanská 21, 949 05 Nitra, Slovakia
| | - Radek Přikryl
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules. J Funct Biomater 2023; 14:jfb14020101. [PMID: 36826900 PMCID: PMC9964438 DOI: 10.3390/jfb14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.
Collapse
|
13
|
Management of bone diseases: looking at scaffold-based strategies for drug delivery. Drug Deliv Transl Res 2023; 13:79-104. [PMID: 35816230 DOI: 10.1007/s13346-022-01191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The bone tissue can regenerate itself completely and continuously; however, large-scale bone defects may overpower this self-regenerative process. Furthermore, the aging population, the increment in obesity incidence, and the sedentary lifestyles are serious risk factors for bone diseases' development which are associated with the self-regenerative process's failure, high morbidity, and mortality rates. Thus, there is an ever-growing need for strategic approaches targeting bone replacement, its remodelling, and its regeneration. Bone scaffolds have successfully been used as synthetic bone grafts for many years, yet recent bone tissue engineering strategies attempt to explore their multifunctionality by investigating them as drug delivery systems. Bone diseases' treatments can be substantially difficult due to the avascular nature of the surrounding cartilage; thus, targeted drug delivery to the bone can be advantageous: it provides local high drug concentrations and minimizes adverse effects while securing a space for new, healthy tissue growth. Despite the promising scientific progress, studies underlining bone scaffolds' use as local drug delivery systems are not abundant. Hence, this work reviews bone scaffolds' therapeutic interest for local drug delivery in five distinct bone disorders-osteomyelitis, osteoporosis, osteoarthritis, osteosarcoma, and cancer bone metastasis. Additionally, it presents the challenges of this possible therapeutic approach and its future perspectives. Albeit bone scaffolds present therapeutic benefits by acting as drug delivery systems, further pre-clinical and clinical assessments are needed to strengthen their understanding and enable research evidence translation into clinical practice. The mismatch between scientific evolution and regulatory frameworks remains one of the major future challenges.
Collapse
|
14
|
Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment. Int J Mol Sci 2022; 23:ijms232214409. [PMID: 36430886 PMCID: PMC9698972 DOI: 10.3390/ijms232214409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.
Collapse
|
15
|
Mathirat A, Dalavi PA, Prabhu A, G.V. YD, Anil S, Senthilkumar K, Seong GH, Sargod SS, Bhat SS, Venkatesan J. Remineralizing Potential of Natural Nano-Hydroxyapatite Obtained from Epinephelus chlorostigma in Artificially Induced Early Enamel Lesion: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223993. [PMID: 36432279 PMCID: PMC9693638 DOI: 10.3390/nano12223993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/12/2023]
Abstract
Dental caries is a common problem in adolescents, leading to permanent loss of teeth or cavitation. Caries is a continuous process wherein demineralization and remineralization occur regularly. Hydroxyapatite (HA) is one of the most biocompatible and bioactive materials, as it closely resembles the mineral composition of teeth. The present study deals with isolating hydroxyapatite from fish bone (Epinephelus chlorostigma) by alkaline hydrolysis and thermal calcination. The isolated nano HA was characterized using FT-IR, XRD, TGA, FE-SEM-EDX, and HR-TEM analysis. The nano HA isolated by alkaline hydrolysis is nontoxic, and the cells are viable. The isolated HA enhances the proliferation of L929 cells. The remineralization potential of the extracted nano HA was evaluated in healthy premolars by DIAGNOdent/laser fluorescence quantification, surface microhardness test, and SEM-EDX analysis. Surface morphological observations in SEM and EDX analyses show that thermally calcined HA and alkali-treated HA can induce mineralization and deposit minerals. Therefore, HA obtained from Epinephelus chlorostigma could be a potential biomaterial for treating early caries.
Collapse
Affiliation(s)
- Ashwathi Mathirat
- Department of Pediatric and Preventive Dentistry, Yenepoya Dental College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Ashwini Prabhu
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Yashaswini Devi G.V.
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha 3050, Qatar
- College of Dental Medicine, Qatar University, Doha 2713, Qatar
| | - Kalimuthu Senthilkumar
- Central Research Laboratory, Swamy Vivekananda Medical College Hospital and Research Institute, Namakkal 637205, Tamilnadu, India
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, Korea
| | - Sharan S. Sargod
- Department of Pediatric and Preventive Dentistry, Yenepoya Dental College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Sham S. Bhat
- Department of Pediatric and Preventive Dentistry, Yenepoya Dental College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, Korea
| |
Collapse
|
16
|
McFerran A, McIvor MJ, Lemoine P, Meenan BJ, Acheson JG. Biocompatible Nanocomposite Coatings Deposited via Layer-by-Layer Assembly for the Mechanical Reinforcement of Highly Porous Interconnected Tissue-Engineered Scaffolds. Bioengineering (Basel) 2022; 9:585. [PMID: 36290553 PMCID: PMC9598527 DOI: 10.3390/bioengineering9100585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/29/2023] Open
Abstract
Tissue-engineered (TE) scaffolds provide an 'off-the-shelf' alternative to autograft procedures and can potentially address their associated complications and limitations. The properties of TE scaffolds do not always match the surrounding bone, often sacrificing porosity for improved compressive strength. Previously, the layer-by-layer (LbL) assembly technique was used to deposit nanoclay containing multilayers capable of improving the mechanical properties of open-cell structures without greatly affecting the porosity. However, the previous coatings studied contained poly(ethylenimine) (PEI), which is known to be cytotoxic due to the presence of amine groups, rendering it unsuitable for use in biomedical applications. In this work, poly(diallydimethylammonium chloride) (PDDA)- and chitosan (CHI)-based polyelectrolyte systems were investigated for the purpose of nanoclay addition as an alternative to PEI-based polyelectrolyte systems. Nanocomposite coatings comprising of PEI, poly(acrylic acid) (PAA), Na+ montmorillonite (NC), PDDA, CHI and sodium alginate (ALG) were fabricated. The coatings were deposited in the following manner: (PEI/PAA/PEI/NC), PEI-(PDDA/PAA/PDDA/NC) and (CHI/ALG/CHI/ALG). Results from scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses demonstrated that the nanoclay was successfully incorporated into each polymer bilayer system, creating a nanocomposite coating. Each coating was successful at tailoring the elastic modulus of the open-cell structures, with polyurethane foams exhibiting an increase from 0.15 ± 0.10 MPa when uncoated to 5.51 ± 0.40 MPa, 6.01 ± 0.36 MPa and 2.61 ± 0.41 MPa when coated with (PEI/PAA/PEI/NC), PEI-(PDDA/PAA/PDDA/NC) and (CHI/ALG/CHI/ALG), respectively. Several biological studies were conducted to determine the cytotoxicity of the coatings, including a resazurin reduction assay, scanning electron microscopy and fluorescent staining of the cell-seeded substrates. In this work, the PDDA-based system exhibited equivalent physical and mechanical properties to the PEI-based system and was significantly more biocompatible, making it a much more suitable alternative for biomaterial applications.
