1
|
Jackson ML, Bond AR, Ascione R, Johnson JL, George SJ. FGL2/FcγRIIB Signalling Mediates Arterial Shear Stress-Mediated Endothelial Cell Apoptosis: Implications for Coronary Artery Bypass Vein Graft Pathogenesis. Int J Mol Sci 2024; 25:7638. [PMID: 39062880 PMCID: PMC11277082 DOI: 10.3390/ijms25147638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The sudden exposure of venous endothelial cells (vECs) to arterial fluid shear stress (FSS) is thought to be a major contributor to coronary artery bypass vein graft failure (VGF). However, the effects of arterial FSS on the vEC secretome are poorly characterised. We propose that analysis of the vEC secretome may reveal potential therapeutic approaches to suppress VGF. Human umbilical vein endothelial cells (HUVECs) pre-conditioned to venous FSS (18 h; 1.5 dynes/cm2) were exposed to venous or arterial FSS (15 dynes/cm2) for 24 h. Tandem Mass Tagging proteomic analysis of the vEC secretome identified significantly increased fibroleukin (FGL2) in conditioned media from HUVECs exposed to arterial FSS. This increase was validated by Western blotting. Application of the NFκB inhibitor BAY 11-7085 (1 µM) following pre-conditioning reduced FGL2 release from vECs exposed to arterial FSS. Exposure of vECs to arterial FSS increased apoptosis, measured by active cleaved caspase-3 (CC3) immunocytochemistry, which was likewise elevated in HUVECs treated with recombinant FGL2 (20 ng/mL) for 24 h under static conditions. To determine the mechanism of FGL2-induced apoptosis, HUVECs were pre-treated with a blocking antibody to FcγRIIB, a receptor FGL2 is proposed to interact with, which reduced CC3 levels. In conclusion, our findings indicate that the exposure of vECs to arterial FSS results in increased release of FGL2 via NFκB signalling, which promotes endothelial apoptosis via FcγRIIB signalling. Therefore, the inhibition of FGL2/FcγRIIB signalling may provide a novel approach to reduce arterial FSS-induced vEC apoptosis in vein grafts and suppress VGF.
Collapse
Affiliation(s)
| | | | | | | | - Sarah J. George
- Translational Health Sciences, Bristol Medical School, Faculty of Health and Life Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.L.J.); (A.R.B.); (R.A.); (J.L.J.)
| |
Collapse
|
2
|
Kpeglo D, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modelling and breaking down the biophysical barriers to drug delivery in pancreatic cancer. LAB ON A CHIP 2024; 24:854-868. [PMID: 38240720 DOI: 10.1039/d3lc00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
- Leeds Institute of Medical Research at St James's (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| |
Collapse
|
3
|
Kumar S, Molony D, Khawaja S, Crawford K, Thompson EW, Hung O, Shah I, Navas-Simbana J, Ho A, Kumar A, Ko YA, Hosseini H, Lefieux A, Lee JM, Hahn JY, Chen SL, Otake H, Akasaka T, Shin ES, Koo BK, Stankovic G, Milasinovic D, Nam CW, Won KB, Escaned J, Erglis A, Murasato Y, Veneziani A, Samady H. Stent underexpansion is associated with high wall shear stress: a biomechanical analysis of the shear stent study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023:10.1007/s10554-023-02838-6. [PMID: 37119348 DOI: 10.1007/s10554-023-02838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/15/2023] [Indexed: 05/01/2023]
Abstract
Coronary stent underexpansion is associated with restenosis and stent thrombosis. In clinical studies of atherosclerosis, high wall shear stress (WSS) has been associated with activation of prothrombotic pathways, upregulation of matrix metalloproteinases, and future myocardial infarction. We hypothesized that stent underexpansion is predictive of high WSS. WSS distribution was investigated in patients enrolled in the prospective randomized controlled study of angulated coronary arteries randomized to undergo percutaneous coronary intervention with R-ZES or X-EES. WSS was calculated from 3D reconstructions of arteries from intravascular ultrasound (IVUS) and angiography using computational fluid dynamics. A logistic regression model investigated the relationship between WSS and underexpansion and the relationship between underexpansion and stent platform. Mean age was 63±11, 78% were male, 35% had diabetes, mean pre-stent angulation was 36.7°±14.7°. Underexpansion was assessed in 83 patients (6,181 IVUS frames). Frames with stent underexpansion were significantly more likely to exhibit high WSS (> 2.5 Pa) compared to those without underexpansion with an OR of 2.197 (95% CI = [1.233-3.913], p = 0.008). There was no significant association between underexpansion and low WSS (< 1.0 Pa) and no significant differences in underexpansion between R-ZES and X-EES. In the Shear Stent randomized controlled study, underexpanded IVUS frames were more than twice as likely to be associated with high WSS than frames without underexpansion.
