1
|
Xu YL, Li XJ, Cai W, Yu WY, Chen J, Lee Q, Choi YJ, Wu F, Lou YJ, Ying HZ, Yu CH, Wu QF. Diosmetin-7-O-β-D-glucopyranoside from Pogostemonis Herba alleviated SARS-CoV-2-induced pneumonia by reshaping macrophage polarization and limiting viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118704. [PMID: 39182703 DOI: 10.1016/j.jep.2024.118704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS Diosmetin-7-O-β-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 μM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.
Collapse
Affiliation(s)
- Yun-Lu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wei Cai
- College of Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Lee
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Yong-Jun Choi
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ying-Jun Lou
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Chen-Huan Yu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Qiao-Feng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Xu R, Li AP, Tan X, Tang X, He XP, Wang LX, Kang JJ, Li SH, Liu Y. Patchouli essential oil extends the lifespan and healthspan of Caenorhabditis elegans through JNK-1/DAF-16. Life Sci 2025; 360:123270. [PMID: 39581459 DOI: 10.1016/j.lfs.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
AIMS Patchouli essential oil (PEO) is the major active ingredient of a famous medicinal plant Pogostemon cablin (Blanco) Benth. This study aims to investigate the anti-aging activities of PEO and its major component, and elucidate the underlying molecular mechanisms. MAIN METHODS The anti-aging activities of PEO and its main component patchouli alcohol (PA) were investigated by examining the lifespan, senescence associated indicators as well as stress resistance of Caenorhabditis elegans. RNA-Sequencing was performed to analyze differentially expressed genes and the enrichments of GO and KEGG pathways in nematodes treated with PEO. The potential anti-aging target was predicted using a network pharmacology method and molecular docking. The underlying mechanism of senescence-delaying action was explored using C. elegans mutants and GFP transgenic strains. KEY FINDINGS PEO modulated lifespan and healthspan extension of worms, ameliorated the senescence characterizations, and increased the survival in stress resistance assays. PEO reduced spawning, lipid accumulation and reactive oxygen species (ROS) levels of nematodes. The levels of anti-oxidative genes and proteins were obviously upregulated after PEO treatment. Moreover, PA was identified to be an ingredient for PEO-mediated nematode longevity. The JNK-1/DAF-16 signaling pathway played a critical role in PEO/PA-mediated longevity. SIGNIFICANCE The findings revealed that PEO and its major component PA showed significant anti-aging activity through modulating the JNK-1/DAF-16 signaling pathway, which provides a promising strategy to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ai-Pei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiao-Ping He
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
3
|
Liu C, Wu Y, Zou Y, Wang J, Li B, Ma Y, Zhang X, Wang W. Development and characterization of gastro-floating sustained-release granules for enhanced bioavailability of patchouli oil. Heliyon 2024; 10:e40374. [PMID: 39669168 PMCID: PMC11635734 DOI: 10.1016/j.heliyon.2024.e40374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Patchouli oil (PO), extracted from Pogostemon cablin Benth., a prominent aromatic plant of the Lamiaceae family, has shown considerable protective effects against gastrointestinal infections, particularly those induced by Helicobacter pylori. This study aimed to develop a gastro-floating multi-unit system for PO to enhance its gastric retention and oral bioavailability. Methods The oil-laden granules were prepared using colloidal silicon dioxide (CSD) for oil adsorption and to provide buoyancy, along with ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) to form a sustained-release matrix. The CSD exhibited favorable characteristics for oil adsorption and floating. Compatibility between PO and CSD was affirmed through DSC thermograms and FTIR spectra. The obtained granules demonstrated a sustained release profile, achieving over 90 % release within 10 h without an initial burst. After oral administration, the granules were observed to remain in the gastric region of rats for over 7 h. The bioavailability of patchouli alcohol from the optimized granules was significantly higher than that from of the PO-loaded powders. The gastro-floating sustained-release granules, based on a CSD/EC/HPMC matrix, offer a simple yet effective strategy to improve the delivery efficacy of PO against Helicobacter pylori infections in the gastric region.
Collapse
Affiliation(s)
- Chen Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanan Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yeli Zou
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiao Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Boli Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanni Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| |
Collapse
|
4
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Wen J, Xia W, Wang Y, Li J, Guo R, Zhao Y, Fen J, Duan X, Wei G, Wang G, Li Z, Xu H. Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39556096 DOI: 10.1111/pbi.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Very-long-chain (VLC) alkanes are major components of hydrophobic cuticular waxes that cover the aerial epidermis of land plants, serving as a waterproofing barrier to protect the plant against environmental stresses. The mechanism of VLC-alkane biosynthesis has been extensively elucidated in plants. However, little is known about the biosynthesis of long-chain alkanes (LC, C13 ~ C19) such as pentadecane in plants. Alkanes with different chain lengths are also major constituents of fossil fuels and thus the discovery of the alkane biosynthetic machinery in plants would provide a toolbox of enzymes for the production of renewable hydrocarbon sources and next generations of biofuels. The top leaves of Pogostemon cablin at young stage accumulate large amounts of LC-alkane pentadecane, making this plant an excellent system for the elucidation of LC-alkane biosynthetic machinery in plant. We show here that LC-alkane pentadecane biosynthesis in P. cablin involves an endoplasmic reticulum (ER)-localized complex made of PcCER1-LIKE3 and PcCER3, homologues of Arabidopsis ECERIFERUM1 (AtCER1) and AtCER3 proteins that are involved in Arabidopsis VLC-alkane biosynthesis. We reconstitute the biosynthesis of pentadecane in Nicotiana benthamiana by co-expression of PcCER1-LIKE3 and PcCER3 and further improve its production by silencing multifunctional acetyl-CoA carboxylases involved in fatty acid elongation pathway. Taken together, we uncovered the key biosynthetic machinery of LC-alkane pentadecane in P. cablin and demonstrated that using these newly identified enzymes to engineer this LC-alkane for liquid biofuel production in a heterologous plant host is possible.
Collapse
Affiliation(s)
- Jing Wen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Wanxian Xia
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Ying Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Juan Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Ruihao Guo
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yue Zhao
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Jing Fen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Xinyu Duan
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Haiyang Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Sun ZC, Liao R, Xian C, Lin R, Wang L, Fang Y, Zhang Z, Liu Y, Wu J. Natural pachypodol integrated, lung targeted and inhaled lipid nanomedicine ameliorates acute lung injury via anti-inflammation and repairing lung barrier. J Control Release 2024; 375:300-315. [PMID: 39265826 DOI: 10.1016/j.jconrel.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a high-mortality disease caused by multiple disorders such as COVID-19, influenza, and sepsis. Current therapies mainly rely on the inhalation of nitric oxide or injection of pharmaceutical drugs (e.g., glucocorticoids); however, their toxicity, side effects, or administration routes limit their clinical application. In this study, pachypodol (Pac), a hydrophobic flavonol with anti-inflammatory effects, was extracted from Pogostemon cablin Benth and intercalated in liposomes (Pac@liposome, Pac-lipo) to improve its solubility, biodistribution, and bioavailability, aiming at enhanced ALI/ARDS therapy. Nanosized Pac-lipo was confirmed to have stable physical properties, good biodistribution, and reliable biocompatibility. In vitro tests proved that Pac-lipo has anti-inflammatory property and protective effects on endothelial and epithelial barriers in lipopolysaccharide (LPS)-induced macrophages and endothelial cells, respectively. Further, the roles of Pac-lipo were validated on treating LPS-induced ALI in mice. Pac-lipo showed better effects than did Pac alone on relieving ALI phenotypes: It significantly attenuated lung index, improved pulmonary functions, inhibited cytokine expression such as TNF-α, IL-6, IL-1β, and iNOS in lung tissues, alleviated lung injury shown by HE staining, reduced protein content and total cell number in bronchoalveolar lavage fluid, and repaired lung epithelial and vascular endothelial barriers. As regards the underlying mechanisms, RNA sequencing results showed that the effects of the drugs were associated with numerous immune- and inflammation-related signaling pathways. Molecular docking and western blotting demonstrated that Pac-lipo inhibited the activation of the TLR4-MyD88-NF-κB/MAPK signaling pathway. Taken together, for the first time, our new drug (Pac-lipo) ameliorates ALI via inhibition of TLR4-MyD88-NF-κB/MAPK pathway-mediated inflammation and disruption of lung barrier. These findings may provide a promising strategy for ALI treatment in the clinic.