Collapse
Affiliation(s)
- Aoife McFerran
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK
| | | | | | | | - Jonathan G. Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK
| |
Collapse
|
17
|
Ge YW, Chu M, Zhu ZY, Ke QF, Guo YP, Zhang CQ, Jia WT. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Mater Today Bio 2022; 16:100439. [PMID: 36245833 PMCID: PMC9557728 DOI: 10.1016/j.mtbio.2022.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Yang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Corresponding author.
| | - Wei-Tao Jia
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| |
Collapse
|
18
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Tang G, Zhu L, Wang W, Zuo D, Shi C, Yu X, Chen R. Alendronate-functionalized double network hydrogel scaffolds for effective osteogenesis. Front Chem 2022; 10:977419. [PMID: 36059871 PMCID: PMC9428824 DOI: 10.3389/fchem.2022.977419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Development of artificial bone substitutes mimicking the extracellular matrix is a promising strategy for bone repair and regeneration. In views of the actual requirement of biomechanics, biodegradability, and bioactivity, herein, a double-network (DN) hydrogel was constructed by interspersing a methacrylated gelatin (GelMA) network into alendronate (ALN)-modified oxidized alginate (OSA) network via Schiff base reaction and photo-crosslinking process to promote in situ bone regeneration. This GelMA@OSA-ALN DN hydrogel possessed favorable network and pores, good biocompatibility, and enhanced biomechanics. Notably, the introduction of Schiff base furnished the ND hydrogel scaffold with pH-responsive biodegradation and sustained ALN drug release delivery, which could provide effective bioactivity, upregulate osteogenesis-related genes, and promote the cell viability, growth, proliferation, and osteogenesis differentiation for bone regeneration. Therefore, we provide a new insight to develop functional DN hydrogel scaffold toward governing the on-demand drug release and achieving the stem cell therapy, which will be developed into the minimally invasive gelling system to prolong local delivery of bisphosphonates for the bone-related diseases.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Changgui Shi
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojie Yu
- Department of Orthopedics, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Rui Chen
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Chen D, Chen G, Zhang X, Chen J, Li J, Kang K, He W, Kong Y, Wu L, Su B, Zhao K, Si D, Wang X. Fabrication And In Vitro Evaluation Of 3D Printed Porous Silicate Substituted Calcium Phosphate Scaffolds For Bone Tissue Engineering. Biotechnol Bioeng 2022; 119:3297-3310. [PMID: 35923072 DOI: 10.1002/bit.28202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca) and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cell (BMSCs) adhesion, proliferation and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dechun Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Guanghua Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Xin Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingtao Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Jinmeng Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Kunlong Kang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Weitao He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Yuanhang Kong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Leilei Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Bo Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Kui Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Daiwei Si
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin, Heilongjiang, 150081, P. R. China
| |
Collapse
|
21
|
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061177. [PMID: 35745750 PMCID: PMC9229474 DOI: 10.3390/pharmaceutics14061177] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
| | - Jon Zarate
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Martin Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Universidad de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|
22
|
Ansari MAA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 2022; 10:2789-2816. [PMID: 35510605 DOI: 10.1039/d2bm00035k] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There are more than 2 million bone grafting procedures performed annually in the US alone. Despite significant efforts, the repair of large segmental bone defects is a substantial clinical challenge which requires bone substitute materials or a bone graft. The available biomaterials lack the adequate mechanical strength to withstand the static and dynamic loads while maintaining sufficient porosity to facilitate cell in-growth and vascularization during bone tissue regeneration. A wide range of advanced biomaterials are being currently designed to mimic the physical as well as the chemical composition of a bone by forming polymer blends, polymer-ceramic and polymer-degradable metal composites. Transforming these novel biomaterials into porous and load-bearing structures via three-dimensional printing (3DP) has emerged as a popular manufacturing technique to develop engineered bone grafts. 3DP has been adopted as a versatile tool to design and develop bone grafts that satisfy porosity and mechanical requirements while having the ability to form grafts of varied shapes and sizes to meet the physiological requirements. In addition to providing surfaces for cell attachment and eventual bone formation, these bone grafts also have to provide physical support during the repair process. Hence, the mechanical competence of the 3D-printed scaffold plays a key role in the success of the implant. In this review, we present various recent strategies that have been utilized to design and develop robust biomaterials that can be deployed for 3D-printing bone substitutes. The article also reviews some of the practical, theoretical and biological considerations adopted in the 3D-structure design and development for bone tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Aleksandra A Golebiowska
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Arugul, Khurdha 752050, Odisha, India
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Prashant Kumar Jain
- FFF Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
| | - Syam P Nukavarapu
- Biomedical Engineering, Materials Science & Engineering, and Orthopaedic Surgery, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT, 06269, USA
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| |
Collapse
|
23
|
Salerno E, Orlandi G, Ongaro C, d’Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J, Angeli D. Liquid flow in scaffold derived from natural source: experimental observations and biological outcome. Regen Biomater 2022; 9:rbac034. [PMID: 35747746 PMCID: PMC9211004 DOI: 10.1093/rb/rbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
Collapse
Affiliation(s)
- Elisabetta Salerno
- CNR-NANO S3 Research Center on nanoStructures and bioSystems at Surfaces , via Campi 213/A, Modena, I-41125, Italy
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Giulia Orlandi
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Claudio Ongaro
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Alessandro d’Adamo
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Andrea Ruffini
- National Research Council (CNR) Institute of Science and Technology for Ceramics (ISTEC), , Via Granarolo 64, Faenza, 48018, Italy
| | - Gianluca Carnevale
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Barbara Zardin
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Jessika Bertacchini
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Diego Angeli
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
24
|
Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers (Basel) 2022; 14:1153. [PMID: 35335484 PMCID: PMC8955974 DOI: 10.3390/polym14061153] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Manuela Ceraulo
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
25
|
Poh PS, Lingner T, Kalkhof S, Märdian S, Baumbach J, Dondl P, Duda GN, Checa S. Enabling technologies towards personalization of scaffolds for large bone defect regeneration. Curr Opin Biotechnol 2022; 74:263-270. [PMID: 35007988 DOI: 10.1016/j.copbio.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Additive manufacturing (AM) can deliver personalized scaffolds to support large volume defect tissue regeneration - a major clinical challenge in many medical disciplines. The freedom in scaffold design and composition (biomaterials and biologics) offered by AM yields a plethora of possibilities but is confronted with a heterogenous biological regeneration potential across individuals. A key challenge is to make the right choice for individualized scaffolds that match biology, anatomy, and mechanics of patients. This review provides an overview of state-of-the-art technologies, that is, in silico modelling for scaffold design, omics and bioinformatics to capture patient biology and information technology for data management, that, when combined in a synergistic way with AM, have great potential to make personalized tissue regeneration strategies available to all patients, empowering precision medicine.