Collapse
Affiliation(s)
- Sonali Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David Molony
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Sameer Khawaja
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaylyn Crawford
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Elizabeth W Thompson
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia Hung
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Imran Shah
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Jessica Navas-Simbana
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arlen Ho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arnav Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hossein Hosseini
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adrien Lefieux
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Yong Hahn
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Shao-Liang Chen
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Goran Stankovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dejan Milasinovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Chang-Wook Nam
- Department of Medicine, Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | - Ki-Bum Won
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos Madrid, Madrid, Spain
| | - Andrejs Erglis
- Pauls Stradins Clinical University Hospital, University of Latvia, Riga, Latvia
| | - Yoshinobu Murasato
- Department of Cardiology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA.
| |
Collapse
|
4
|
Annunziata C, Fattahpour H, Fong D, Hadjiargyrou M, Sanaei P. Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore. Bull Math Biol 2023; 85:25. [PMID: 36826607 DOI: 10.1007/s11538-023-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Scaffolds engineered for in vitro tissue engineering consist of multiple pores where cells can migrate along with nutrient-rich culture medium. The presence of the nutrient medium throughout the scaffold pores promotes cell proliferation, and this process depends on several factors such as scaffold geometry, nutrient medium flow rate, shear stress, cell-scaffold focal adhesions and elastic properties of the scaffold material. While numerous studies have addressed the first four factors, the mathematical approach described herein focuses on cell proliferation rate in elastic scaffolds, under constant flux of nutrients. As cells proliferate, the scaffold pores radius shrinks and thus, in order to sustain the nutrient flux, the inlet applied pressure on the upstream side of the scaffold pore must be increased. This results in expansion of the elastic scaffold pore, which in turn further increases the rate of cell proliferation. Considering the elasticity of the scaffold, the pore deformation allows further cellular growth beyond that of inelastic conditions. In this paper, our objectives are as follows: (i) Develop a mathematical model for describing fluid dynamics, scaffold elasticity and cell proliferation for scaffolds consist of identical nearly cylindrical pores; (ii) Solve the models and then simulate cellular proliferation within an elastic pore. The simulation can emulate real life tissue growth in a scaffold and offer a solution which reduces the numerical burdens. Lastly, our results demonstrated are in qualitative agreement with experimental observations reported in the literature.
Collapse
Affiliation(s)
- Carlyn Annunziata
- Department of Biomedical Engineering, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Haniyeh Fattahpour
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel Fong
- Department of Mathematics and Science, U.S. Merchant Marine Academy, Kings Point, NY, 11024, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Pejman Sanaei
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
5
|
Li Z, Li JN, Li Q, Liu C, Zhou LH, Zhang Q, Xu Y. Cholesterol efflux regulator ABCA1 exerts protective role against high shear stress-induced injury of HBMECs via regulating PI3K/Akt/eNOS signaling. BMC Neurosci 2022; 23:61. [PMCID: PMC9636808 DOI: 10.1186/s12868-022-00748-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022] Open
Abstract
Background In brain, microvascular endothelial cells are exposed to various forces, including shear stress (SS). However, little is known about the effects of high shear stress (HSS) on human brain microvascular endothelial cells (HBMECs) and the underlying mechanism. The cholesterol efflux regulator ATP-binding cassette subfamily A member 1 (ABCA1) has been demonstrated to exert protective effect on HBMECs. However, whether ABCA1 is involved in the mechanism underneath the effect of HSS on HBMECs remains obscure. In the present study, a series of experiments were performed to better understand the effect of HSS on cellular processes of HBMECs and the possible involvement of ABCA1 and PI3K/Akt/eNOS in the underlying mechanisms. Results HBMECs were subjected to physiological SS (PSS) or high SS (HSS). Cell migration was evaluated using Transwell assay. Apoptotic HBMECs were detected by flow cytometry or caspase3/7 activity. IL-1β, IL-6, MCP-1 and TNF-α levels were measured by ELISA. RT-qPCR and western blotting were used for mRNA and protein expression detection, respectively. ROS and NO levels were detected using specific detection kits. Compared to PSS, HBMECs exhibited decreased cell viability and migration and increased cell apoptosis, increased levels of inflammatory cytokines, and improved ROS and NO productions after HSS treatment. Moreover, HSS downregulated ABCA1 but upregulated the cholesterol efflux-related proteins MMP9, AQP4, and CYP46 and activated PI3K/Akt/eNOS pathway. Overexpression of ABCA1 in HBMECS inhibited PI3K/Akt/eNOS pathway and counteracted the deleterious effects of HSS. Contrary effects were observed by ABCA1 silencing. Inhibiting PI3K/Akt/eNOS pathway mimicked ABCA1 effects, suggesting that ABCA1 protects HBMECs from HSS via PI3K/Akt/eNOS signaling. Conclusion These results advanced our understanding on the mechanisms of HSS on HBMECs and potentiated ABCA1/PI3K/Akt/eNOS pathway as therapeutic target for cerebrovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00748-2.
