1
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025. [PMID: 39808166 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - A Dinesh Raja
- Department of Pharmaceutics, KMCH College of Pharmacy, Coimbatore, India
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad, India
| | - Chandan Nayak
- Department of Pharmaceutics, School of Pharmacy, Arka Jain University, Jharkhand, India
| | - Senthilkumar Balakrishnan
- Department of Pharmaceutics, JKKMMRF-Annai JKK Sampoorani Ammal College of Pharmacy, Komarapalayam, Namakkal, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, India
| | - Saswati Panigrahi
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Vevoor, Palghar, India
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Zheng L, Pang Q, Huang R, Xu H, Guo H, Gao C, Chen X, Wang Y, Cao Q, Gao Y, Gu Z, Wang Z, Luo C, Tao L, Wang T. Stress-mediated Activation of Ferroptosis, Pyroptosis, and Apoptosis Following Mild Traumatic Brain Injury Exacerbates Neurological Dysfunctions. Mol Neurobiol 2024:10.1007/s12035-024-04516-7. [PMID: 39388040 DOI: 10.1007/s12035-024-04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Nearly half of mild traumatic brain injury (mTBI) patients continue to experience residual neurological dysfunction, which may be attributed to exposure to stress. Ferroptosis, a newly discovered form of cell death, is increasingly recognized for its involvement in the pathophysiology of TBI. Understanding the mechanisms by which stress influences mTBI, particularly through ferroptosis, is crucial for the effective treatment and prevention of mTBI patients who are sensitive to stressful events. In our study, a mouse mTBI model was established. An acute restraint stress (RS) and a chronic unpredictable mild stress (CUMS) model then were applied to make acute and chronic stress, respectively. We found acute RS significantly delayed the recovery of reduced body weight and short-term motor dysfunctions and exacerbated cell insults and blood-brain barrier leakage caused by mTBI. Further studies revealed that acute RS exacerbates neuronal ferroptosis, pyroptosis, and apoptosis by promoting iron overloading in the neocortex following mTBI. Interestingly, the inhibition of ferroptosis with iron chelators, including deferoxamine and ciclopirox, reversed pyroptosis and apoptosis. Moreover, CUMS aggravated neurological dysfunctions (motor function, cognitive function, and anxiety-like behavior) and exacerbated brain lesion volume. CUMS also exacerbates ferroptosis, pyroptosis, and apoptosis by intensifying iron deposition, along with decreasing the expression of neuronal brain-derived neurotrophic factor and glucocorticoid receptor in the neocortex post mTBI. These effects were also mitigated by iron chelators. Our findings suggest that alleviating ferroptosis induced by iron deposition may represent a promising therapeutic approach for mTBI patients who have experienced stressful events.
Collapse
Affiliation(s)
| | | | | | - Heng Xu
- Soochow University, Suzhou, China
| | | | | | | | | | - Qun Cao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuan Gao
- Soochow University, Suzhou, China
| | - Zhiya Gu
- Soochow University, Suzhou, China
| | | | | | | | - Tao Wang
- Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Sanders KL, Manuel AM, Liu A, Leng B, Chen X, Zhao Z. Unveiling Gene Interactions in Alzheimer's Disease by Integrating Genetic and Epigenetic Data with a Network-Based Approach. EPIGENOMES 2024; 8:14. [PMID: 38651367 PMCID: PMC11036294 DOI: 10.3390/epigenomes8020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex disease and the leading cause of dementia in older people. We aimed to uncover aspects of AD's pathogenesis that may contribute to drug repurposing efforts by integrating DNA methylation and genetic data. Implementing the network-based tool, a dense module search of genome-wide association studies (dmGWAS), we integrated a large-scale GWAS dataset with DNA methylation data to identify gene network modules associated with AD. Our analysis yielded 286 significant gene network modules. Notably, the foremost module included the BIN1 gene, showing the largest GWAS signal, and the GNAS gene, the most significantly hypermethylated. We conducted Web-based Cell-type-Specific Enrichment Analysis (WebCSEA) on genes within the top 10% of dmGWAS modules, highlighting monocyte as the most significant cell type (p < 5 × 10-12). Functional enrichment analysis revealed Gene Ontology Biological Process terms relevant to AD pathology (adjusted p < 0.05). Additionally, drug target enrichment identified five FDA-approved targets (p-value = 0.03) for further research. In summary, dmGWAS integration of genetic and epigenetic signals unveiled new gene interactions related to AD, offering promising avenues for future studies.
Collapse
Affiliation(s)
- Keith L. Sanders
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Boyan Leng
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX 77030, USA; (K.L.S.); (A.M.M.); (A.L.); (X.C.)