Collapse
Affiliation(s)
- Patrina Sp Poh
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany.
| | | | - Stefan Kalkhof
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany; Institute for Bioanalysis, University of Applied Sciences Coburg, Friedrich-Streib-Straße 2, 96450 Coburg, Germany
| | - Sven Märdian
- Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, Universität Hamburg, Germany
| | - Patrick Dondl
- Department of Applied Mathematics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79111 Freiburg i. Br., Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany
| |
Collapse
|
26
|
Warindra T, Edward M, Hernugrahanto KD, Rantam FA, Mahyudin F, Basuki MH, Bari YA. Implantation of bovine hydroxyapatite and secretome with different oxygen concentration may improve massive bone defect regeneration: An experimental study on animal model. J Biomater Appl 2021; 36:1269-1276. [PMID: 34911392 DOI: 10.1177/08853282211051806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The most widely used biomaterials in the treatment of massive bone defects are allograft bone or metal implants. The current problem is that the availability of allographs is limited and metal implants are very expensive. Mass production of secretome can make bone reconstruction of massive bone defects using a scaffold more effective and efficient. This study aims to prove bone regeneration in massive bone defects using bovine hydroxyapatite reconstruction with normoxic and hypoxic secretome conditions using collagen type 1 (COL1), alkaline phosphate (ALP), osteonectin (ON), and osteopontin (OPN) parameters. This is an in vivo study using male New Zealand white rabbits aged 6-9 months. The research was carried out at the Biomaterials Center-Tissue Bank, Dr. Soetomo Hospital for the manufacturer of bovine hydroxyapatite (BHA) and secretome BM-MSC culture under normoxic and hypoxic conditions, and UNAIR Tropical Disease Institute for implantation in experimental animals. Data analysis was carried out with the one-way ANOVA statistical test and continued with the Post Hoc test LSD statistical test to determine whether or not there were significant differences between groups. There were significant differences between hypoxic to normoxic group and hypoxic to BHA group at day-30 observation using ALP, COL 1, ON, and OPN parameters. Meanwhile, there is only osteonectin parameter has significant difference at day-30 observation. At day-60 observation, only OPN parameter has significant differences between hypoxic to normoxic and hypoxic to BHA group. Between day-30 and day-60 observation, BHA and normoxic groups have a significant difference at all parameters, but in hypoxic group, there are only difference at ALP, COL 1, and ON parameters. Hypoxic condition BM-MSC secretome with BHA composite is superior and could be an option for treating bone defect.
Collapse
Affiliation(s)
- Taufin Warindra
- Department of Surgery, Faculty of Medicine, 95451Widya Mandala Catholic University/ PHC Hospital, Surabaya, Indonesia.,Doctoral degree of medicine, Faculty of Medicine, 148005Universitas Airlangga, Indonesia
| | - Mouli Edward
- Department of Orthopaedic & Traumatology, 148005Dr. Soetomo Academic General Hospital/ Universitas Airlangga, Surabaya, Indonesia
| | - Kukuh Dwiputra Hernugrahanto
- Department of Orthopaedic & Traumatology, 148005Dr. Soetomo Academic General Hospital/ Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Faculty of Veterinary Medicine, 148005Universitas Airlangga, Surabaya, Indonesia.,Stem Cell Research and Development Center, 148005Universitas Airlangga, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic & Traumatology, 148005Dr. Soetomo Academic General Hospital/ Universitas Airlangga, Surabaya, Indonesia.,Regenerative Medicine-Cell and Tissue Bank, 148005Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Muhammad Hardian Basuki
- Department of Orthopaedic & Traumatology, 148005Dr. Soetomo Academic General Hospital/ Universitas Airlangga, Surabaya, Indonesia
| | - Yunus Abdul Bari
- Department of Orthopaedic & Traumatology, 148005Dr. Soetomo Academic General Hospital/ Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
27
|
Melo P, Montalbano G, Fiorilli S, Vitale-Brovarone C. 3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds. MATERIALS 2021; 14:ma14216720. [PMID: 34772251 PMCID: PMC8588345 DOI: 10.3390/ma14216720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Bone-tissue regeneration is a growing field, where nanostructured-bioactive materials are designed to replicate the natural properties of the target tissue, and then are processed with technologies such as 3D printing, into constructs that mimic its natural architecture. Type I bovine collagen formulations, containing functional nanoparticles (enriched with therapeutic ions or biomolecules) or nanohydroxyapatite, are considered highly promising, and can be printed using support baths. These baths ensure an accurate deposition of the material, nonetheless their full removal post-printing can be difficult, in addition to undesired reactions with the crosslinking agents often used to improve the final structural integrity of the scaffolds. Such issues lead to partial collapse of the printed constructs and loss of geometrical definition. To overcome these limitations, this work presents a new alternative approach, which consists of adding a suitable concentration of crosslinking agent to the printing formulations to promote the in-situ crosslinking of the constructs prior to the removal of the support bath. To this aim, genipin, chosen as crosslinking agent, was added (0.1 wt.%) to collagen-based biomaterial inks (containing either 38 wt.% mesoporous bioactive glasses or 65 wt.% nanohydroxyapatite), to trigger the crosslinking of collagen and improve the stability of the 3D printed scaffolds in the post-processing step. Moreover, to support the material deposition, a 15 wt.% alginic acid solution was used as a bath, which proved to sustain the printed structures and was also easily removable, allowing for the stable processing of high-resolution geometries.