Collapse
Affiliation(s)
- Zhi-Chao Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Ran Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Caihong Xian
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Ran Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Liying Wang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifei Fang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Yuntao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong SAR.
| |
Collapse
|
7
|
Duarte RB, Lima KRD, Assis-Silva ZMD, Ramos DGDS, Monteiro CMDO, Braga ÍA. Acaricidal potential of essential oils on Rhipicephalus linnaei: Alternatives and prospects. Vet Parasitol 2024; 331:110291. [PMID: 39190938 DOI: 10.1016/j.vetpar.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The acaricidal potential of various essential oils (EOs) has been evaluated based on their benefits in tick control. This study aimed to investigate the tick-killing activity of Pogostemon cablin "patchouli," Cymbopogon martinii "palmarosa," and Cymbopogon flexuosus "lemongrass" EOs on Rhipicephalus linnaei. Engorged females were collected from domiciled and non-domiciled dogs from Jataí city, Goiás state, to obtain larvae and nymphs in a controlled environment. Two commercial EOs brands were used in this study in different EOs concentrations (2.5, 5, 10, and 20 mg/mL), and was tested by immersion of larvae and nymphs. In the in vitro evaluation of EOs toxicity against R. linnaei larvae, 100 % mortality was achieved with 10 mg/mL of P. cablin oil, whereas mortality rates greater than 98 % were observed with 20 mg/mL of C. martinii and C. flexuosus. In nymphs, high sensitivity was observed, with 100 % mortality achieved using 5 mg/mL of P. cablin and 20 mg/mL of C. martinii and C. flexuosus. The EO of P. cablin "patchouli" demonstrated in vitro toxicity at a lower concentration than the other oils in the two development stages of R. linnaei, and was considered the most efficient and with verified acaricidal activity. Oils of C. martinii "palmarosa" and C. flexuosus "lemongrass" achieved mortality greater than 95 % in larvae and nymphs only at the highest concentration. Therefore, the acaricidal effects of the tested EOs are promising, especially of patchouli oil, which promoted high mortality at a low concentration (LC90 of 2.21 mg/mL).
Collapse
Affiliation(s)
- Raiany Borges Duarte
- Parasitology and Veterinary Clinical Analysis Laboratory from Federal University of Jataí, Câmpus Jatobá - Cidade Universitária, BR 364, km 195, nº 3800, Jataí, GO CEP 75801-615, Brazil.
| | - Kariana Ribeiro de Lima
- Biology, Ecology and Tick Control Laboratory from Federal University of Goiás, R. R-2, 1853-1883 - Chácaras Califórnia, Goiânia - GO, Goiânia, GO CEP 74691-835, Brazil.
| | - Zara Mariana de Assis-Silva
- Parasitology and Veterinary Clinical Analysis Laboratory from Federal University of Jataí, Câmpus Jatobá - Cidade Universitária, BR 364, km 195, nº 3800, Jataí, GO CEP 75801-615, Brazil
| | - Dirceu Guilherme de Souza Ramos
- Parasitology and Veterinary Clinical Analysis Laboratory from Federal University of Jataí, Câmpus Jatobá - Cidade Universitária, BR 364, km 195, nº 3800, Jataí, GO CEP 75801-615, Brazil.
| | - Caio Márcio de Oliveira Monteiro
- Biology, Ecology and Tick Control Laboratory from Federal University of Goiás, R. R-2, 1853-1883 - Chácaras Califórnia, Goiânia - GO, Goiânia, GO CEP 74691-835, Brazil.
| | - Ísis Assis Braga
- Parasitology and Veterinary Clinical Analysis Laboratory from Federal University of Jataí, Câmpus Jatobá - Cidade Universitária, BR 364, km 195, nº 3800, Jataí, GO CEP 75801-615, Brazil.
| |
Collapse
|
8
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
9
|
Zhu Y, Ouyang H, Lin W, Li W, Cao X, Chang Y, He J. GC-MS method for simultaneous determination and pharmacokinetic investigation of five volatile components in rat plasma after oral administration of the essential oil extract of Pogostemon cablin. Heliyon 2024; 10:e32444. [PMID: 38933986 PMCID: PMC11201108 DOI: 10.1016/j.heliyon.2024.e32444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pogostemon cablin (PC) is a traditional Chinese medicine (TCM) and food as well as an important essential oil plant in China. PC essential oil exerts pharmacological effects such as anti-inflammatory, anti-oxidant, anti-platelet, anti-thrombotic, and anti-depressant. This study established a reliable and sensitive gas chromatography-mass spectrometry (GC-MS) method for the simultaneous determination of the pharmacokinetics of patchouli alcohol, β-elemene, β-caryophyllene, caryophyllene oxide, and farnesol in the plasma of rats after oral administration of PC essential oil extract. Using ethyl acetate to prepare the plasma samples, and p-menthone was used as the internal standard (IS). An HP5-MS column (0.25 μm × 0.25 mm × 30 m) was used for chromatographic separation, and detection was performed in selected ion monitoring (SIM) mode. The accuracies of intra-day and inter-day for all analytes displayed a range of -6.7 %-9.2 %, with precision below 12.5 %. Extraction recoveries for analytes ranged from 74.0 to 106.4 % and matrix effects ranged from 92.4 to 106.9 %. Stability results have demonstrated that the relative standard deviations (RSD) of analytes were below 12.1 %. Therefore, the developed GC-MS method successfully evaluated the pharmacokinetics of five volatile components in PC essential oil extract administered orally to rats.
Collapse
Affiliation(s)
- Yameng Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300193, Tianjin, China
| | - Wenhan Lin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenwen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiunan Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
10
|
Wei CC, Tseng ZR, Liao HW. Discovery and determination of misuse and chemotypes of Pogostemon cablin by liquid chromatography-quadrupole time-of-flight mass spectrometry and liquid chromatography with diode-array detector. J Sep Sci 2024; 47:e2400208. [PMID: 39031742 DOI: 10.1002/jssc.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese medicine (TCM) has garnered significant scientific interest in healthcare but faces increased regulatory scrutiny due to concerns about uncontrolled usage. This study focuses on characterizing Pogostemon cablin (PC) to mitigate potential misuse and identify chemotype differences. Leveraging untargeted metabolomics, we identified 222 distinctive features effectively differentiating PC from Agastache rugosa (AR), reducing misidentification risks. Pogostone and tilianin emerged as potential markers, leading to a high-performance liquid chromatography-diode array detection (HPLC-DAD) method development for PC and AR discrimination. Evaluation of PC chromatograms revealed notable profile and pogostone level differences among samples, suggesting chemotype associations. Untargeted metabolic profiling identified 78 features with significant differences, highlighting 7,3',4'-tri-O-methyleriodictyol as a potential discriminatory marker between PC chemotypes. The developed HPLC-DAD method quantified pogostone and 7,3',4'-tri-O-methyleriodictyol, effectively discriminating PC chemotypes. This platform differentiates PC and AR and distinguishes chemical types within PC, like pogostone-type and patchoulol-type. Applied to local TCM stores, it ensures PC authenticity. This approach addresses TCM control concerns, enhancing understanding and application of herbal medicine by providing insights into PC chemical composition and discrimination.
Collapse
Affiliation(s)
- Chieh-Chun Wei
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zi-Rong Tseng
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: Recent evidence and perspectives. Phytother Res 2024; 38:2892-2930. [PMID: 38577989 DOI: 10.1002/ptr.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Atherosclerotic cardiovascular disease remains a preeminent cause of morbidity and mortality globally. The onset of atherosclerosis underpins the emergence of ischemic cardiovascular diseases, including coronary heart disease (CHD). Its pathogenesis entails multiple factors such as inflammation, oxidative stress, apoptosis, vascular endothelial damage, foam cell formation, and platelet activation. Furthermore, it triggers the activation of diverse signaling pathways including Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), NF-E2-related factor 2/antioxidant response element (Nrf2/ARE), the Notch signaling pathway, peroxisome proliferator-activated receptor (PPAR), nucleotide oligo-structural domain-like receptor thermoprotein structural domain-associated protein 3 (NLRP3), silencing information regulator 2-associated enzyme 1 (Sirt1), nuclear transcription factor-κB (NF-κB), Circular RNA (Circ RNA), MicroRNA (mi RNA), Transforming growth factor-β (TGF-β), and Janus kinase-signal transducer and activator of transcription (JAK/STAT). Over recent decades, therapeutic approaches for atherosclerosis have been dominated by the utilization of high-intensity statins to reduce lipid levels, despite significant adverse effects. Consequently, there is a growing interest in the development of safer and more efficacious drugs and therapeutic modalities. Traditional Chinese medicine (TCM) offers a vital strategy for the prevention and treatment of cardiovascular diseases. Numerous studies have detailed the mechanisms through which TCM active ingredients modulate signaling molecules and influence the atherosclerotic process. This article reviews the signaling pathways implicated in the pathogenesis of atherosclerosis and the advancements in research on TCM extracts for prevention and treatment, drawing on original articles from various databases including Google Scholar, Medline, CNKI, Scopus, and Pubmed. The objective is to furnish a reference for the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xulong Zhang
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
12
|
Chen Y, Wang N, Ma W, Gu W, Sang Z, Tan H, Zhang W, Liu H. Irpexols A-C, xanthone derivatives from the endophyte fungus Irpex laceratus A878. Fitoterapia 2024; 175:105952. [PMID: 38614405 DOI: 10.1016/j.fitote.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Three new xanthone derivatives irpexols A-C (1-3) and five known xanthones including three dimeric ones were successfully isolated from Irpex laceratus A878, an endophytic fungus of the family Irpicaceae from the medicinal plant Pogostemon cablin (Blanco) Bentham (Lamiaceae). The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR). All of the three new compounds (1-3) share a de-aromatic and highly‑oxygenated xanthone skeleton. In addition, the cytotoxic activity of compounds 1-8 were evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that compound 6 showed moderate cytotoxic activity with the IC50 values ranging from 24.83 to 45.46 μM, while the IC50 values of the positive control adriamycin was ranging from 1.11 to 1.44 μM.