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
4
|
许 光, 高 安, 丛 斌. [Restraint stress induces blood-brain barrier injury in rat amygdala by activating the Rho/ROCK signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:411-419. [PMID: 38597431 PMCID: PMC11006700 DOI: 10.12122/j.issn.1673-4254.2024.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- 光明 许
- 中央司法警官学院法医学教研室,河北 保定 071000Department of Forensic Medicine, National Police University for Criminal Justice, Baoding 071000, China
| | - 安迪 高
- 中央司法警官学院法医学教研室,河北 保定 071000Department of Forensic Medicine, National Police University for Criminal Justice, Baoding 071000, China
| | - 斌 丛
- 河北医科大学法医学院//河北省法医学重点实验室,河北 石家庄 050017College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| |
Collapse
|
5
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
6
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: An open multi-omic community resource for identifying druggable targets across neurodegenerative diseases. Am J Hum Genet 2024; 111:150-164. [PMID: 38181731 PMCID: PMC10806756 DOI: 10.1016/j.ajhg.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.
Collapse
Affiliation(s)
- Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Cory A Weller
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kristin Levine
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica LLC, Washington, DC 20037, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
7
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
8
|
Alvarado CX, Makarious MB, Weller CA, Vitale D, Koretsky MJ, Bandres-Ciga S, Iwaki H, Levine K, Singleton A, Faghri F, Nalls MA, Leonard HL. omicSynth: an Open Multi-omic Community Resource for Identifying Druggable Targets across Neurodegenerative Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.06.23288266. [PMID: 37090611 PMCID: PMC10120805 DOI: 10.1101/2023.04.06.23288266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and Aducanumab for Alzheimer's Disease, highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer's disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson's disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community [https://nih-card-ndd-smr-home-syboky.streamlit.app/].
Collapse
Affiliation(s)
- Chelsea X. Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK, WC1N 3BG
- UCL Movement Disorders Centre, University College London, London, UK, WC1N 3BG
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA, 20037
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA, 20814
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
9
|
Branham EM, McLean SA, Deliwala I, Mauck MC, Zhao Y, McKibben LA, Lee A, Spencer AB, Zannas AS, Lechner M, Danza T, Velilla MA, Hendry PL, Pearson C, Peak DA, Jones J, Rathlev NK, Linnstaedt SD. CpG Methylation Levels in HPA Axis Genes Predict Chronic Pain Outcomes Following Trauma Exposure. THE JOURNAL OF PAIN 2023; 24:1127-1141. [PMID: 36906051 PMCID: PMC10330094 DOI: 10.1016/j.jpain.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Chronic post-traumatic musculoskeletal pain (CPTP) is a common outcome of traumatic stress exposure. Biological factors that influence the development of CPTP are poorly understood, though current evidence indicates that the hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in its development. Little is known about molecular mechanisms underlying this association, including epigenetic mechanisms. Here, we assessed whether peritraumatic DNA methylation levels at 248 5'-C-phosphate-G-3' (CpG) sites in HPA axis genes (FKBP5, NR3C1, CRH, CRHR1, CRHR2, CRHBP, POMC) predict CPTP and whether identified CPTP-associated methylation levels influence expression of those genes. Using participant samples and data collected from trauma survivors enrolled into longitudinal cohort studies (n = 290), we used linear mixed modeling to assess the relationship between peritraumatic blood-based CpG methylation levels and CPTP. A total of 66 (27%) of the 248 CpG sites assessed in these models statistically significantly predicted CPTP, with the three most significantly associated CpG sites originating from the POMC gene region (ie, cg22900229 [β = .124, P < .001], cg16302441 [β = .443, P < .001], cg01926269 [β = .130, P < .001]). Among the genes analyzed, both POMC (z = 2.36, P = .018) and CRHBP (z = 4.89, P < .001) were enriched in CpG sites significantly associated with CPTP. Further, POMC expression was inversely correlated with methylation levels in a CPTP-dependent manner (6-months NRS<4: r = -.59, P < .001; 6-months NRS ≥ 4: r = -.18, P = .2312). Our results suggest that methylation of HPA axis genes including POMC and CRHBP predict risk for and may contribute to vulnerability to CPTP. PERSPECTIVE: Peritraumatic blood levels of CpG methylation sites in HPA axis genes, particularly CpG sites in the POMC gene, predict CPTP development. This data substantially advances our understanding of epigenetic predictors and potential mediators of CPTP, a highly common, morbid, and hard-to-treat form of chronic pain.