Collapse
Affiliation(s)
- Priscila Melo
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- Correspondence:
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| |
Collapse
|
28
|
Huo Y, Lu Y, Meng L, Wu J, Gong T, Zou J, Bosiakov S, Cheng L. A Critical Review on the Design, Manufacturing and Assessment of the Bone Scaffold for Large Bone Defects. Front Bioeng Biotechnol 2021; 9:753715. [PMID: 34722480 PMCID: PMC8551667 DOI: 10.3389/fbioe.2021.753715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.
Collapse
Affiliation(s)
- Yi Huo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Lingfei Meng
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jiongyi Wu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Tingxiang Gong
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jia’ao Zou
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarus State University, Minsk, Belarus
| | - Liangliang Cheng
- Department of Orthopeadics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
29
|
Yao Q, Liu Y, Pan Y, Li Y, Xu L, Zhong Y, Wang W, Zuo J, Yu H, Lv Z, Chen H, Zhang L, Wang B, Yao H, Meng Y. Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair. J Colloid Interface Sci 2021; 607:1500-1515. [PMID: 34583048 DOI: 10.1016/j.jcis.2021.09.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Osteoinductive, osteoconductive, and antibacterial properties of bone repair materials play important roles in regulating the successful bone regeneration. In the present work, we developed pH-sensitive gelatin methacryloyl (GelMA)-oxidized sodium alginate (OSA) hydrogels for dual-release of gentamicin sulfate (GS) and phenamil (Phe) to enhance the antibacterial activity and to promote large bone defect repair. Controlled release of GS was achieved through physical blending with GelMA-OSA solution before photo-polymeriaztion, while Phe was encapsulated into mesoporous silicate nanoparticles (MSN) within the hydrogels. In vitro antibacterial studies against Staphylococcus aureus and Escherichia coli indicated the broad-spectrum antibacterial property. Moreover, in vitro cell tests verified the synergistically enhanced osteogenic differentiation ability. Furthermore, in vivo studies revealed that the hydrogels significantly increased new bone formation in a critical-sized mouse cranial bone defect model. In summary, the novel dual-network hydrogels with both antibacterial and osteoinductive properties showed promising potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yu Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yining Pan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yijia Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Liming Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yiming Zhong
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China
| | - Wei Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Jiayi Zuo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Yu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Ziru Lv
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Lishu Zhang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Hongyan Yao
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Yongchun Meng
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China; Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong 264100, China.
| |
Collapse
|
30
|
Yun S, Choi D, Choi DJ, Jin S, Yun WS, Huh JB, Shim JH. Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and β-Tricalcium Phosphate as an Osteogenic Promoter. Int J Mol Sci 2021; 22:ijms22169084. [PMID: 34445788 PMCID: PMC8396563 DOI: 10.3390/ijms22169084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.
Collapse
Affiliation(s)
- Seokhwan Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Dami Choi
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Dong-Jin Choi
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Korea; (S.Y.); (D.-J.C.); (S.J.)
- Research Institute, T&R Biofab Co., Ltd., Siheung-si 15073, Korea;
- Correspondence: (W.-S.Y.); (J.-B.H.); (J.-H.S.); Tel.: +82-31-8041-1819 (W.-S.Y.); +82-55-360-5146 (J.-B.H.); +82-31-8041-1819 (J.-H.S.)
| |
Collapse
|
31
|
Ding H, Hu Y, Cheng Y, Yang H, Gong Y, Liang S, Wei Y, Huang D. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:6167-6174. [PMID: 35006871 DOI: 10.1021/acsabm.1c00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair of bone defects is one of the great challenges facing modern orthopedics clinics. Bone tissue engineering scaffold with a nanofibrous structure similar to the original microstructure of a bone is beneficial for bone tissue regeneration. Here, a core-shell nanofibrous membrane (MS), MS containing glucosamine (MS-GLU), MS with a shish-kebab (SK) structure (SKMS), and MS-GLU with a SK structure (SKMS-GLU) were prepared by micro-sol electrospinning technology and a self-induced crystallization method. The diameter of MS nanofibers was 50-900 nm. Contact angle experiments showed that the hydrophilicity of SKMS was moderate, and its contact angle was as low as 72°. SK and GLU have a synergistic effect on cell growth. GLU in the core of MS was demonstrated to obviously promote MC3T3-E1 cell proliferation. At the same time, the SK structure grown on MS-GLU nanofibers mimicked natural collagen fibers, which facilitated MC3T3-E1 cell adhesion and differentiation. This study showed that a biomimetic SKMS-GLU nanofibrous membrane was a promising tissue engineering scaffold for bone defect repair.
Collapse
Affiliation(s)
- Huixiu Ding
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hui Yang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yue Gong
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shan Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
32
|
Chang YL, Hsieh CY, Yeh CY, Chang CH, Lin FH. Fabrication of Stromal Cell-Derived Factor-1 Contained in Gelatin/Hyaluronate Copo006Cymer Mixed with Hydroxyapatite for Use in Traumatic Bone Defects. MICROMACHINES 2021; 12:mi12070822. [PMID: 34357232 PMCID: PMC8306626 DOI: 10.3390/mi12070822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022]
Abstract
Bone defects of orthopedic trauma remain a challenge in clinical practice. Regarding bone void fillers, besides the well-known osteoconductivity of most bone substitutes, osteoinductivity has also been gaining attention in recent years. It is known that stromal cell-derived factor-1 (SDF-1) can recruit mesenchymal stem cells (MSCs) in certain circumstances, which may also play an important role in bone regeneration. In this study, we fabricated a gelatin/hyaluronate (Gel/HA) copolymer mixed with hydroxyapatite (HAP) and SDF-1 to try and enhance bone regeneration in a bone defect model. After material characterization, these Gel/HA–HAP and Gel/HA–HAP–SDF-1 composites were tested for their biocompatibility and ability to recruit MSCs in vitro. A femoral condyle bone defect model of rats was used for in vivo studies. For the assessment of bone healing, micro-CT analysis, second harmonic generation (SHG) imaging, and histology studies were performed. As a result, the Gel/HA–HAP composites showed no systemic toxicity to rats. Gel/HA–HAP composite groups both showed better bone generation compared with the control group in an animal study, and the composite with the SDF-1 group even showed a trend of faster bone growth compared with the composite without SDF-1 group. In conclusion, in the management of traumatic bone defects, Gel/HA–HAP–SDF-1 composites can be a feasible material for use as bone void fillers.