Collapse
Affiliation(s)
- Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Nuoyi Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weipeng Ma
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
13
|
Zhu Y, Ouyang H, Lv Z, Yao G, Ge M, Cao X, Chang Y, He J. Simultaneous determination of multiple components in rat plasma by UPLC-MS/MS for pharmacokinetic studies after oral administration of Pogostemon cablin extract. Front Pharmacol 2024; 15:1293464. [PMID: 38841366 PMCID: PMC11150675 DOI: 10.3389/fphar.2024.1293464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction: Pogostemon cablin (PC) is used in traditional Chinese medicine and food, as it exerts pharmacological effects, such as immune-modulatory, antibacterial, antioxidant, antitumor, and antiviral. Currently, the pharmacokinetics (PK) studies of PC mainly focus on individual components. However, research on these individual components cannot reflect the actual PK characteristics of PC after administration. Therefore, the simultaneous determination of multiple components in rat plasma using UPLC-MS/MS was used for the pharmacokinetic study after oral administration of PC extract in this study, providing reference value for the clinical application of PC. Methods: In the present study, a reliable and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of 15 prototype components (vanillic acid, vitexin, verbascoside, isoacteoside, hyperoside, cosmosiin, apigenin, β-rhamnocitrin, acacetin, ombuin, pogostone, pachypodol, vicenin-2, retusin, and diosmetin-7-O-β-D-glucopyranoside) in rat plasma after oral administration of the PC extract. Plasma samples were prepared via protein precipitation using acetonitrile, and icariin was used as the internal standard (IS). Results: The intra-day and inter-day accuracies ranged from -12.0 to 14.3%, and the precision of the analytes was less than 11.3%. The extraction recovery rate of the analytes ranged from 70.6-104.5%, and the matrix effects ranged from 67.4-104.8%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation lower than 14.1%. Conclusion: The developed method can be applied to evaluate the PK of 15 prototype components in PC extracts of rats after oral administration using UPLC-MS/MS, providing valuable information for the development and clinical safe, effective, and rational use of PC.
Collapse
Affiliation(s)
- Yameng Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenguo Lv
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhe Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minglei Ge
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiunan Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
15
|
JING W, LIN X, LI C, ZHAO X, CHENG X, WANG P, WEI F, MA S. Anti-inflammatory mechanism of the non-volatile ingredients originated from Guanghuoxiang () based on high performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope and cell metabolomics. J TRADIT CHIN MED 2024; 44:260-267. [PMID: 38504532 PMCID: PMC10927411 DOI: 10.19852/j.cnki.jtcm.20240203.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/05/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli. METHODS High performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope (HPLC-HESI-HRMS) was used to analyze the chemical constituents of the non-volatile ingredients of patchouli. The anti-inflammatory activity of ingredients was evaluated using lipopolysaccharide (LPS) induced RAW264.7 cell inflammation model, and the anti-inflammatory mechanism was investigated using multivariate statistical analysis of cell metabolomics. RESULTS The non-volatile ingredients of patchouli were characterized by HPLC-HESI-HRMS, and 36 flavonoids and 18 other components were identified. These ingredients of patchouli not only had a good protective effect on the LPS-induced inflammation model of RAW264.7 cells, but also regulated the expression levels of arginine, L-leucine, cholesterol, fructose and sorbitol by down-regulating arginine metabolism, aminoacyl-tRNA biosynthesis, polyol/sorbitol pathway, so as to reduce inflammation and reduce cell damage. CONCLUSION The non-volatile ingredients of patchouli had good anti-inflammatory effect and exerted its curative effect by regulating endogenous metabolic pathway to reduce inflammatory response.
Collapse
Affiliation(s)
- Wenguang JING
- 1 Institute of Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaoyu LIN
- 2 School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chu LI
- 2 School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoliang ZHAO
- 3 Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xianlong CHENG
- 1 Institute of Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Penglong WANG
- 2 School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng WEI
- 1 Institute of Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuangcheng MA
- 1 Institute of Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
16
|
Ma W, Shao Z, Chen Y, Li S, Liu H, Zhang W, Gao X. Cytospotones A-D, four new polyketones from the endophytic fungus Cytospora sp. A879. Fitoterapia 2024; 173:105751. [PMID: 37977303 DOI: 10.1016/j.fitote.2023.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Three new α-pyrone derivatives cytospotones A-C (1-3) and a new cyclohexenone derivative cytospotone D (4) together with four known α-pyrones were isolated from the endophytic fungus Cytospora sp. A879 of Pogostemon cablin (Blanco) Benth. The structures of 1-4 were elucidated primarily by spectroscopic methods (1D, 2D NMR and HRESIMS), ECD spectra analyses, and ECD calculations. Furthermore, the four new compounds (1-4) were evaluated for their anti-inflammatory and α-glucosidase inhibitory activities. The results showed that compound 1 had moderate inhibitory effect on LPS-induced NO production in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Weipeng Ma
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China,; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhishen Shao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China,; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China,.
| |
Collapse
|
17
|
Hao YZ, Cen LF, Wang T, Yi T, Shi XL, Duan HJ, Dai Z, Zhu HY, Tang JG. The protective effect of 999 XiaoErGanMao granules on the lungs and intestines of influenza A virus-infected mice. PHARMACEUTICAL BIOLOGY 2023; 61:630-638. [PMID: 37036063 PMCID: PMC10088977 DOI: 10.1080/13880209.2023.2195884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gastrointestinal symptoms are a common complication of influenza virus infection in children, which the gut-lung axis become involved in its biological progress. The protective effect of 999 XiaoErGanMao granules (XEGMG) on multi-organ injury in viral pneumonia remains unclear. OBJECTIVE To investigate the therapeutic effect of XEGMG on lungs and intestines injury in A/FM/1/47 (H1N1) influenza virus-infected mice. MATERIALS AND METHODS Male BALB/c mice were infected with the 2LD50 H1N1 influenza virus and then treated with XEGMG (6 or 12 g/kg) intragastrically once a day for 4 days. The lung and colon samples were then collected for pathological observation, and assays for inflammatory cytokines and intestinal barrier. Mouse feces were collected to evaluate the intestinal microbiota. RESULTS Treating with XEGMG (12 g/kg) can mitigate body weight loss caused by 2LD50 H1N1 infection. It can also reduce lung index and pathological damage with the decreased inflammatory cytokines such as IL-6 and IL-1β. Furthermore, XEGMG (12 g/kg) can maintain the goblet cell number in the colons to protect the intestinal barrier and regulate the major flora such as Firmicutes, Bacteroidetes, and Muribaculaceae back to normal. Meanwhile, the expression of IL-17A in the colon tissues was significantly lower in the group of XEGMG (6, 12 g/kg) compared to H1N1 group. DISCUSSION AND CONCLUSIONS XEGMG can protect against H1N1 invasion involved in gut-lung axis regulation. The results provide new evidence for the protective effect of XEGMG, which is beneficial to vulnerable children.
Collapse
Affiliation(s)
- Yuan-zhen Hao
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-feng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tong Yi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xun-long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui-juan Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Hai-yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian-guo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|
19
|
Liu Y, Zheng Z, Liu H, Hou D, Li H, Li Y, Jing W, Jin H, Wang Y, Ma S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules 2023; 28:6675. [PMID: 37764451 PMCID: PMC10535192 DOI: 10.3390/molecules28186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.