Collapse
Affiliation(s)
- Zhe Li
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| | - Jia-Nan Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning Province China
| | - Qiang Li
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| | - Chun Liu
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Lin-Hua Zhou
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Qi Zhang
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Yi Xu
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| |
Collapse
|
6
|
Xu J, Wang W, Wang Y, Zhu Z, Li D, Wang T, Liu K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front Genet 2022; 13:929231. [PMID: 36267409 PMCID: PMC9577319 DOI: 10.3389/fgene.2022.929231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases are the most common diseases threatening the health of the elderly, and the incidence and mortality rates associated with cardiovascular diseases remain high and are increasing gradually. Studies on the treatment and prevention of cardiovascular diseases are underway. Currently, several research groups are studying the role of exosomes and biomolecules incorporated by exosomes in the prevention, diagnosis, and treatment of clinical diseases, including cardiovascular diseases. Now, based on the results of published studies, this review discusses the characteristics, separation, extraction, and identification of exosomes, specifically the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. We believe that the observations noted in this article will aid in the prevention, diagnosis, and treatment of cardiovascular diseases.
Collapse
|
7
|
Mulberry Leaf and Neochlorogenic Acid Alleviates Glucolipotoxicity-Induced Oxidative Stress and Inhibits Proliferation/Migration via Downregulating Ras and FAK Signaling Pathway in Vascular Smooth Muscle Cell. Nutrients 2022; 14:nu14153006. [PMID: 35893859 PMCID: PMC9331252 DOI: 10.3390/nu14153006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mulberry leaf (Morus alba L.) has been used as a health food and in traditional medicine to treat several metabolic diseases, including diabetes, hypertension, and hyperlipidemia. However, the mechanism by which mulberry leaf and its functional components mediate atherosclerosis remains unclear. This study aimed to determine the effect of mulberry leaf extract (MLE) and its major component, neochlorogenic acid (nCGA), on the proliferation and migration of rat aortic vascular smooth muscle cells (VSMCs, A7r5 cell line) under diabetic cultured conditions (oleic acid and high glucose, OH). Our findings showed that MLE and nCGA significantly inhibited cell proliferation and migration in A7r5 cells as determined by a scratch wound assay and a Transwell assay. Furthermore, we observed MLE and nCGA inhibited cell proliferation and migration, such as reducing the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), focal adhesion kinase (FAK), and small GTPase proteins using Western blot analysis. In conclusion, we confirmed the anti-atherosclerotic effects of MLE and nCGA in reducing vascular smooth muscle cell (VSMC) migration and proliferation under diabetic cultured conditions via inhibition of FAK/small GTPase proteins, PI3K/Akt, and Ras-related signaling.
Collapse
|
8
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
9
|
McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease. Int J Biochem Cell Biol 2022; 144:106173. [PMID: 35151879 DOI: 10.1016/j.biocel.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The long saphenous vein is commonly used in cardiac surgery to bypass occluded coronary arteries. Its use is complicated by late stenosis and occlusion due to the development of intimal hyperplasia. It is accepted that intimal hyperplasia is a multifactorial inflammatory process that starts immediately after surgery. The role of acute changes in haemodynamic conditions when the vein is implanted into arterial circulation, especially shear stress, is not fully appreciated. This review provides an overview of intimal hyperplasia and the effect of acute shear stress changes on the activation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Liam W McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem S Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
10
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW, Simons M. Role of Venous Endothelial Cells in Developmental and Pathologic Angiogenesis. Circulation 2021; 144:1308-1322. [PMID: 34474596 DOI: 10.1161/circulationaha.121.054071] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT
| | - Yanying Xu
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (Y.X.)
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H.)