Collapse
Affiliation(s)
- Yun-Liang Chang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
- Department of Orthopaedic Surgery, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City 10002, Taiwan
| | - Chia-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
| | - Chao-Yuan Yeh
- Integrative Stem Cell Center, China Medical University, No. 2, Yude Road, Taichung City 40447, Taiwan;
| | - Chih-Hao Chang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City 10002, Taiwan
- Correspondence: (C.-H.C.); (F.-H.L.); Tel.: +886-2-2312-3456 (C.-H.C.); +886-2-2732-0443 (F.-H.L.)
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei City 10051, Taiwan; (Y.-L.C.); (C.-Y.H.)
- Correspondence: (C.-H.C.); (F.-H.L.); Tel.: +886-2-2312-3456 (C.-H.C.); +886-2-2732-0443 (F.-H.L.)
| |
Collapse
|
33
|
Marmor MT, Matz J, McClellan RT, Medam R, Miclau T. Use of Osteobiologics for Fracture Management: The When, What, and How. Injury 2021; 52 Suppl 2:S35-S43. [PMID: 33549314 DOI: 10.1016/j.injury.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Osteobiologics are defined as a group of natural and synthetic materials used to augment bone healing. The selection of the most appropriate osteobiologic from the growing list of available options can be a challenging task. In selecting a material, surgeons should weigh a variety of considerations, including the indication for their use (the when), the most suitable substance (the what), and the correct mode of application (the how). This summary reviews these considerations and seeks to provide the surgeon with a basis for informed clinical evidence-based decision-making in their choice of a successful option.
Collapse
Affiliation(s)
- Meir T Marmor
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Jacob Matz
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Robert Trigg McClellan
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Ramapaada Medam
- University of Central Florida College of Medicine, Orlando, FL, USA
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA.
| |
Collapse
|
34
|
Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 2021; 169:105626. [PMID: 33892092 DOI: 10.1016/j.phrs.2021.105626] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Understanding the in vitro biology and behavior of human osteoblasts is crucial for developing research models that reproduce closely the bone structure, its functions, and the cell-cell and cell-matrix interactions that occurs in vivo. Mimicking bone microenvironment is challenging, but necessary, to ensure the clinical translation of novel medicines to treat more reliable different bone pathologies. Currently, bone tissue engineering is moving from 2D cell culture models such as traditional culture, sandwich culture, micro-patterning, and altered substrate stiffness, towards more complex 3D models including spheroids, scaffolds, cell sheets, hydrogels, bioreactors, and microfluidics chips. There are many different factors, such cell line type, cell culture media, substrate roughness and stiffness that need consideration when developing in vitro models as they affect significantly the microenvironment and hence, the final outcome of the in vitro assay. Advanced technologies, such as 3D bioprinting and microfluidics, have allowed the development of more complex structures, bridging the gap between in vitro and in vivo models. In this review, past and current 2D and 3D in vitro models for human osteoblasts will be described in detail, highlighting the culture conditions and outcomes achieved, as well as the challenges and limitations of each model, offering a widen perspective on how these models can closely mimic the bone microenvironment and for which applications have shown more successful results.
Collapse
Affiliation(s)
- I Yuste
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - A Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial. Facultad de Farmacia. Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
35
|
Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:647007. [PMID: 33898403 PMCID: PMC8059794 DOI: 10.3389/fbioe.2021.647007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Muhammad Maqbool
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Lucideon Ltd., Stoke-on-Trent, United Kingdom
- CAM Bioceramics B.V., Leiden, Netherlands
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | | | | | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Faculty of Medical Sciences, University College London Eastman Dental Institute, London, United Kingdom
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ipsita Roy
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
de Morais JPP, Pacheco IKC, Filho ALMM, Ferreira DCL, Viana FJC, da Silva Reis F, de Matos JME, Dos Santos Rizzo M, Fialho ACV. Polyurethane derived from castor oil monoacylglyceride (Ricinus communis) for bone defects reconstruction: characterization and in vivo testing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:39. [PMID: 33792773 PMCID: PMC8016756 DOI: 10.1007/s10856-021-06511-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Biomaterials used in tissue regeneration processes represent a promising option for the versatility of its physical and chemical characteristics, allowing for assisting or speeding up the repair process stages. This research has characterized a polyurethane produced from castor oil monoacylglyceride (Ricinus communis L) and tested its effect on reconstructing bone defects in rat calvaria, comparing it with commercial castor oil polyurethane. The characterizations of the synthesized polyurethane have been performed by spectroscopy in the infrared region with Fourier transform (FTIR); thermogravimetric analysis (TG/DTG); X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). For the in vivo test, 24 animals have been used, divided into 3 groups: untreated group (UG); control group treated with Poliquil® castor polyurethane (PCP) and another group treated with castor polyurethane from the Federal University of Piauí - UFPI (CPU). Sixteen weeks after surgery, samples of the defects were collected for histological and histomorphometric analysis. FTIR analysis has shown the formation of monoacylglyceride and polyurethane. TG and DTG have indicated thermal stability of around 125 °C. XRD has determined the semi-crystallinity of the material. The polyurethane SEM has shown a smooth morphology with areas of recesses. Histological and histomorphometric analyzes have indicated that neither CPU nor PCP induced a significant inflammatory process, and CPU has shown, statistically, better performance in bone formation. The data obtained shows that CPU can be used in the future for bone reconstruction in the medical field.
Collapse
Affiliation(s)
- João Pedro Pereira de Morais
- Graduated Program in Health Sciences, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | | | | | | | - Felipe José Costa Viana
- Graduated Program in Health Sciences, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - Fernando da Silva Reis
- Department of Chemistry, Nature Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - José Milton Elias de Matos
- Department of Chemistry, Nature Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil.
| | - Marcia Dos Santos Rizzo
- Department of Morphology, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil
| | - Ana Cristina Vasconcelos Fialho
- Department of Pathology and Dental Clinic, Health Sciences Center, Federal University of Piauí, Ininga Campus, Teresina, Brazil.
| |
Collapse
|
37
|
Shokouhimehr M, Theus AS, Kamalakar A, Ning L, Cao C, Tomov ML, Kaiser JM, Goudy S, Willett NJ, Jang HW, LaRock CN, Hanna P, Lechtig A, Yousef M, Martins JDS, Nazarian A, Harris MB, Mahmoudi M, Serpooshan V. 3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration. Polymers (Basel) 2021; 13:polym13071099. [PMID: 33808295 PMCID: PMC8036866 DOI: 10.3390/polym13071099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; (M.S.); (H.W.J.)