Collapse
Affiliation(s)
- Erica M Branham
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ishani Deliwala
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew C Mauck
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren A McKibben
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron Lee
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alex B Spencer
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina; Carolina Stress Initiative, University of North Carolina, Chapel Hill, North Carolina
| | - Megan Lechner
- Forensic Nursing Program, Memorial Health System, Colorado Springs, Colorado
| | - Teresa Danza
- Forensic Nursing Program, Albuquerque SANE Collaborative, Albuquerque, New Mexico
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Chan Medical School Baystate, Springfield, Massachusetts
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Madnani RS. Alzheimer's disease: a mini-review for the clinician. Front Neurol 2023; 14:1178588. [PMID: 37426432 PMCID: PMC10325860 DOI: 10.3389/fneur.2023.1178588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a striking example of the connection between neurophysiological abnormalities and higher-order cognitive deficiencies. Since its initial description in 1906, research into the pathophysiology and etiology of AD has led to the illumination of an incredibly complex set of genetic and molecular mechanisms for the disease's progression, characterized by much more than the neuropathological hallmarks of beta-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs). In this review, findings relating the neurodegeneration present in AD to its clinical presentation and treatment are summarized, with an emphasis on the interconnectedness of disease pathophysiology. Further, diagnostic guidelines are provided based on the National Institute on Aging-Alzheimer's Association (NIA-AA) workgroup's clinical recommendations. Through the dissemination of detailed but digestible open access resources such as this one, we can move towards an increase in the equity and accessibility of education for the modern clinician.
Collapse
|
11
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
12
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
13
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
14
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
15
|
Liu Y, Ding R, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease. Int J Mol Sci 2021; 23:345. [PMID: 35008771 PMCID: PMC8745298 DOI: 10.3390/ijms23010345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy-lysosome system (ALS) and the ubiquitin-proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (R.D.); (Z.X.); (Y.X.); (D.Z.); (Y.Z.); (W.L.)
| |
Collapse
|
16
|
Liu Q, Xi Y, Wang Q, Liu J, Li P, Meng X, Liu K, Chen W, Liu X, Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer's disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 2021; 95:330-343. [PMID: 33839232 DOI: 10.1016/j.bbi.2021.04.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during AD development, which could target nutritional intervention. The prebiotic mannan oligosaccharide (MOS) has been reported to reshape the gut microbiome and enhanced the formation of the neuroprotective metabolites short-chain fatty acids (SCFAs). Here, we found that an 8-week treatment of MOS (0.12%, w/v in the drinking water) significantly improved cognitive function and spatial memory, accompanied by attenuated the anxiety- and obsessive-like behaviors in the 5xFAD transgenic AD mice model. MOS substantially reduced the Aβ accumulation in the cortex, hippocampus, and amygdala of the brain. Importantly, MOS treatment significantly balanced the brain redox status and suppressed the neuroinflammatory responses. Moreover, MOS also alleviated the HPA-axis disorders by decreasing the levels of hormones corticosterone (CORT) and corticotropin-releasing hormone (CRH) and upregulated the norepinephrine (NE) expressions. Notably, the gut barrier integrity damage and the LPS leak were prevented by the MOS treatment. MOS re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter. MOS enhanced the butyrate formation and related microbes levels. The correlation analysis indicated that the reshaped gut microbiome and enhanced butyrate formation are highly associated with behavioral alteration and brain oxidative status. SCFAs supplementation experiment also attenuated the behavioral disorders and Aβ accumulation in the AD mice brain, accompanied by balanced HPA-axis and redox status. In conclusion, the present study indicated that MOS significantly attenuates the cognitive and mental deficits in the 5xFAD mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. MOS, as a prebiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinhui Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Peiran Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Meng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
17
|
Trait anxiety, a personality risk factor associated with Alzheimer's Disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110124. [PMID: 33035604 DOI: 10.1016/j.pnpbp.2020.110124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly population and the leading cause of dementia worldwide. While senile plaques and neurofibrillary tangles have been proposed as the principal histopathologic hallmarks of AD, the exact etiology of this disease is still far from being clearly understood. AD has been recognized as pathological consequences of complex interactions among genetic, aging, medical, life style and psychosocial factors. Recently, the roles of neuroticism personality traits in AD incidence and progression have come into focus. More specifically, increasing evidence has further shown that the trait anxiety, one major component of neuroticism predicting the individual vulnerability in response to stress, is a risk factor for AD and may correlated with various AD pathologies. In this review, we summarized recent literature on the association of trait anxiety with AD. We also discussed the possible neuroendocrinological and neurochemical mechanisms of this association, which may provide clinical implications for AD diagnosis and therapy.