Collapse
Affiliation(s)
- Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongbin Liu
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Dongjun Hou
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Hailiang Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| |
Collapse
|
20
|
Hu T, Li L, Ma Q. Research Progress of Immunomodulation on Anti-COVID-19 and the Effective Components from Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1337-1360. [PMID: 37465964 DOI: 10.1142/s0192415x23500611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 has posed a threat to the health of people around the world because of its strong transmission and high virulence. Currently, there is no specific medicine for the treatment of COVID-19. However, for a wide variety of medicines used to treat COVID-19, traditional Chinese medicine (TCM) plays a major role. In this paper, the effective treatment of COVID-19 using TCM was consulted first, and several Chinese medicines that were frequently used apart from their huge role in treating it were found. Then, when exploring the active ingredients of these herbs, it was discovered that most of them contained flavonoids. Therefore, the structure and function of the potential active substances of flavonoids, including flavonols, flavonoids, and flavanes, respectively, are discussed in this paper. According to the screening data, these flavonoids can bind to the key proteins of SARS-CoV-2, 3CLpro, PLpro, and RdRp, respectively, or block the interface between the viral spike protein and ACE2 receptor, which could inhibit the proliferation of coronavirus and prevent the virus from entering human cells. Besides, the effects of flavonoids on the human body systems are expounded on in this paper, including the respiratory system, digestive system, and immune system, respectively. Normally, flavonoids boost the body's immune system. However, they can suppress the immune system when over immunized. Ultimately, this study hopes to provide a reference for the clinical drug treatment of COVID-19 patients, and more TCM can be put into the market accordingly, which is expected to promote the development of TCM on the international stage.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Li Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/ Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| |
Collapse
|
21
|
Ginting B, Sufriadi E, Harnelly E, Isnaini N, Mulana F, Suparto IH, Ilmiawati A, Ernawati E, Muhammad S, Syakira M, Riski CD. Identification of volatile compounds contained in the therapeutic essential oils from Pogostemon cablin, Melaleuca leucadendra, and Mentha piperita and their purified fractions. J Adv Pharm Technol Res 2023; 14:208-212. [PMID: 37692008 PMCID: PMC10483909 DOI: 10.4103/japtr.japtr_161_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 09/12/2023] Open
Abstract
Pogostemon cablin, Melaleuca leucadendra, and Mentha piperita are three aromatic plants that have been reported to produce a high yield of volatile components with medicinal and therapeutic properties. This present study aimed to perform qualitative and semi-quantitative analysis on the volatile components present in the aforementioned aromatic plants. Essential oils from P. cablin and M. leucadendra were obtained from community-based enterprises in Aceh Province, Indonesia. The essential oils were further purified using vacuum rotary evaporator. In addition, we also investigated the essential oils from M. piperita based on the priorly optimized parameters. The volatile components contained in the essential oils were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The qualitative data were derived from the MS data based on the fragmented components separated by the GC and compared with the database. The abundance of each volatile component was determined based on the area percentage of the chromatographic peak. In P. cablin oil, the relative abundance of α-guaiene and seychellene was higher in heavy fraction (17.11 and 10.29, respectively), while patchouli alcohol in light fraction (69.92%). Eucalyptol was found higher in the light fraction of M. leucadendra oil (MO) than that in the heavy fraction (78.87% vs. 17.34%, respectively). As for the M. piperita oil, menthone was found as the predominant component with relative abundance of 21.6%. Essential oils extracted from P. cablin, M. leucadendra, and M. piperita consist of volatile components with medicinal and therapeutic potentials, in which their compositions are affected by the purification process.
Collapse
Affiliation(s)
- Binawati Ginting
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Elly Sufriadi
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Essy Harnelly
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Nadia Isnaini
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Farid Mulana
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Irma Herawati Suparto
- Department of Pusat Studi Biofarmaka Tropika, IPB University, Bogor, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Auliya Ilmiawati
- Department of Pusat Studi Biofarmaka Tropika, IPB University, Bogor, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Ernawati Ernawati
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Economics and Bisnis, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Syaifullah Muhammad
- ARC-PUIPT Nilam Aceh USK, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Maula Syakira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Cantika Dwi Riski
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
22
|
Chin YL, Seng KB, Ye HY, En PR, Aslam MS, Kim YJ, Linchao Q, Peryen T, Qi KY, Jun LY, Cheah OY, Chi TN. Treating Narcolepsy With Traditional Chinese Medicine. MULTIDISCIPLINARY APPLICATIONS OF NATURAL SCIENCE FOR DRUG DISCOVERY AND INTEGRATIVE MEDICINE 2023:185-241. [DOI: 10.4018/978-1-6684-9463-9.ch006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Narcolepsy is an uncommon brain condition characterized by falling asleep suddenly without any proper reason or time. In this chapter, the authors include a brief history of narcolepsy, clinical symptoms, pathophysiology, and current treatments for the disease. The review explains narcolepsy according to the theory of TCM. The authors review the curative effect, pharmacological properties, and clinical results of herbs and prescriptions against narcolepsy. The study searched keywords such as ‘narcolepsy,' ‘Traditional Chinese medicine,' ‘sleep disorder,' ‘excessive sleepiness,' and ‘medicinal treatment' using databases such as CNKI, PubMed, and Google Scholar. Based on the analysis of data obtained from 110 articles, the authors have classified the herbs and prescriptions by their curative effects, following the theory of traditional Chinese medicine. Some herbs can be used alone, while others can use in conjunction with other prescriptions.
Collapse
Affiliation(s)
- Yap Lay Chin
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Kho Boon Seng
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - How Yng Ye
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Poo Rou En
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | | | - Yun Jin Kim
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Qian Linchao
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Teoh Peryen
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Koh Yong Qi
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Lim Ye Jun
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Ooi Yin Cheah
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| | - Tee Niam Chi
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Malaysia
| |
Collapse
|
23
|
Chaniad P, Techarang T, Phuwajaroanpong A, Plirat W, Na-Ek P, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Preclinical evaluation of antimalarial activity of CPF-1 formulation as an alternative choice for the treatment of malaria. BMC Complement Med Ther 2023; 23:144. [PMID: 37143036 PMCID: PMC10158254 DOI: 10.1186/s12906-023-03973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasit Na-Ek
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
24
|
Fatima S, Farzeen I, Ashraf A, Aslam B, Ijaz MU, Hayat S, Sarfraz MH, Zafar S, Zafar N, Unuofin JO, Lebelo SL, Muzammil S. A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth. Molecules 2023; 28:molecules28083469. [PMID: 37110702 PMCID: PMC10141922 DOI: 10.3390/molecules28083469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.
Collapse
Affiliation(s)
- Sehrish Fatima
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Farzeen
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | | | - Saima Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Nimrah Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
25
|
Chang KF, Lai HC, Lee SC, Huang XF, Huang YC, Chou TE, Hsiao CY, Tsai NM. The effects of patchouli alcohol and combination with cisplatin on proliferation, apoptosis and migration in B16F10 melanoma cells. J Cell Mol Med 2023; 27:1423-1435. [PMID: 37038620 PMCID: PMC10183711 DOI: 10.1111/jcmm.17745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
Melanoma is a highly metastatic cancer with a low incidence rate, but a high mortality rate. Patchouli alcohol (PA), a tricyclic sesquiterpene, is considered the main active component in Pogostemon cablin Benth, which improves wound healing and has anti-tumorigenic activity. However, the pharmacological action of PA on anti-melanoma remains unclear. Thus, the present study aimed to investigate the role of PA in the proliferation, cell cycle, apoptosis and migration of melanoma cells. These results indicated that PA selectively inhibited the proliferation of B16F10 cells in a dose- and time-dependent manner. It induced cell cycle arrest at the G0 /G1 phase and typical morphological changes in apoptosis, such as chromatin condensation, DNA fragmentation and apoptotic bodies. In addition, PA reduced the migratory ability of B16F10 cells by upregulating E-cadherin and downregulating p-Smad2/3, vimentin, MMP-2 and MMP-9 expression. PA was also found to strongly suppress tumour growth in vivo. Furthermore, PA combined with cisplatin synergistically inhibited colony formation and migration of B16F10 cells and attenuated the development of resistance to treatment. Therefore, the results of this study indicate that PA may play a pivotal role in inducing apoptosis and reducing the migration of melanoma cells, and may thus be a potential candidate for melanoma treatment.