| | - Andrea S. Theus
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Archana Kamalakar
- Department of Otolaryngology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.K.); (S.G.)
| | - Liqun Ning
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, GA 30322, USA;
| | - Martin L. Tomov
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
| | - Jarred M. Kaiser
- Department of Orthopedics, Emory University, Atlanta, GA 30322, USA;
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA 30033, USA
| | - Steven Goudy
- Department of Otolaryngology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.K.); (S.G.)
| | - Nick J. Willett
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
- Department of Orthopedics, Emory University, Atlanta, GA 30322, USA;
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA 30033, USA
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; (M.S.); (H.W.J.)
| | - Christopher N. LaRock
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Philip Hanna
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
| | - Aron Lechtig
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
| | - Mohamed Yousef
- Department of Orthopedic Surgery, Sohag University, Sohag 82524, Egypt;
| | - Janaina Da Silva Martins
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom St, Thier 11, Boston, MA 02114, USA;
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (P.H.); (A.L.); (A.N.)
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Mitchel B. Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (M.L.T.); (N.J.W.)
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
38
|
Shen H, Hu X. Growth factor loading on aliphatic polyester scaffolds. RSC Adv 2021; 11:6735-6747. [PMID: 35423177 PMCID: PMC8694921 DOI: 10.1039/d0ra10232f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cells, scaffolds and growth factors are three elements of tissue engineering. The success of tissue engineering methods relies on precise and dynamic interactions between cells, scaffolds and growth factors. Aliphatic polyester scaffolds are promising tissue engineering scaffolds that possess good mechanical properties, low immunogenicity, non-toxicity, and adjustable degradation rates. How growth factors can be loaded onto/into aliphatic polyester scaffolds and be constantly released with the required bioactivity to regulate cell growth and promote defect tissue repair and regeneration has become the main concern of tissue engineering researchers. In this review, the existing main methods of loading growth factors on aliphatic polyester scaffolds, the release behavior of loaded growth factors and their positive effects on cell, tissue repair and regeneration are introduced. Advantages and shortcomings of each method also are mentioned. It is still a great challenge to control the release of loaded growth factors at a certain time and at a concentration simulating the biological environment of native tissue.
Collapse
Affiliation(s)
- Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China +86-10-62581241
| | - Xixue Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 China +86-10-82545676
| |
Collapse
|
39
|
Liu L, Zhang T, Li C, Jiang G, Wang F, Wang L. Regulating surface roughness of electrospun poly(ε-caprolactone)/β-tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. Int J Mol Sci 2020; 22:E192. [PMID: 33375478 PMCID: PMC7794985 DOI: 10.3390/ijms22010192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
An aging population leads to increasing demand for sustained quality of life with the aid of novel implants. Patients expect fast healing and few complications after surgery. Increased biofunctionality and antimicrobial behavior of implants, in combination with supportive stem cell therapy, can meet these expectations. Recent research in the field of bone implants and the implementation of autologous mesenchymal stem cells in the treatment of bone defects is outlined and evaluated in this review. The article highlights several advantages, limitations and advances for metal-, ceramic- and polymer-based implants and discusses the future need for high-throughput screening systems used in the evaluation of novel developed materials and stem cell therapies. Automated cell culture systems, microarray assays or microfluidic devices are required to efficiently analyze the increasing number of new materials and stem cell-assisted therapies. Approaches described in the literature to improve biocompatibility, biofunctionality and stem cell differentiation efficiencies of implants range from the design of drug-laden nanoparticles to chemical modification and the selection of materials that mimic the natural tissue. Combining suitable implants with mesenchymal stem cell treatment promises to shorten healing time and increase treatment success. Most research studies focus on creating antibacterial materials or modifying implants with antibacterial coatings in order to address the increasing number of complications after surgeries that are mostly caused by bacterial infections. Moreover, treatment of multiresistant pathogens will pose even bigger challenges in hospitals in the future, according to the World Health Organization (WHO). These antibacterial materials will help to reduce infections after surgery and the number of antibiotic treatments that contribute to the emergence of new multiresistant pathogens, whilst the antibacterial implants will help reduce the amount of antibiotics used in clinical treatment.
Collapse
Affiliation(s)
- Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - Max Borgolte
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
| | - René Csuk
- Institute of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (O.R.); (M.B.)
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
41
|
Manipulating Air-Gap Electrospinning to Create Aligned Polymer Nanofiber-Wrapped Glass Microfibers for Cortical Bone Tissue Engineering. Bioengineering (Basel) 2020; 7:bioengineering7040165. [PMID: 33419239 PMCID: PMC7766430 DOI: 10.3390/bioengineering7040165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Osteons are the repeating unit throughout cortical bone, consisting of canals filled with blood and nerve vessels surrounded by concentric lamella of hydroxyapatite-containing collagen fibers, providing mechanical strength. Creating a biodegradable scaffold that mimics the osteon structure is crucial for optimizing cellular infiltration and ultimately the replacement of the scaffold with native cortical bone. In this study, a modified air-gap electrospinning setup was exploited to continuously wrap highly aligned polycaprolactone polymer nanofibers around individual 1393 bioactive glass microfibers, resulting in a synthetic structure similar to osteons. By varying the parameters of the device, scaffolds with polymer fibers wrapped at angles between 5-20° to the glass fiber were chosen. The scaffold indicated increased cell migration by demonstrating unidirectional cell orientation along the fibers, similar to recent work regarding aligned nerve and muscle regeneration. The wrapping decreased the porosity from 90% to 80%, which was sufficient for glass conversion through ion exchange validated by inductively coupled plasma. Scaffold degradation was not cytotoxic. Encapsulating the glass with polymer nanofibers caused viscoelastic deformation during three-point bending, preventing typical brittle glass fracture, while maintaining cell migration. This scaffold design structurally mimics the osteon, with the intent to replace its material compositions for better regeneration.
Collapse
|
42
|
Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:536-561. [PMID: 33175667 DOI: 10.1080/09205063.2020.1849922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue damage related to bone and cartilage is a common clinical disease. Cartilage tissue has no blood vessels and nerves. The limited cell migration ability results in low endogenous healing ability. Due to the complexity of the osteochondral interface, the clinical treatment of osteochondral injury is limited. Tissue engineering provides new ideas for solving this problem. The ideal tissue engineering scaffold must have appropriate porosity, biodegradability and specific functions related to tissue regeneration, especially bioactive polymer nanofiber composite materials with controllable biodegradation rate and appropriate mechanical properties have been getting more and more research. The nanofibers produced by electrospinning have high specific surface area and suitable mechanical properties, which can effectively simulate the natural extracellular matrix (ECM) of bone or cartilage tissue. The composition of materials can affect mechanical properties, plasticity, biocompatibility and degradability of the scaffold, thereby further affect the repair efficiency. This article reviews the characteristics of polymer materials and the application of its electrospun nanofibers in bone, cartilage and osteochondral tissue engineering.