Collapse
|
18
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
19
|
Tian X, Qin Y, Tian Y, Ge X, Cui J, Han H, Liu L, Yu H. Identification of vascular dementia and Alzheimer's disease hub genes expressed in the frontal lobe and temporal cortex by weighted co-expression network analysis and construction of a protein-protein interaction. Int J Neurosci 2021; 132:1049-1060. [PMID: 33401985 DOI: 10.1080/00207454.2020.1860966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: It is difficult to distinguish cognitive decline due to AD from that sustained by cerebrovascular disease in view of the great overlap. It is uncertain in the molecular biological pathway behind AD and VaD.Objective: Our study aimed to explore the hub molecules and their associations with each other to identify potential biomarkers and therapeutic targets for the AD and VaD.Methods: We screened the differentially expressed genes of AD and VaD, used weighted gene co-expression network analysis and then constructed a VaD-AD-specific protein-protein interaction network with functional annotation to their related metabolic pathways. Finally, we performed a ROC curve analysis of hub proteins to get an idea about their diagnostic value.Results: In the frontal lobe and temporal cortex, hub genes were identified. With regard to VaD, there were only three hub genes which encoded the neuropeptides, SST, NMU and TAC1. The AUC of these genes were 0.804, 0.768 and 0.779, respectively. One signature was established for these three hub genes with AUC of 0.990. For the identification of AD and VaD, all hub genes were receptors. These genes included SH3GL2, PROK2, TAC3, HTR2A, MET, TF, PTH2R CNR1, CHRM4, PTPN3 and CRH. The AUC of these genes were 0.853, 0.859, 0.796, 0.775, 0.706, 0.677, 0.696, 0.668 and 0.652, respectively. The other signature was built for eleven hub genes with AUC of 0.990.Conclusion: In the frontal lobe and temporal cortex regions, hub genes are used as diagnostic markers, which may provide insight into personalized potential biomarkers and therapeutic targets for patients with VaD and AD.
Collapse
Affiliation(s)
- Xiaodou Tian
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yuling Tian
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|
20
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
Franz CE, Hatton SN, Hauger RL, Kredlow MA, Dale AM, Eyler L, McEvoy LK, Fennema-Notestine C, Hagler D, Jacobson KC, McKenzie RE, Panizzon MS, Gustavson DE, Xian H, Toomey R, Beck A, Stevens S, Tu X, Lyons MJ, Kremen WS. Posttraumatic stress symptom persistence across 24 years: association with brain structures. Brain Imaging Behav 2020; 14:1208-1220. [PMID: 30830577 PMCID: PMC6722032 DOI: 10.1007/s11682-019-00059-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS) symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume]) in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38 (time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural magnetic resonance imaging. Symptoms were correlated over time (r = 0.46 p < .0001). Higher PTS symptoms averaged over time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time 2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress responsivity and adaptation.
Collapse
Affiliation(s)
- Carol E Franz
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Sean N Hatton
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard L Hauger
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| | - M Alexandra Kredlow
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lisa Eyler
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen C Jacobson
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Ruth E McKenzie
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Matthew S Panizzon
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel E Gustavson
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Xian
- Department of Epidemiology and Biostatistics, St Louis University, St Louis, MO, 60134, USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Asad Beck
- Department of Psychology, San Diego State University, San Diego, CA, 92182, USA
| | - Samantha Stevens
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - William S Kremen
- Department of Psychiatry MC 0738, University of California San Diego, La Jolla, CA, 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Wang X, Allen M, Li S, Quicksall ZS, Patel TA, Carnwath TP, Reddy JS, Carrasquillo MM, Lincoln SJ, Nguyen TT, Malphrus KG, Dickson DW, Crook JE, Asmann YW, Ertekin-Taner N. Deciphering cellular transcriptional alterations in Alzheimer's disease brains. Mol Neurodegener 2020; 15:38. [PMID: 32660529 PMCID: PMC7359236 DOI: 10.1186/s13024-020-00392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer's disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion changes in AD brains that are robustly replicable across the three independently assessed cohorts. We applied three different algorithms including our in-house algorithm to identify cell intrinsic differentially expressed genes in individual cell types (CI-DEGs). We assessed the performance of all algorithms by comparison to single nucleus RNAseq data. We identified consensus CI-DEGs that are common to multiple brain regions. Despite significant overlap between consensus CI-DEGs and bulk-DEGs, many CI-DEGs were absent from bulk-DEGs. Consensus CI-DEGs and their enriched GO terms include genes and pathways previously implicated in AD or neurodegeneration, as well as novel ones. We demonstrated that the detection of CI-DEGs through computational deconvolution methods is promising and highlight remaining challenges. These findings provide novel insights into cell-intrinsic transcriptional changes of individual cell types in AD and may refine discovery and modeling of molecular targets that drive this complex disease.
Collapse
Affiliation(s)
- Xue Wang
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, USA.