Collapse
Affiliation(s)
- Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Hung-Chih Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ya-Chih Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Tien-Erh Chou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan, R.O.C
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan, R.O.C
| |
Collapse
|
26
|
Szewczuk MA, Zych S, Oster N, Karakulska J. Activity of Patchouli and Tea Tree Essential Oils against Staphylococci Isolated from Pyoderma in Dogs and Their Synergistic Potential with Gentamicin and Enrofloxacin. Animals (Basel) 2023; 13:ani13081279. [PMID: 37106842 PMCID: PMC10134980 DOI: 10.3390/ani13081279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, we show the effect of some essential oils (EOs) on staphylococci, including multidrug-resistant strains isolated from pyoderma in dogs. A total of 13 Staphylococcus pseudintermedius and 8 Staphylococcus aureus strains were studied. To assess the sensitivity of each strain to the antimicrobial agents, two commercial EOs from patchouli (Pogostemon cablin; PcEO) and tea tree (Melaleuca alternifolia; MaEO) as well as two antibiotics (gentamicin and enrofloxacin) were used. The minimum inhibitory concentration (MIC) followed by checkerboards in the combination of EO-antibiotic were performed. Finally, fractional inhibitory concentrations were calculated to determine possible interactions between these antimicrobial agents. PcEO MIC ranged from 0.125 to 0.5 % v/v (1.2-4.8 mg/mL), whereas MaEO MIC was tenfold higher (0.625-5% v/v or 5.6-44.8 mg/mL). Gentamicin appeared to be highly prone to interacting with EOs. Dual synergy (38.1% of cases) and PcEO additive/MaEO synergism (53.4%) were predominantly observed. On the contrary, usually, no interactions between enrofloxacin and EOs were observed (57.1%). Both commercial EOs were characterized by natural composition without artificial adulteration. Patchouli and tea tree oils can be good alternatives for treating severe cases of pyoderma in dogs, especially when dealing with multidrug-resistant strains.
Collapse
Affiliation(s)
- Małgorzata Anna Szewczuk
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Nicola Oster
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
27
|
He H, Xie X, Zhang J, Mo L, Kang X, Zhang Y, Wang L, Hu N, Xie L, Peng C, You Z. Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. J Affect Disord 2023; 326:120-131. [PMID: 36682696 DOI: 10.1016/j.jad.2023.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Microglia-mediated neuroinflammation contributes to major depressive disorder (MDD). Targeting microglia is a promising strategy for treating MDD. Patchouli alcohol (PA), an active component of Pogostemon cablin, has anti-inflammatory and neuroprotective effects. PURPOSE In this study, we investigate the microglia-mediated neurogenesis pathway in which PA ameliorates depressive-like behaviors in stress-induced animal model of depression. METHODS C57BL/6J male mice were exposed to chronic mild stress (CMS) for 4 weeks, then administered PA intraperitoneally at 10, 20 or 40 mg/kg once per day for 3 weeks. The antidepressant effects of PA were evaluated in the sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes and activation of the NLRP3 inflammation were analyzed using RT-PCR, western blotting and immunofluorescence staining. Effects of PA on neurogenesis were analyzed in vitro and in vivo using immunofluorescence staining. RESULTS Behavioral assessments showed that PA alleviated depressive-like behaviors in CMS-exposed mice. CMS induced microglial activation and pro-inflammatory profiles, which were blocked by PA treatment. PA attenuated the activation of NLRP3 inflammasome, leading to decreases in the levels of caspase-1, ASC, IL-1β, and IL-18 in the hippocampus of CMS-exposed mice. In primary microglia cultures, PA inhibited LPS-induced NLRP3 inflammasome activation. PA rescued inflammation-inhibited neurogenesis in vivo and in vitro. CONCLUSIONS Our results suggest that PA inhibits the NLRP3 inflammasome and ameliorates microglia-mediated neurogenesis impairment, contributing to antidepressant effects. Thus, PA may be a novel treatment for inflammation-driven mental disorders.
Collapse
Affiliation(s)
- Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xixi Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China
| | - Nan Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Xie
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu 610036, China.
| |
Collapse
|
28
|
Yan H, Zhang C, Han JJ, Du SS, Hua YZ, Wang MC, Mei GJ, Jia SK. Zinc-Catalyzed Asymmetric Cascade Michael/Acyl Transfer Reaction between α-Hydroxy Aryl Ketones and Enynones. Org Lett 2023; 25:1918-1923. [PMID: 36926928 DOI: 10.1021/acs.orglett.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We described herein a neoteric enantioselective cascade Michael/acyl transfer reaction of enynones and α-hydroxy aryl ketones catalyzed by dinuclear zinc cooperative catalysis. A series of structurally diverse chiral 1,5-dicarbonyl compounds were synthesized in good yields with excellent stereoselectivities. This strategy features broad substrate scope, high atom economy, as well as enynones as efficient electrophilic acyl transfer reagents in asymmetric cascade reactions for the first time.
Collapse
Affiliation(s)
- Hang Yan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Cui Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Jiao-Jiao Han
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Si-Si Du
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Guang-Jian Mei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
29
|
Tian Y, Wang L, Fan X, Zhang H, Dong Z, Tao T. β-patchoulene alleviates cognitive dysfunction in a mouse model of sepsis associated encephalopathy by inhibition of microglia activation through Sirt1/Nrf2 signaling pathway. PLoS One 2023; 18:e0279964. [PMID: 36608000 PMCID: PMC9821490 DOI: 10.1371/journal.pone.0279964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sepsis associated encephalopathy (SAE) is a common but poorly understood complication during sepsis. Currently, there are no preventive or therapeutic agents available for this neurological disorder. The present study was designed to determine the potential protective effects of β-patchoulene (β-PAE) in a mouse model of SAE and explore the putative mechanisms underpinning the beneficial effects. MATERIALS AND METHODS SAE was induced in C57BL/6 mice by cecal ligation and puncture(CLP). Mice were administrated with β-PAE or saline by intra-cerebral ventricle(i.c.v) injection immediately after CLP surgery. The inhibitory avoidance tests and open field tests were performed at 24h, 48h and 7days after procedures. Cytokines expression, oxidative parameters, microglia polarization and apoptosis in the brain tissue were assessed. Sirt1, Nrf2, HO-1and cleaved-caspase3 expression in hippocampus was determined by western-blotting. Further, serum cytokines expression and spleen lymphocytes apoptosis were evaluated, and survival study was performed. RESULTS Septic mice suffered severe cognitive decline following CLP as evidenced by decreased memory latency time and lower frequency of line crossing in the behavioral tests. A high dose of β-PAE(1mg/kg) improved the cognitive impairment in SAE mice, which was accompanied by reduced cytokines expression and oxidative stress. Immunofluorescence assay showed that β-PAE inhibited the expression of Iba-1 and iNOS in microglia. The mechanistic study indicated that β-PAE could promote the nuclear expression of Sirt1/Nrf2 and enhance cytoplasmic HO-1 expression. Furthermore, i.c.v administration of β-PAE decreased the expression of serum cytokines and apoptosis in the spleen, thus leading to an improved 7-day survival of septic mice. Finally, blockade of Nrf2 activation with ML385 largely mitigated the protective effects of β-PAE on the cognitive function, neuroinflammation and survival in SAE mice. CONCLUSION In this study, we found that β-PAE significantly altered sepsis induced neuroinflammation and microglia activation, thus reversed the cognitive decline and improved the peripheral immune function. The neuroprotective effects were possibly mediated by the activation of Sirt1/Nrf2/HO-1 pathway. β-PAE might serve as a promising therapeutic agent for SAE prevention and treatment.
Collapse
Affiliation(s)
- Ye Tian
- Department of Anesthesiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of General Surgery, Air Force Medical Center, Beijing, China
| | - Xiaojing Fan
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Hui Zhang
- Department of Neurosurgery, Air Force Medical Center, Beijing, China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, Beijing, China
- * E-mail: (TT); (DZ)
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- * E-mail: (TT); (DZ)
| |
Collapse
|
30
|
Sun Y, Su Y, Hussain A, Xiong L, Li C, Zhang J, Meng Z, Dong Z, Yu G. Complete genome sequence of the Pogostemon cablin bacterial wilt pathogen Ralstonia solanacearum strain SY1. Genes Genomics 2023; 45:123-134. [PMID: 35670995 PMCID: PMC9171469 DOI: 10.1007/s13258-022-01270-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
31
|
Lu Y, Li SY, Lou H. Patchouli alcohol protects against myocardial ischaemia-reperfusion injury by regulating the Notch1/Hes1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:949-957. [PMID: 35588098 PMCID: PMC9122376 DOI: 10.1080/13880209.2022.2064881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Patchouli alcohol (PA) has protective effects on cerebral ischaemia/reperfusion (I/R) injury, but its efficacy on myocardial ischaemia-reperfusion (MI/R) has yet to be addressed. OBJECTIVE To examine the therapeutic effect of PA on myocardial ischaemia-reperfusion (I/R) injury. MATERIALS AND METHODS C57BL/6 male mice were randomly divided into sham, MI/R, MI/R + PA-10, MI/R + PA-20 and MI/R + PA-40 groups. In vivo MI/R model was established by ligating the anterior descending coronary artery of the heart. In vitro stimulated IR cell model was constructed by using the rat cardiomyocyte H9C2 cell line. Mice in the treatment groups were intraperitoneally injected with PA (10, 20, 40 mg/kg) for 30 days then subjected to surgery, and cells in the experimental group were pre-treated with PA (1, 10 or 100 μmol/L). After treatment, mouse heart function, myocardial injury markers, myocardial infarction and Notch1/Hes1 expression, endoplasmic reticulum stress markers, and apoptosis-related proteins were determined. RESULTS In vivo, PA treatment improved hemodynamic parameter changes and myocardial enzymes, increased the left ventricular ejection fraction and left ventricular fractional shortening, reduced the left ventricular end-systolic diameter and inhibited CK-MB, cTnI and cTnT levels. In addition, PA attenuated myocardial tissue damage and apoptosis. PA treatment elevated Notch1, NICD and Hes1 levels and suppressed the levels of ATF4, p-PERK/PERK, and cleaved caspase-3/caspase-3 in vitro and in vivo. DISCUSSION AND CONCLUSION PA protects against MI/R, possibly by modulating ER stress, apoptosis and the Notch1/Hes1 signalling pathways. These findings indicate that PA may be a promising candidate for treating ischaemic heart diseases.