Collapse
Affiliation(s)
- Huixiu Ding
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiaolian Niu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
43
|
Jiao YY, Okada M, Hara ES, Xie SC, Nagaoka N, Nakano T, Matsumoto T. Micro-Architectural Investigation of Teleost Fish Rib Inducing Pliant Mechanical Property. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5099. [PMID: 33198178 PMCID: PMC7696420 DOI: 10.3390/ma13225099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022]
Abstract
Despite the fact that various reports have been discussing bone tissue regeneration, precise bone tissue manipulation, such as controlling the physical properties of the regenerated bone tissue, still remains a big challenge. Here, we focused on the teleost fish ribs showing flexible and tough mechanical properties to obtain a deeper insight into the structural and functional features of bone tissue from different species, which would be valuable for the superior design of bone-mimicking materials. Herein, we examined their compositions, microstructure, histology, and mechanical properties. The first rib of Carassius langsdorfii showed a higher Young's modulus with a small region of chondrocyte clusters compared with other smaller ribs. In addition, highly oriented collagen fibers and osteocytes were observed in the first rib, indicating that the longest first rib would be more mature. Moreover, the layer-by-layer structure of the oriented bone collagen was observed in each rib. These microarchitectural and compositional findings of fish rib bone would give one the useful idea to reproduce such a highly flexible rib bone-like material.
Collapse
Affiliation(s)
- Yu Yang Jiao
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.Y.J.); (M.O.); (E.S.H.); (S.C.X.)
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.Y.J.); (M.O.); (E.S.H.); (S.C.X.)
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.Y.J.); (M.O.); (E.S.H.); (S.C.X.)
| | - Shi Chao Xie
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.Y.J.); (M.O.); (E.S.H.); (S.C.X.)
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan;
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.Y.J.); (M.O.); (E.S.H.); (S.C.X.)
| |
Collapse
|
44
|
Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2020; 167:934-946. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Bone repair using BMP-2 is a promising therapeutic approach in clinical practices, however, high dosages required to be effective pose issues of cost and safety. The present study explores the potential of low dose BMP-2 treatment via tissue engineering approach, which amalgamates 3-D macro/microporous-nanofibrous bacterial cellulose (mNBC) scaffolds and low dose BMP-2 primed murine mesenchymal stem cells (C3H10T1/2 cells). Initial studies on cell-scaffold interaction using unprimed C3H10T1/2 cells confirmed that scaffolds provided a propitious environment for cell adhesion, growth, and infiltration, owing to its ECM-mimicking nano-micro-macro architecture. Osteogenic studies were conducted by preconditioning the cells with 50 ng/mL BMP-2 for 15 min, followed by culturing on mNBC scaffolds for up to three weeks. The results showed an early onset and significantly enhanced bone matrix secretion and maturation in the scaffolds seeded with BMP-2 primed cells compared to the unprimed ones. Moreover, mNBC scaffolds alone were able to facilitate the mineralization of cells to some extent. These findings suggest that, with the aid of 'osteoinduction' from low dose BMP-2 priming of stem cells and 'osteoconduction' from nano-macro/micro topography of mNBC scaffolds, a cost-effective bone tissue engineering strategy can be designed for quick and excellent in vivo osseointegration.
Collapse
Affiliation(s)
- Swati Dubey
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
45
|
Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, Han Y, Lu D, Lu S, Gui L. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2020; 6:1255-1266. [PMID: 33210023 PMCID: PMC7653289 DOI: 10.1016/j.bioactmat.2020.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
The development of functional materials for osteoporosis is ultimately required for bone remodeling. However, grafts were accompanied by increasing pro-inflammatory cytokines that impaired bone formation. In this work, nano-hydroxyapatite (n-HA)/resveratrol (Res)/chitosan (CS) composite microspheres were designed to create a beneficial microenvironment and help improve the osteogenesis by local sustained release of Res. Study of in vitro release confirmed the feasibility of n-HA/Res/CS microspheres for controlled Res release. Notably, microspheres had anti-inflammatory activity evidenced by the decreased expression of pro-inflammatory cytokines TNF-α, IL-1β and iNOS in RAW264.7 cells in a dose dependent manner. Further, enhanced adhesion and proliferation of BMSCs seeded onto microspheres demonstrated that composite microspheres were conducive to cell growth. The ability to enhance osteo-differentiation was supported by up-regulation of Runx2, ALP, Col-1 and OCN, and substantial mineralization in osteogenic medium. When implanted into bone defects in the osteoporotic rat femoral condyles, enhanced entochondrostosis and bone regeneration suggested that the n-HA/Res/CS composite microspheres were more favorable for impaired fracture healing. The results indicated that optimized n-HA/Res/CS composite microspheres could serve as promising multifunctional fillers for osteoporotic bone defect/fracture treatment. The microspheres with sustained Res release possessed obvious anti-inflammatory activity. The microspheres were favorable for cell growth and osteo-differentiation. Higher Res-loaded microspheres significantly improved entochondrostosis and bone remodeling. The microspheres are promising bone fillers for the healing of osteoporotic bone defects/fractures.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Mali Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Hongcai Yang
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650000, China
| | - Meng Zheng
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopaedics, Department of Orthopaedics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
| |
Collapse
|
46
|
Penha ESD, Lacerda-Santos R, de Medeiros LADM, Araújo Rosendo R, Dos Santos A, Fook MVL, de Sousa WJB, de Oliveira Firmino M, Montagna E. Effect of chitosan and Dysphania ambrosioides on the bone regeneration process: A randomized controlled trial in an animal model. Microsc Res Tech 2020; 83:1208-1216. [PMID: 32500599 DOI: 10.1002/jemt.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 11/05/2022]
Abstract
The focus of this triple-blind study was on evaluating the effect of chitosan combined with Dysphania ambrosioides (A) extract on the bone repair process in vivo. In total, 60 male Wistar rats (Rattus norvegicus albinus) weighing between 260 and 270 g were randomly selected for this study and distributed into four groups (n = 15). Group C (chitosan), Group CA5 (chitosan + 5% of D. ambrosioides), Group CA20 (chitosan + 20% of D. ambrosioides), and Group CO (Control-Blood clot). In each animal, bone defects measuring 2 mm in diameter were performed in both tibias for placement of the substances. After 7, 15, and 30 days, the animals were sedated and sacrificed using the cervical dislocation technique and the tissues were analyzed under optical microscope relative to the following events: inflammatory infiltrate, necrosis, osteoclasts, osteoblasts, fibroblasts, periosteal, and endosteal bone formation. The data were evaluated to verify distribution using the Kolmogorov-Smirnov test, and variance, using the Levene test; as distribution was not normal, data were subjected to the Kruskal-Wallis and Dunn nonparametric tests (p < .05). A significant inflammatory infiltrate was observed in Group CA5 (p = .008) in the time interval of 7 days, and in Group C at 15 (p = .009) and 30 (p = .017) days. Osteoblastic activity was more significant in Group CA20 (p = .027) compared with CA5 in the time interval of 7 days. Group CA20 demonstrated a significantly higher endosteal and periosteal bone formation value in the time interval of 7 (p = .013), 15 (p = .004), and 30 days (p = .008) compared with the other groups. The null hypothesis was refuted, bone regeneration was faster in spheres with an association of chitosan and 20% extract, and complete bone repair occurred clinically at 15 days and histologically at 30 days. The spheres proved to be a promising method for the biostimulation of alveolar bone repair and bone fractures.