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Shaoyu Li
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zachary S Quicksall
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Troy P Carnwath
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Sarah J Lincoln
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Thuy T Nguyen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Julia E Crook
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Stevens SM, Gustavson DE, Fang B, Tu X, Logue M, Lyons MJ, Reynolds CA, Kremen WS, Franz CE. Predicting Health-Related Quality of Life in Trauma-Exposed Male Veterans in Late Midlife: A 20 Year Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124554. [PMID: 32599875 PMCID: PMC7345107 DOI: 10.3390/ijerph17124554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/05/2022]
Abstract
Trauma-exposed adults with high levels of posttraumatic stress symptoms (PTSS) report poorer health-related quality of life (HRQOL), but less is known about the persistence of this relationship over time. Participants from the Vietnam Era Twin Study of Aging reported on PTSS, health, and sociodemographic characteristics at average age 38; 775 participants reported having been exposed to trauma. Later, at average ages 56 and 62, mental and physical HRQOL were assessed with the Short-Form 36. Premorbid risk for anxiety/neuroticism was evaluated with a polygenic risk score derived from a large genome-wide association study meta-analysis. In multivariate mixed models, having higher levels of PTSS, poorer self-rated health, lower income, and less education at age 38 were associated with worse physical and mental HRQOL two decades later. Chronic health problems at age 38 predicted midlife physical but not mental HRQOL. Although genetic risk for neuroticism was correlated with HRQOL and PTSS, it was no longer significant in multivariate models. Health-related quality of life (HRQOL) predicts morbidity and mortality independently of objective health measures; early interventions may help to mitigate the ongoing impact of trauma on quality of life.
Collapse
Affiliation(s)
- Samantha M. Stevens
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (S.M.S.); (D.E.G.); (B.F.); (W.S.K.)
- Department of Psychology, The Pennsylvania State University, State College, PA 16801, USA
| | - Daniel E. Gustavson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (S.M.S.); (D.E.G.); (B.F.); (W.S.K.)
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bin Fang
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (S.M.S.); (D.E.G.); (B.F.); (W.S.K.)
| | - Xin Tu
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA;
| | - Mark Logue
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; (M.L.); (M.J.L.)
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; (M.L.); (M.J.L.)
| | - Chandra A. Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA;
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (S.M.S.); (D.E.G.); (B.F.); (W.S.K.)
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (S.M.S.); (D.E.G.); (B.F.); (W.S.K.)
- Correspondence: ; Tel.: +1-858-822-1793
| |
Collapse
|
24
|
Milind N, Preuss C, Haber A, Ananda G, Mukherjee S, John C, Shapley S, Logsdon BA, Crane PK, Carter GW. Transcriptomic stratification of late-onset Alzheimer's cases reveals novel genetic modifiers of disease pathology. PLoS Genet 2020; 16:e1008775. [PMID: 32492070 PMCID: PMC7295244 DOI: 10.1371/journal.pgen.1008775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/15/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Late-Onset Alzheimer's disease (LOAD) is a common, complex genetic disorder well-known for its heterogeneous pathology. The genetic heterogeneity underlying common, complex diseases poses a major challenge for targeted therapies and the identification of novel disease-associated variants. Case-control approaches are often limited to examining a specific outcome in a group of heterogenous patients with different clinical characteristics. Here, we developed a novel approach to define relevant transcriptomic endophenotypes and stratify decedents based on molecular profiles in three independent human LOAD cohorts. By integrating post-mortem brain gene co-expression data from 2114 human samples with LOAD, we developed a novel quantitative, composite phenotype that can better account for the heterogeneity in genetic architecture underlying the disease. We used iterative weighted gene co-expression network analysis (WGCNA) to reduce data dimensionality and to isolate gene sets that are highly co-expressed within disease subtypes and represent specific molecular pathways. We then performed single variant association testing using whole genome-sequencing data for the novel composite phenotype in order to identify genetic loci that contribute to disease heterogeneity. Distinct LOAD subtypes were identified for all three study cohorts (two in ROSMAP, three in Mayo Clinic, and two in Mount Sinai Brain Bank). Single variant association analysis identified a genome-wide significant variant in TMEM106B (p-value < 5×10-8, rs1990620G) in the ROSMAP cohort that confers protection from the inflammatory LOAD subtype. Taken together, our novel approach can be used to stratify LOAD into distinct molecular subtypes based on affected disease pathways.