Collapse
Affiliation(s)
- Ying Lu
- Electrocardiogram room of Department of Functional Examination, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shou-ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Hui Lou
- Electrocardiogram room of Department of Functional Examination, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
32
|
Cai J, Zhao J, Gao P, Xia Y. Patchouli alcohol inhibits GPBAR1-mediated cell proliferation, apoptosis, migration, and invasion in prostate cancer. Transl Androl Urol 2022; 11:1555-1567. [PMID: 36507482 PMCID: PMC9732702 DOI: 10.21037/tau-22-667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background G protein-coupled bile acid receptor 1 (GPBAR1) is a G protein-coupled receptor for bile acids, which is widely expressed in many human tissues. Patchouli alcohol (PA) has been shown to have an anti-cancer effect, including in prostate cancer (PCa). This study sought to confirm the regulatory mechanism of GPBAR1 in the anti-cancer activity of PA in PCa. Methods The SwissTargetPrediction website (Pro >0) was used to predict the target of PA. The UALCAN and The Cancer Genome Atlas-Prostate cohort was used to examine the differentially expressed genes and PCa recurrence. A gene set enrichment analysis (GSEA) was conducted to analyze the relationship between the expression of GPBAR1 and PCa proliferation, migration, and invasion. Cell proliferation, migration, and invasion were assessed by colony formation, 5-Ethynyl-2'-deoxyuridine staining, cell scratch assays, and Transwell invasion assays, respectively. A xenograft animal model was established to assess the effect of PA on tumor growth in vivo. GPBAR1 protein and apoptosis related protein expression was measured by western blot. Results GPBAR1 was a PA target predicted by the SwissTargetPrediction website. PA inhibited the expression of GPBAR1 in PCa cells in a time- and dose-dependent manner. The abnormal expression of GPBAR1 was related to cell proliferation, migration, and invasion. Additionally, GPBAR1 overexpression promoted the cell proliferation, migration, and invasion, and inhibited the apoptosis of PCa cells. GPBAR1 silencing inhibited the cell proliferation, migration, and invasion, and promoted the apoptosis of PCa cells. High expressions of GPBAR1 suppressed tumor growth in tumor-bearing mice. Further, GPBAR1 promoted the activation of nuclear factor kappa B (NF-κB) signaling, and PA regulated the malignant phenotypes of PCa cells via the NF-κB signaling pathway mediated by GPBAR1. Conclusions GPBAR1 is a promising drug target of PA, and was shown to regulate the proliferation, apoptosis, migration, and invasion of PCa cells through GPBAR1/NF-κB inhibition.
Collapse
Affiliation(s)
- Jian Cai
- Department of Urology and Andrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Zhao
- Department of Urology and Andrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Gao
- Department of Urology and Andrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuguo Xia
- Department of Urology and Andrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Wang C, Wang Y, Chen J, Liu L, Yang M, Li Z, Wang C, Pichersky E, Xu H. Synthesis of 4-methylvaleric acid, a precursor of pogostone, involves a 2-isobutylmalate synthase related to 2-isopropylmalate synthase of leucine biosynthesis. THE NEW PHYTOLOGIST 2022; 235:1129-1145. [PMID: 35485988 DOI: 10.1111/nph.18186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
We show here that the side chain of pogostone, one of the major components of patchouli oil obtained from Pogostemon cablin and possessing a variety of pharmacological activities, is derived from 4-methylvaleric acid. We also show that 4-methylvaleric acid is produced through the one-carbon α-ketoacid elongation pathway with the involvement of the key enzyme 2-isobutylmalate synthase (IBMS), a newly identified enzyme related to isopropylmalate synthase (IPMS) of leucine (Leu) biosynthesis. Site-directed mutagenesis identified Met132 in the N-terminal catalytic region as affecting the substrate specificity of PcIBMS1. Even though PcIBMS1 possesses the C-terminal domain that in IPMS serves to mediate Leu inhibition, it is insensitive to Leu. The observation of the evolution of IBMS from IPMS, as well as previously reported examples of IPMS-related genes involved in making glucosinolates in Brassicaceae, acylsugars in Solanaceae, and flavour compounds in apple, indicate that IPMS genes represent an important pool for the independent evolution of genes for specialised metabolism.
Collapse
Affiliation(s)
- Chu Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Mingxia Yang
- The Center for Microbes, Development and Health, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
34
|
Tao T, Ye B, Xu Y, Wang Y, Zhu Y, Tian Y. β-Patchoulene Preconditioning Protects Mice Against Hepatic Ischemia–Reperfusion Injury by Regulating Nrf2/HO-1 Signaling Pathway. J Surg Res 2022; 275:161-171. [DOI: 10.1016/j.jss.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
|
35
|
Zhao L, Wang L, Guo Z, Zhang N, Feng Q, Li B. Polysaccharides From Pogostemon cablin (Blanco) Benth.: Characterization and Antioxidant Activities. Front Pharmacol 2022; 13:933669. [PMID: 35784681 PMCID: PMC9244533 DOI: 10.3389/fphar.2022.933669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two polysaccharide fractions from Pogostemon cablin (Blanco) Benth. (P. cablin) (designated as PCB-1 and PCB2-1) were isolated by water extraction and purified by Sepharose chromatography. The chemical properties of the polysaccharides were characterised, and their antioxidant activities were evaluated. The sugar content of the crude polysaccharide (PCB), PCB-1, and PCB2-1 was 58.74, 90.23 and 88.61%, respectively. The molecular weights of PCB-1 and PCB2-1 were determined to be 97.8 and 12.8 kDa, respectively. Monosaccharide composition analysis showed that all the three polysaccharides consisted of mannose, rhamnose, galacturonic acid, galactose, glucose, and arabinose, but with varying molar ratios. The polysaccharides exhibited significantly high antioxidant activities in vitro based on the scavenging activity against hydroxyl radicals, metal ion-chelating and ferric-reducing abilities. In vivo experiments in an oxidatively damaged mice model showed that PCB-1 increased the levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and inhibited malondialdehyde formation in the serum and liver. These findings suggest that PCB-1 has significant potential as an antioxidant in functional foods.
Collapse
Affiliation(s)
- Lei Zhao
- School of Graduation, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zimeng Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ning Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Qisheng Feng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Bo Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Bo Li,
| |
Collapse
|
36
|
Li GM, Chen JR, Zhang HQ, Sun C, Chen GR, Xiong QY, Cao XY, Yu L, Lin ZW, Qin JY, Wu LJ, Li J, Pu L, Peng F, Xie XF, Peng C. Rhein activated Fas-induced apoptosis pathway causing cardiotoxicity in vitro and in vivo. Toxicol Lett 2022; 363:67-76. [PMID: 35589017 DOI: 10.1016/j.toxlet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Rhein, one of the main active components of rhubarb (Dahuang) and Polygonum multiflorum (Heshouwu), has a wide range of effective pharmacological effects. Recently, increasing studies have focused on its potential hepatorenal toxicity, but the cardiotoxicity is unknown. In this study, we found that the IC50 of rhein to H9c2 cells at 24h and 48h were 94.5 and 45.9μmol/L, respectively, with positive correlation of dose-toxicity and time-toxicity. After the treatment of rhein (106, 124 and 132μmol/L), the number of H9c2 cells decreased significantly, and the morphology of H9c2 cells showed atrophy, round shape and wall detachment. Moreover, the proportion of apoptotic cells in H9c2 cells treated with rhein was significantly increased in a dose-dependent manner. And rhein induced S phase arrest of H9c2 cells and inhibited cell proliferation. Rhein up-regulated ROS, LDH levels and low MMP but down-regulated SOD content in H9c2 cells. Additionally, the results showed that the cardiac function LVEF and LVFS of rhein high-medium-low dose groups (350, 175, 87.5mg/kg) were significantly reduced. And the contents of Ca2+, cTnT, CK and LDH in serum of KM mice were significantly up-regulated by rhein. Furthermore, western blot results suggested that rhein the above effects via promoting Fas-induced apoptosis pathway in vitro and in vivo. In general, rhein may cause cardiotoxicity via Fas-induced apoptosis pathway in vivo and in vitro, which provides reference for the safe use of medicinal plant containing rhein and its preparations.