Collapse
Affiliation(s)
- Elizandra Silva da Penha
- Postgraduate, Research and Innovation, Centro Universitário Saúde ABC, Faculdade de Medicina do ABC, Santo André, Brazil
| | - Rogério Lacerda-Santos
- Department of Orthodontics and Pediatric Dentistry, Federal University of Juiz de Fora, UFJF, Governador Valadares, Brazil
| | | | | | | | - Marcus Vinícius Lia Fook
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, UFCG, Campina Grande, Brazil
| | | | | | - Erik Montagna
- Postgraduate, Research and Innovation, Centro Universitário Saúde ABC, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
47
|
Soheilmoghaddam M, Padmanabhan H, Cooper-White JJ. Biomimetic cues from poly(lactic-co-glycolic acid)/hydroxyapatite nano-fibrous scaffolds drive osteogenic commitment in human mesenchymal stem cells in the absence of osteogenic factor supplements. Biomater Sci 2020; 8:5677-5689. [PMID: 32915185 DOI: 10.1039/d0bm00946f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mimicking the complex hierarchical architecture of the 'osteon', the functional unit of cortical bone, from the bottom-up offers the possibility of generating mature bone tissue in tissue engineered bone substitutes. In this work, a modular 'bottom-up' approach has been developed to assemble bone niche-mimicking nanocomposite scaffolds composed of aligned electrospun nanofibers of poly(lactic-co-glycolic acid) (PLGA) encapsulating aligned rod-shape nano-sized hydroxyapatite (nHA). By encoding axial orientation of the nHA within these aligned nanocomposite fibers, significant improvements in mechanical properties, surface roughness, hydrophilicity and in vitro simulated body fluid (SBF) mineral deposition were achieved. Moreover, these hierarchical scaffolds induced robust formation of bone hydroxyapatite and osteoblastic maturation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in growth media that was absent of any soluble osteogenic differentiation factors. The results of this investigation confirm that these tailored, aligned nanocomposite fibers, in the absence of media-bone inductive factors, offer the requisite biophysical and biochemical cues to hBMSCs to promote and support their differentiation into mature osteoblast cells and form early bone-like tissue in vitro.
Collapse
Affiliation(s)
- Mohammad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St Lucia, QLD, Australia.
| | | | | |
Collapse
|
48
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
49
|
Glaeser JD, Salehi K, Kanim LE, Ju DG, Hyuk Yang J, Behrens PH, Eberlein SA, Metzger MF, Arabi Y, Stefanovic T, Sheyn D, W Bae H. Electrospun, synthetic bone void filler promotes human MSC function and BMP-2 mediated spinal fusion. J Biomater Appl 2020; 35:532-543. [PMID: 32627633 DOI: 10.1177/0885328220937999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Synthetic bone grafts are often used to achieve a well-consolidated fusion mass in spinal fusion procedures. These bone grafts function as scaffolds, and ideally support cell function and facilitate protein binding. OBJECTIVE The aim was to characterize an electrospun, synthetic bone void filler (Reb) for its bone morphogenetic protein (BMP)-2 release properties and support of human mesenchymal stem cell (hMSC) function in vitro, and its efficacy in promoting BMP-2-/bone marrow aspirate-(BMA)-mediated posterolateral spinal fusion (PLF) in vivo. METHODS BMP-2 release kinetics from Reb versus standard absorbable collagen sponge (ACS) was determined. hMSC adhesion and proliferation on Reb was tested using cell counting, fluorescence microscopy and MTS. Cell osteogenic differentiation was quantified via cellular alkaline phosphatase (ALP) activity. For in vivo analysis, 18 Lewis rats were treated during PLF surgery with the following groups: (I) Reb + BMA, (II) Reb + BMA + BMP-2 and (III) BMA. A safe, minimally effective dose of BMP-2 was used. Fusion consolidation was followed for 3 months using radiography and micro-CT. After sacrifice, fusion rate and biomechanical stiffness was determined using manual palpation, biomechanical tests and histology. RESULTS In vitro, BMP-2 release kinetics were similar between Reb versus ACS. MSC proliferation and differentiation were increased in the presence of Reb. At 3 months post-surgery, fusion rates were 29% (group I), 100% (group II), and 0% (group III). Biomechanical stiffness was higher in group II versus I. Micro-CT showed an increased bone volume and connectivity density in group II. Trabecular thickness was increased in group I versus II. H&E staining showed newly formed bone in group II only. CONCLUSIONS Reb possesses a high protein binding affinity and promotes hMSC function. Combination with BMA and minimal dose BMP-2 allowed for 100% bone fusion in vivo. This data suggests that a minimally effective dose of BMP-2 can be used when combined with Reb.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Khosrowdad Salehi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda Ea Kanim
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Derek G Ju
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Hyuk Yang
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Phillip H Behrens
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel A Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasaman Arabi
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tina Stefanovic
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dmitriy Sheyn
- Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyun W Bae
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
50
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|