Collapse
Affiliation(s)
- Nikhil Milind
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christoph Preuss
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Annat Haber
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Shubhabrata Mukherjee
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Cai John
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Sarah Shapley
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Program in Neuroscience, Department of Biology and Geology, Baldwin Wallace University, Berea, Ohio, United States of America
| | | | - Paul K. Crane
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | | |
Collapse
|
25
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|
26
|
Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharmacol Res 2020; 157:104769. [PMID: 32275963 DOI: 10.1016/j.phrs.2020.104769] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Stress is a nonspecific response to a threat or noxious stimuli with resultant damaging consequences. Stress is believed to be an underlying process that can trigger central nervous system disorders such as depression, anxiety, and post-traumatic stress disorder. Though the pathophysiological basis is not completely understood, data have consistently shown a pivotal role of inflammatory mediators and hypothalamo-pituitary-adrenal (HPA) axis activation in stress induced disorders. Indeed emerging experimental evidences indicate a concurrent activation of inflammatory signaling pathways and not only the HPA axis, but also, peripheral and central renin-angiotensin system (RAS). Furthermore, recent experimental data indicate that the HPA and RAS are coupled to the signaling of a range of central neuro-transmitter, -mediator and -peptide molecules that are also regulated, at least in part, by inflammatory signaling cascades and vice versa. More recently, experimental evidences suggest a critical role of stress in disruption of the blood brain barrier (BBB), a neurovascular unit that regulates the movement of substances and blood-borne immune cells into the brain parenchyma, and prevents peripheral injury to the brain substance. However, the mechanisms underlying stress-induced BBB disruption are not exactly known. In this review, we summarize studies conducted on the effects of stress on the BBB and integrate recent data that suggest possible molecular mechanisms and signaling pathways underlying stress-induced BBB disruption. Key molecular targets and pharmacological candidates for treatment of stress and related illnesses are also summarized.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
27
|
Malamon JS, Kriete A. Erosion of Gene Co-expression Networks Reveal Deregulation of Immune System Processes in Late-Onset Alzheimer's Disease. Front Neurosci 2020; 14:228. [PMID: 32265636 PMCID: PMC7099620 DOI: 10.3389/fnins.2020.00228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
We have applied a novel and integrative analysis framework for next-generation sequencing (NGS) data to 503 human subjects provided by the Religious Orders Study and Memory and Aging Project (ROSMAP) to examine changes in transcriptomic organization and common variants in association with late-onset Alzheimer's disease (LOAD). Our framework identified seven reproducible, co-regulated modules after quality control (QC), clinical segregation, preservation filtering, and functional ontology analysis. These modules were specifically enriched in several innate and adaptive immune system processes, the synaptic vesicle cycle, and Hippo signaling. Topological and functional erosion of these modules due to shedding of genes and loss of in-module connectivity was diagnostic of disease progression. Perturbation analysis revealed that only 1% of eQTLs overlapped genes participating in these co-regulated modules. Common variants nevertheless identified components of the immune systems like human leukocyte antigen (HLA) complex and microtubule-associated protein tau (MAPT) regions in association with LOAD. Our results implicate microglial function, adaptive immune response, and the structural degeneration of neurons as contributors to the transcriptional deregulation observed along with common genetic variants in the progression of LOAD.
Collapse
Affiliation(s)
- John Stephen Malamon
- Bossone Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Andres Kriete
- Bossone Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Liu FR, Yang LY, Zheng HF, Zhou Y, Chen BB, Xu H, Zhang YW, Shen DY. Plasma levels of Interleukin 18 but not amyloid-β or Tau are elevated in female depressive patients. Compr Psychiatry 2020; 97:152159. [PMID: 31931428 DOI: 10.1016/j.comppsych.2020.152159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Depression is associated with inflammation and Alzheimer's disease (AD). However, detailed molecular mechanisms linking mood, neuroinflammation and AD remain unclear. Although changes in peripheral inflammatory factors such as Interleukin 18 (IL18), and AD-associated amyloid-β (Aβ) peptides have been linked to depression, a solid relationship between these factors in depressive disorder has yet to be established. This study aims to further determine whether plasma IL18, Aβ40, Aβ42, and the AD-associated tangle component Tau, as well as IL18 single nucleotide polymorphisms (SNPs) may be biomarkers for depression. METHODS We measured plasma IL18, Aβ40, Aβ42, and Tau in 64 depressive patients and 75 healthy controls, and characterized genotypes of three IL18 SNPs (rs187238, rs1946518 and rs1946519) in these subjects. Comparisons between depressive patients and controls were carried out in males, in females or in combination. Regression analyses were conducted to examine the correlation between these parameters. RESULTS We found that none of the plasma levels of IL18, Aβ40, Aβ42, and Tau, the ratio of Aβ42/Aβ40, and the genotypes of IL18 SNPs were significantly different between combined depressive patients and combined healthy controls, or between male depressive patients and male controls. However, IL18 levels were less in females than in males in healthy people and were significantly increased in female depressive patients compared to female controls. Moreover, IL18 and standardized IL18 were correlated with standardized Aβ42/Aβ40 ratio and standardized Tau in depressive patients. CONCLUSIONS Plasma IL18 may be a potential biomarker for depression in women.