Collapse
Affiliation(s)
- Gang Min Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China.
| | - Jun Ren Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Hui Qiong Zhang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611700, China
| | - Chen Sun
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Guan Ru Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Qiu Yun Xiong
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Xiao Yu Cao
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Lei Yu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Zi Wei Lin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Jun Yuan Qin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Liu Jun Wu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Jing Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Lin Pu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China
| | - Fu Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China.
| | - Xiao Fang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China.
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University,Chengdu 610041, China.
| |
Collapse
|
37
|
Xu F, Cai W, Ma T, Zeng H, Kuang X, Chen W, Liu B. Traditional Uses, Phytochemistry, Pharmacology, Quality Control, Industrial Application, Pharmacokinetics and Network Pharmacology of Pogostemon cablin: A Comprehensive Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:691-721. [PMID: 35282804 DOI: 10.1142/s0192415x22500288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.
Collapse
Affiliation(s)
- Fangfang Xu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Wanna Cai
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Ting Ma
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Huimei Zeng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaolan Kuang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Weiying Chen
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
38
|
Pogostone Enhances the Antibacterial Activity of Colistin against MCR-1-Positive Bacteria by Inhibiting the Biological Function of MCR-1. Molecules 2022; 27:molecules27092819. [PMID: 35566163 PMCID: PMC9102576 DOI: 10.3390/molecules27092819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of the plasmid-mediated colistin resistance gene mcr-1 has resulted in the loss of available treatments for certain severe infections. Here we identified a potential inhibitor of MCR-1 for the treatment of infections caused by MCR-1-positive drug-resistant bacteria, especially MCR-1-positive carbapenem-resistant Enterobacteriaceae (CRE). A checkerboard minimum inhibitory concentration (MIC) test, a killing curve test, a growth curve test, bacterial live/dead assays, scanning electron microscope (SEM) analysis, cytotoxicity tests, molecular dynamics simulation analysis, and animal studies were used to confirm the in vivo/in vitro synergistic effects of pogostone and colistin. The results showed that pogostone could restore the bactericidal activity of colistin against all tested MCR-1-positive bacterial strains or MCR-1 mutant−positive bacterial strains (FIC < 0.5). Pogostone does not inhibit the expression of MCR-1. Rather, it inhibits the binding of MCR-1 to substrates by binding to amino acids in the active region of MCR-1, thus inhibiting the biological activity of MCR-1 and its mutants (such as MCR-3). An in vivo mouse systemic infection model, pogostone in combination with colistin resulted in 80.0% (the survival rates after monotherapy with colistin or pogostone alone were 33.3% and 40.0%) survival at 72 h after infection of MCR-1-positve Escherichia coli (E. coli) ZJ487 (blaNDM-1-carrying), and pogostone in combination with colistin led to one or more order of magnitude decreases in the bacterial burdens in the liver, spleen and kidney compared with pogostone or colistin alone. Our results confirm that pogostone is a potential inhibitor of MCR-1 for use in combination with polymyxin for the treatment of severe infections caused by MCR-1-positive Enterobacteriaceae.
Collapse
|
39
|
Hao DC, Wang F, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based anti-COVID-19 Drug Research. Curr Drug Metab 2022; 23:374-393. [PMID: 35440304 DOI: 10.2174/1389200223666220418110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The representative anti-COVID-19 herbs, i.e. Poria cocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARS-CoV-2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties are being revealed. However, the current trends of drug metabolism/pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS Here, the latest awareness, as well as the perception gaps of DMPK attributes, in the anti-COVID-19 drug development and clinical usage was elaborated and critically commented. RESULTS The extracts and compounds of P. cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. The complicated herb-herb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species and formulations, and would be facilitated by various omics platforms and computational analyses. CONCLUSION In the framework of systems pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19, and speed up the anti-COVID-19 drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
40
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Su F, Sun Y, Zhu W, Bai C, Zhang W, Luo Y, Yang B, Kuang H, Wang Q. A comprehensive review of research progress on the genus Arisaema: Botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114798. [PMID: 34780984 DOI: 10.1016/j.jep.2021.114798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Arisaema belongs to the family Araceae, which includes Chinese herbal medicines with wide-ranging pharmacological functions, including those useful for the treatment of stubborn phlegm, cough, epilepsy, tetanus, snakebite, rheumatoid arthritis, and other ailments. AIM OF THE STUDY The current study aimed to comprehensively review the botany, uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of plants in the genus Arisaema and to provide novel insights to develop future research in this field. MATERIALS AND METHODS Relevant information on the genus Arisaema was obtained from published scientific materials (including materials from PubMed, Elsevier, Web of Science, Google Scholar, Baidu Scholar, CNKI, and Wiley) and other literature sources (e.g., the Chinese Pharmacopoeia, 2020 edition; Chinese herbal books and PhD and MSc thesis). RESULTS The application information complied with this review and included processing techniques, traditional uses, clinical applications and classic prescriptions. Approximately 260 compounds, including flavonoids, alkaloids, saccharides, steroids, fatty acids, amino acids and volatile oils, have been separated and identified from the genus Arisaema. The isolated compounds exhibit wide-ranging pharmacological activities such as antitumor activity, analgesic and sedative activity, antioxidant activity and anti-inflammatory activity. The toxicity and irritant impacts, quality control, and pharmacokinetics are also discussed in this review. CONCLUSIONS Plants in the genus Arisaema are valuable resources with therapeutic potential for a broad spectrum of ailments. Based on the limited literature, this review comprehensively and systematically summarizes current knowledge regarding the genus Arisaema for the first time. However, there have been insufficient studies on the active ingredients and germplasm and insufficient in-depth mechanistic studies. Therefore, isolation and identification of additional effective components and through research on the germplasm, pharmacodynamic mechanisms, and toxicology should be conducted to assess effectiveness and safety and to ensure the quality of the related drugs.
Collapse
Affiliation(s)
- Fazhi Su
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wenbo Zhu
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chenxi Bai
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wensen Zhang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yumeng Luo
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Haixue Kuang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Qiuhong Wang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 232 Outer Ring Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
42
|
Shah T, Xia KY, Shah Z, Baloch Z. Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8666147 DOI: 10.1016/j.prmcm.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.
Collapse
|
43
|
Zhang Y, Wang B, Li Q, Huang D, Zhang Y, Li G, He H. Isolation and Complete Genome Sequence Analysis of Kosakonia cowanii Pa82, a Novel Pathogen Causing Bacterial Wilt on Patchouli. Front Microbiol 2022; 12:818228. [PMID: 35095821 PMCID: PMC8795763 DOI: 10.3389/fmicb.2021.818228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Pogostemon cablin (patchouli), an important medicinal and aromatic plant, is widely used in traditional Chinese medicine as well as in perfume industry. Patchouli plants are susceptible to bacterial wilt disease, which causes significant economic losses by reduction in yield and quality of the plant products. However, few studies focus on the pathogens causing bacterial wilt on patchouli. In this study, strain Pa82 was isolated from diseased patchouli plants with typical bacterial wilt symptoms in Guangdong province, China, and was confirmed to be a highly virulent pathogen of patchouli bacterial wilt. Comparative sequence analysis of 16S rRNA gene showed that the strain was closely related to Kosakonia sp. CCTCC M2018092 (99.9% similarity) and Kosakonia cowanii Esp_Z (99.8% similarity). Moreover, phylogenetic tree based on 16S rRNA gene sequences showed that the strain was affiliated with genus Kosakonia. Further, the whole genome of strain Pa82 was sequenced, and the sequences were assembled and annotated. The complete genome of the strain consists of one chromosome and three plasmids. Average nucleotide identity (ANI) and phylogenetic analysis revealed that the strain belongs to Kosakonia cowanii (designated Kosakonia cowanii Pa82). Virulence-related genes of the strain involved in adherence, biofilm formation, endotoxin and other virulence factors were predicted. Among them, vgrG gene that encodes one of the type VI secretion system components was functionally validated as a virulence factor in Kosakonia cowanii Pa82 through construction of Tn5 insertion mutants and identification of mutant defective in virulence.