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - David Gonzalez
- Department of Genetics (D.G.), Yale University School of Medicine, New Haven, CT
| | - Suk-Won Jin
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - Michael Simons
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
12
|
Garoffolo G, Pesce M. Vascular dysfunction and pathology: focus on mechanical forces. VASCULAR BIOLOGY 2021; 3:R69-R75. [PMID: 34291191 PMCID: PMC8284946 DOI: 10.1530/vb-21-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022]
Abstract
The role of mechanical forces is emerging as a new player in the pathophysiologic programming of the cardiovascular system. The ability of the cells to 'sense' mechanical forces does not relate only to perception of movement or flow, as intended traditionally, but also to the biophysical properties of the extracellular matrix, the geometry of the tissues, and the force distribution inside them. This is also supported by the finding that cells can actively translate mechanical cues into discrete gene expression and epigenetic programming. In the present review, we will contextualize these new concepts in the vascular pathologic programming.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, Milan, Italy
| |
Collapse
|
13
|
Yang J, Zhong J, Zhou M, Zhou Y, Xiu P, Liu F, Wang F, Li Z, Tang Y, Chen Y, Yao S, Huang T, Liu T, Dong X. Targeting of the COX-2/PGE2 axis enhances the antitumor activity of T7 peptide in vitro and in vivo. Drug Deliv 2021; 28:844-855. [PMID: 33928829 PMCID: PMC8812588 DOI: 10.1080/10717544.2021.1914776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
T7 peptide is considered as an antiangiogenic polypeptide. The presents study aimed to further detect the antiangiogenic mechanisms of T7 peptide and determine whether combining T7 peptide and meloxicam (COX-2/PGE2 specific inhibitor) could offer a better therapy to combat hepatocellular carcinoma (HCC). T7 peptide suppressed the proliferation, migration, tube formation, and promoted the apoptosis of endothelial cells under both normoxic and hypoxic conditions via integrin α3β1 and αvβ3 pathways. Cell proliferation, migration, apoptosis, or tube formation ability were detected, and the expression of integrin-associated regulatory proteins was detected. The anti-tumor activity of T7 peptide, meloxicam, and their combination were evaluated in HCC tumor models established in mice. T7 peptide suppressed the proliferation, migration, tube formation, and promoted the apoptosis of endothelial cells under both normoxic and hypoxic conditions via integrin α3β1 and αvβ3 pathways. Meloxicam enhanced the activity of T7 peptide under hypoxic condition. T7 peptide partly inhibited COX-2 expression via integrin α3β1 not αvβ3-dependent pathways under hypoxic condition. T7 peptide regulated apoptosis associated protein through MAPK-dependent and -independent pathways under hypoxic condition. The MAPK pathway was activated by the COX-2/PGE2 axis under hypoxic condition. The combination of T7 and meloxicam showed a stronger anti-tumor effect against HCC tumors in mice. The data highlight that meloxicam enhanced the antiangiogenic activity of T7 peptide in vitro and in vivo.
Collapse
Affiliation(s)
- Jianrong Yang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mi Zhou
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yinghong Zhou
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Xiu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Feng Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fuhai Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zelun Li
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuntian Tang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuanyuan Chen
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siyang Yao
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tao Huang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tianqi Liu
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14
|
Lupu F, Kinasewitz G, Dormer K. The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis. J Cell Mol Med 2020; 24:12258-12271. [PMID: 32951280 PMCID: PMC7687012 DOI: 10.1111/jcmm.15895] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a multifactorial syndrome primarily determined by the host response to an invading pathogen. It is common, with over 48 million cases worldwide in 2017, and often lethal. The sequence of events in sepsis begins with the damage of endothelium within the microvasculature, as a consequence of the inflammatory and coagulopathic responses to the pathogen that can progress to multiple organ failure and death. Most therapeutic interventions target the inflammation and coagulation pathways that act as an auto-amplified vicious cycle, which, if unchecked can be fatal. Normal blood flow and shear stress acting on a healthy endothelium and intact glycocalyx have anti-inflammatory, anticoagulant and self-repairing effects. During early stages of sepsis, the vascular endothelium and its glycocalyx become dysfunctional, yet they are essential components of resuscitation and recovery from sepsis. The effects of shear forces on sepsis-induced endothelial dysfunction, including inflammation, coagulation, complement activation and microcirculatory breakdown are reviewed. It is suggested that early therapeutic strategies should prioritize on the restoration of shear forces and endothelial function and on the preservation of the endothelial-glycocalyx barrier.
Collapse
Affiliation(s)
- Florea Lupu
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Gary Kinasewitz
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | | |
Collapse
|
15
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
16
|
Wang J, Zhang S. Fluid shear stress modulates endothelial inflammation by targeting LIMS2. Exp Biol Med (Maywood) 2020; 245:1656-1663. [PMID: 32752897 DOI: 10.1177/1535370220943837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive genes regulate multiple cardiovascular pathophysiological processes and disorders; however, the role of flow-sensitive genes in atherosclerosis is still unknown. In this study, we identify LIM Zinc Finger Domain Containing 2 (LIMS2) that acts as a mechanosensitive gene downregulated by disturbed flow (d-flow) both in human endothelial cells (ECs) in vitro and in mice in vivo. Mechanistically, d-flow suppresses LIMS2 expression, which leads to endothelial inflammation by upregulating typical inflammatory factors, VCAM-1, and ICAM-1 in human ECs. The findings indicate that LIMS2, the new flow-sensitive gene, may help us to find a new insight to explain how d-flow caused endothelial inflammation and provide a new therapeutic approach for atherosclerosis in the future.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shiyanjin Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|