Collapse
Affiliation(s)
- Fa-Rong Liu
- Department of Psychology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen City Xianyue Hospital, Xiamen, Fujian, China
| | - Lu-Yin Yang
- Arts College of Xiamen University, Xiamen, Fujian, China
| | | | - Yunqiang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin-Bin Chen
- Xiamen City Xianyue Hospital, Xiamen, Fujian, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Dong-Yan Shen
- Center Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
29
|
Li H, Xue Q, Xu X. Involvement of the Nervous System in SARS-CoV-2 Infection. Neurotox Res 2020; 38:1-7. [PMID: 32399719 PMCID: PMC7220627 DOI: 10.1007/s12640-020-00219-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
As a severe and highly contagious infectious disease, coronavirus disease 2019 (COVID-19) has caused a global pandemic. Several case reports have demonstrated that the respiratory system is the main target in patients with COVID-19, but the disease is not limited to the respiratory system. Case analysis indicated that the nervous system can be invaded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and that 36.4% of COVID-19 patients had neurological symptoms. Importantly, the involvement of the CNS may be associated with poor prognosis and disease worsening. Here, we discussed the symptoms and evidence of nervous system involvement (directly and indirectly) caused by SARS-CoV-2 infection and possible mechanisms. CNS symptoms could be a potential indicator of poor prognosis; therefore, the prevention and treatment of CNS symptoms are also crucial for the recovery of COVID-19 patients.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
30
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
31
|
Zhuang K, Huang C, Leng L, Zheng H, Gao Y, Chen G, Ji Z, Sun H, Hu Y, Wu D, Shi M, Li H, Zhao Y, Zhang Y, Xue M, Bu G, Huang TY, Xu H, Zhang J. Neuron-Specific Menin Deletion Leads to Synaptic Dysfunction and Cognitive Impairment by Modulating p35 Expression. Cell Rep 2019; 24:701-712. [PMID: 30021166 DOI: 10.1016/j.celrep.2018.06.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
Menin (MEN1) is a critical modulator of tissue development and maintenance. As such, MEN1 mutations are associated with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin is abundantly expressed in the nervous system, little is known with regard to its function in the adult brain. Here, we demonstrate that neuron-specific deletion of Men1 (CcKO) affects dendritic branching and spine formation, resulting in defects in synaptic function, learning, and memory. Furthermore, we find that menin binds to the p35 promoter region to facilitate p35 transcription. As a primary Cdk5 activator, p35 is expressed mainly in neurons and is critical for brain development and synaptic plasticity. Restoration of p35 expression in the hippocampus and cortex of Men1 CcKO mice rescues synaptic and cognitive deficits associated with Men1 deletion. These results reveal a critical role for menin in synaptic and cognitive function by modulating the p35-Cdk5 pathway.
Collapse
Affiliation(s)
- Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Changquan Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Guimiao Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhilin Ji
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yunwu Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maoqiang Xue
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
32
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Futch HS, McFarland KN, Moore BD, Kuhn MZ, Giasson BI, Ladd TB, Scott KA, Shapiro MR, Nosacka RL, Goodwin MS, Ran Y, Cruz PE, Ryu DH, Croft CL, Levites Y, Janus C, Chakrabarty P, Judge AR, Brusko TM, de Kloet AD, Krause EG, Golde TE. An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. J Exp Med 2019; 216:2479-2491. [PMID: 31467037 PMCID: PMC6829597 DOI: 10.1084/jem.20190430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
A high-affinity monoclonal antibody (CTRND05) targeting corticotropin-releasing factor (CRF) blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. Hypothalamic–pituitary–adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.
Collapse
Affiliation(s)
- Hunter S Futch
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Karen N McFarland
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Brenda D Moore
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - M Zino Kuhn
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Benoit I Giasson
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Thomas B Ladd
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Karen A Scott
- McKnight Brain Institute, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL
| | - Melanie R Shapiro
- Diabetes Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Rachel L Nosacka
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Marshall S Goodwin
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Yong Ran
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Pedro E Cruz
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Daniel H Ryu
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Cara L Croft
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Yona Levites
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Christopher Janus
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Paramita Chakrabarty
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Diabetes Institute, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Annette D de Kloet
- McKnight Brain Institute, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL
| | - Eric G Krause
- McKnight Brain Institute, Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL
| | - Todd E Golde
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
35
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
36
|
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019; 10:100133. [PMID: 30937343 PMCID: PMC6279965 DOI: 10.1016/j.ynstr.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.