Collapse
|
44
|
Chen G, Xie X, Peng F, Wang T, Chen J, Li G, Liu J, Peng C. Protective effect of the combination of essential oil from patchouli and tangerine peel against gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114645. [PMID: 34530094 DOI: 10.1016/j.jep.2021.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oil (EO) is the main extract of patchouli and tangerine peel with antiinflammatory, antiulcer, and other functions. However, the efficacy and mechanism of the combination of EO from patchouli and tangerine peel against gastric ulcer (GU) are unclear. AIM OF THE STUDY This study aims to reveal the protective effect of the combination of EO from patchouli and tangerine peel against GU in rats, as well as explore the optimal ratio and possible mechanism of EO in GU treatment. MATERIALS AND METHODS The GU model is executed via water immersion and restraint stress. The repair effect of EO in different proportions on gastric mucosa injury and the effects on serum gastrin (GAS), pepsinogen C (PGC), prostaglandin E2 (PGE2), and 5-hydroxytryptamine in GU rats were observed. The optimal ratio obtained was used in the second part to set different dose groups for further experiment. The effects of the different EO doses on gastric mucosal ulcer formation and gastric acid secretion were evaluated. The morphology of chief and parietal cells were observed via transmission electron microscopy. The contents of GAS, PGC, substance P (SP), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cholecystokinin (CCK), PGE2, and motilin (MTL) in serum in different groups were detected via enzyme-linked immunosorbent assay. Expressions of epidermal growth factor (EGF) and trefoil factor 2 (TFF2) protein in gastric tissues were detected via immunohistochemistry, and expressions of c-Jun N-terminal kinase (JNK), P53, Bcl-2-associated X protein (Bax), and Caspase-3 protein in gastric tissues were detected via western blotting. RESULTS The EO from patchouli and tangerine peel at 1:2 ratio of compatibility significantly improved gastric mucosal injury, decreased serum GAS and PGC contents, and increased the PGE2 level in serum (p < 0.05). The mixture of EO from patchouli and tangerine peel (Mix-EO) can reduce the formation of gastric mucosal ulcers, reduce gastric mucosal injury, improve the expansion of the endoplasmic reticulum of the chief cells, repair mitochondrial damage, and inhibit the secretion of gastric acid by parietal cells. Mix-EO at 300 mg/kg can reduce the expression of serum GAS, PGC, SP, CCK, and cAMP/cGMP (p < 0.05 or 0.01); increase the expression of EGF and TFF2 protein in gastric tissues (p < 0.01); and inhibit the expression of JNK, p53, Bax, and Caspase-3 proteins (p < 0.01). CONCLUSION The combination of EO from patchouli and tangerine peel can repair the gastric mucosal damage in GU rats and prevent the occurrence of ulcers by inhibiting the secretion of gastric acid, enhancing the defensive ability of gastric mucosa, and suppressing the apoptosis of gastric epithelial cells. Moreover, the optimal compatible ratio of patchouli and tangerine peel is 1:2.
Collapse
Affiliation(s)
- Guanru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Fu Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China; West China School of Pharmacy, Sichuan University, 610065, Chengdu, PR China
| | - Tianzhixin Wang
- Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Gangmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, PR China.
| |
Collapse
|
45
|
Chemical profiling and quality evaluation of Pogostemon cablin Benth by liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. J Pharm Biomed Anal 2021; 209:114526. [PMID: 34915323 DOI: 10.1016/j.jpba.2021.114526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023]
Abstract
Pogostemon cablin Benth (PCB) is a well-known traditional Chinese medicine that has been used for treatment of many ailments for several centuries. In presently, the chemical profiling and quality control study of PCB has mainly concentrated on the volatile fractions. However, the non-volatile chemical profile of PCB was still unclear. In this study, 73 non-volatile constituents (i.e., 33 flavonoids, 21 organic acids, 9 phenylpropanoids, 4 sesquiterpenes, 3 alkaloids, and 3 other types of compounds) were identified and characterized in PCB using high performance liquid chromatography coupled with quadruple time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Meanwhile, to assess PCB samples, an established HPLC-Q-TOF-MS fingerprint was combined with multivariate statistical analysis that included similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA). The PCB samples could be classified into two groups (herbal decoction pieces and processed medicinal materials), and acteoside, isoacteoside, 4',6-Dihydroxy-5,7-dimethoxyflavone, pachypodol and pogostone were screened as the potential chemical markers that attributed classification. In addition, nine representative components (pachypodol, vicenin-2, apigenin, rhamnocitrin, acteoside, isoacteoside, chlorogenic acid, azelaic acid and pogostone) in PCB were simultaneously determined by using an ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS). This study is the first to describe the chemical profile of PCB using liquid chromatography tandem mass spectrometry, which would improve our understanding of the substance basis of PCB and is helpful to the PCB further quality evaluation.
Collapse
|
46
|
Chen J, Liu L, Wang Y, Li Z, Wang G, Kraus GA, Pichersky E, Xu H. Characterization of a Cytosolic Acyl-Activating Enzyme Catalyzing the Formation of 4-Methylvaleryl-CoA for Pogostone Biosynthesis in Pogostemon Cablin. PLANT & CELL PHYSIOLOGY 2021; 62:1556-1571. [PMID: 34255851 PMCID: PMC8643619 DOI: 10.1093/pcp/pcab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Pogostone, a compound with various pharmaceutical activities, is a major constituent of the essential oil preparation called Pogostemonis Herba, which is obtained from the plant Pogostemon cablin. The biosynthesis of pogostone has not been elucidated, but 4-methylvaleryl-CoA (4MVCoA) is a likely precursor. We analyzed the distribution of pogostone in P. cablin using gas chromatography-mass spectrometry (GC-MS) and found that pogostone accumulates at high levels in the main stems and leaves of young plants. A search for the acyl-activating enzyme (AAE) that catalyzes the formation of 4MVCoA from 4-methylvaleric acid was launched, using an RNAseq-based approach to identify 31 unigenes encoding putative AAEs including the PcAAE2, the transcript profile of which shows a strong positive correlation with the distribution pattern of pogostone. The protein encoded by PcAAE2 was biochemically characterized in vitro and shown to catalyze the formation of 4MVCoA from 4-methylvaleric acid. Phylogenetic analysis showed that PcAAE2 is closely related to other AAE proteins in P. cablin and other species that are localized to the peroxisomes. However, PcAAE2 lacks a peroxisome targeting sequence 1 (PTS1) and is localized in the cytosol.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - George A Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
47
|
Lu Q, Jiang C, Hou J, Qian H, Chu F, Zhang W, Ye M, Chen Z, Liu J, Yao H, Zhang J, Xu J, Wang T, Fan S, Wang Q. Patchouli Alcohol Modulates the Pregnancy X Receptor/Toll-like Receptor 4/Nuclear Factor Kappa B Axis to Suppress Osteoclastogenesis. Front Pharmacol 2021; 12:684976. [PMID: 34177594 PMCID: PMC8227438 DOI: 10.3389/fphar.2021.684976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
The incidence of osteoporosis, which is primarily characterized by plethoric osteoclast (OC) formation and severe bone loss, has increased in recent years. Millions of people worldwide, especially postmenopausal women, suffer from osteoporosis. The drugs commonly used to treat osteoporosis still exist many disadvantages, but natural extracts provide options for the treatment of osteoporosis. Therefore, the identification of cost-effective natural compounds is important. Patchouli alcohol (PA), a natural compound extracted from Pogostemon cablin that exerts anti-inflammatory effects, is used as a treatment for gastroenteritis. However, no research on the use of Patchouli alcohol in osteoporosis has been reported. We found that PA dose-dependently inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced formation and function of OCs without cytotoxicity. Furthermore, these inhibitory effects were reflected in the significant effect of PA on the NF-κB signaling pathway, as PA suppressed the transcription factors NFATc1 and c-Fos. We also determined that PA activated expression of the nuclear receptor pregnane X receptor (PXR) and promoted the PXR/Toll-like receptor 4 (TLR4) axis to inhibit the nuclear import of NF-κB (p50 and p65). Additionally, PA exerted therapeutic effects against osteoporosis in ovariectomized (OVX) mice, supporting the use of PA as a treatment for osteoporosis in the future.
Collapse
Affiliation(s)
- Qian Lu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialong Hou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Qian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifan Chu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiqi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengke Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyi Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiake Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Te Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|