Collapse
Affiliation(s)
- Trongha X. Phan
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| | - Roneil G. Malkani
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
37
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
38
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
39
|
Sierra-Fonseca JA, Gosselink KL. Tauopathy and neurodegeneration: A role for stress. Neurobiol Stress 2018; 9:105-112. [PMID: 30450376 PMCID: PMC6234266 DOI: 10.1016/j.ynstr.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are characterized by an irreversible and progressive loss of neuronal structure and function. While many alterations to normal cellular processes occur during neurodegeneration, a pathological accumulation of aggregated proteins constitutes a hallmark of several neurodegenerative disorders. Alzheimer's disease, specifically, is pathologically defined by the formation of amyloid plaques and tangles of hyperphosphorylated tau protein. Stress has emerged as an important factor in the development and progression of neurodegenerative diseases, including Alzheimer's. Very little is known, however, regarding the effects of stress on the mechanisms controlling abnormal protein aggregation and clearance. Chronic stress activates the hypothalamic-pituitary-adrenal (HPA) axis, causing an excessive secretion of glucocorticoids that are capable of impacting diverse physiological and cellular processes. The present review focuses on the influence of stress on a key feature of Alzheimer's disease pathology, emphasizing the relationship between tau phosphorylation and accumulation and its connection to HPA axis dysfunction.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
40
|
Beck A, Franz CE, Xian H, Vuoksimaa E, Tu X, Reynolds CA, Panizzon MS, McKenzie RM, Lyons MJ, Toomey R, Jacobson KC, Hauger RL, Hatton SN, Kremen WS. Mediators of the Effect of Childhood Socioeconomic Status on Late Midlife Cognitive Abilities: A Four Decade Longitudinal Study. Innov Aging 2018; 2:igy003. [PMID: 30465026 PMCID: PMC6176967 DOI: 10.1093/geroni/igy003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Childhood socioeconomic status (cSES) is found to predict later-life cognitive abilities, yet the mechanisms underlying these associations remain unclear. The objective of this longitudinal study was to examine the direct and indirect paths through which cSES influences late midlife cognitive outcomes. RESEARCH DESIGN AND METHODS Participants were 1,009 male twins in the Vietnam Era Twin Study of Aging (VETSA). At mean ages 20 and 62, participants completed a standardized test for general cognitive ability (GCA). The age 62 cognitive assessment also included in-person tests of processing speed, episodic memory, abstract reasoning, working memory, verbal fluency, visual-spatial ability, and executive functions. At mean age 56, participants were interviewed regarding their own and their parents' education and occupation, and completed questionnaires about cognitive leisure activities and sociodemographic information. Multiple mediation analyses were conducted to examine the direct path effects and indirect path effects of cSES through age 20 GCA, adult SES, and cognitive leisure activities on seven cognitive outcomes at age 62, adjusting for age, ethnicity, and non-independence of observations. RESULTS Total (direct plus indirect) effects were significant for all measures with the exception of executive functions. Men from lower cSES backgrounds had poorer cognitive functioning in late midlife. The direct effect of cSES was partially mediated for abstract reasoning, and was fully mediated for the remaining six cognitive outcomes. Total indirect effects accounted for at least half of the total effects in each model, with paths through age 20 GCA explaining most of the total indirect effects. DISCUSSION AND IMPLICATIONS cSES predicted cognitive functioning in late middle age Using multiple mediation models, we show that lower cSES predicts poorer cognition in late midlife primarily through young adult cognitive ability and to a lesser extent through SES in adulthood and engagement in cognitively stimulating activities.
Collapse
Affiliation(s)
- Asad Beck
- Department of Psychology, San Diego State University, California
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Hong Xian
- Department of Biostatistics, St Louis University, Missouri
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Xin Tu
- Department of Family Medicine, University of California San Diego, La Jolla
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Boston University, Massachusetts
| | | | - Ruth M McKenzie
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Kristen C Jacobson
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Illinois
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, La Jolla
- Center of Excellence for Stress and Mental Health, San Diego VA San Diego Healthcare System, California
| | - Sean N Hatton
- Department of Psychiatry, University of California San Diego, La Jolla
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla
- Center of Excellence for Stress and Mental Health, San Diego VA San Diego Healthcare System, California
| |
Collapse
|
41
|
Wu XL, Piña-Crespo J, Zhang YW, Chen XC, Xu HX. Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatment of Alzheimer's Disease. Chin Med J (Engl) 2017; 130:2978-2990. [PMID: 29237931 PMCID: PMC5742926 DOI: 10.4103/0366-6999.220313] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To review recent research advances on tau, a major player in Alzheimer's disease (AD) pathogenesis, a biomarker for AD onset, and potential target for AD therapy. DATA SOURCES This review was based on a comprehensive search using online literature databases, including PubMed, Web of Science, and Google Scholar. STUDY SELECTION Literature search was based on the following keywords: Alzheimer's disease, tau protein, biomarker, cerebrospinal fluid (CSF), therapeutics, plasma, imaging, propagation, spreading, seeding, prion, conformational templating, and posttranslational modification. Relevant articles were carefully reviewed, with no exclusions applied to study design and publication type. RESULTS Amyloid plaques enriched with extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles comprised of hyperphosphorylated tau proteins are the two main pathological hallmarks of AD. Although the Aβ hypothesis has dominated AD research for many years, clinical Aβ-targeting strategies have consistently failed to effectively treat AD or prevent AD onset. The research focus in AD has recently shifted to the role of tau in AD. In addition to phosphorylation, tau is acetylated and proteolytically cleaved, which also contribute to its physiological and pathological functions. Emerging evidence characterizing pathological tau propagation and spreading provides new avenues for research into the molecular and cellular mechanisms underlying AD pathogenesis. Techniques to detect tau at minute levels in CSF and blood have been developed, and improved tracers have facilitated tau imaging in the brain. These advances have potential to accurately determine tau levels at early diagnostic stages in AD. Given that tau is a potential therapeutic target, anti-tau immunotherapy may potentially be a viable treatment strategy in AD intervention. CONCLUSION Detecting changes in tau and targeting tau pathology represent a promising lead in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Xi-Lin Wu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Chun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Hua-Xi Xu
- Neuroscience Initiative, Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|