1
|
Tanaka A, Kiguchi Y, Takegami S. Electrochemiluminescence immunoassay using ionic-liquid submicron particles for prostate-specific antigen determination. ANAL SCI 2025:10.1007/s44211-025-00734-8. [PMID: 39979534 DOI: 10.1007/s44211-025-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
In this study, ionic-liquid submicron particles (ILSPs) encapsulating the luminophore tris(2',2-bipyridyl)ruthenium (II) ([Ru(bpy)3]2+) were developed as a carrier for an electrochemiluminescence immunoassay (ECLIA). The ILSPs were applied to quantitative determination of the model analyte prostate-specific antigen (PSA). The electrochemiluminescence of [Ru(bpy)3]2+ was measured with 2-(dibutylamino)ethanol as a co-reactant in nine ionic liquids (ILs). The electrochemiluminescence intensity was higher in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][TFSA]) and N-(2-methoxyethyl)-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ([MEMP][TFSA]) than the other ILs. ILSPs were prepared using polyoxyethylene sorbitan monolaurate and sorbitan monooleate as surfactants and either [BMIM][TFSA] or [MEMP][TFSA]. The [BMIM][TFSA] ILSPs had a mean particle size of 244 nm and zeta potential of - 21.0 mV, and the [MEMP][TFSA] ILSPs had a mean particle size of 293 nm and zeta potential of - 17.9 mV. Microscope images showed that ILSPs were IL-in-water emulsions that completely encapsulated [Ru(bpy)3]2+. The ILSPs with [BMIM][TFSA] were more stable than those with [MEMP][TFSA], and [BMIM][TFSA] ILSPs was selected as a carrier in ECLIA for PSA determination. The calibration curve of PSA for ECLIA using the [BMIM][TFSA] ILSPs showed a good linear relationship (y = 0.29x + 4.02, r = 0.95) for the PSA concentration range of 100 pg/mL-100 μg/mL. The limit of detection and limit of quantification were 544 pg/mL and 35 ng/mL, respectively. Our results demonstrate that ECLIA using ILSPs can be used to easily determine the PSA concentration even with ILSPs in the particle state.
Collapse
Affiliation(s)
- Aki Tanaka
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuki Kiguchi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
2
|
Ashton NJ, Keshavan A, Brum WS, Andreasson U, Arslan B, Droescher M, Barghorn S, Vanbrabant J, Lambrechts C, Van Loo M, Stoops E, Iyengar S, Ji H, Xu X, Forrest‐Hay A, Zhang B, Luo Y, Jeromin A, Vandijck M, Bastard NL, Kolb H, Triana‐Baltzer G, Bali D, Janelidze S, Yang S, Demos C, Romero D, Sigal G, Wohlstadter J, Malyavantham K, Khare M, Jethwa A, Stoeckl L, Gobom J, Kac PR, Gonzalez‐Ortiz F, Montoliu‐Gaya L, Hansson O, Rissman RA, Carrillo MC, Shaw LM, Blennow K, Schott JM, Zetterberg H. The Alzheimer's Association Global Biomarker Standardization Consortium (GBSC) plasma phospho-tau Round Robin study. Alzheimers Dement 2025; 21:e14508. [PMID: 39907496 PMCID: PMC11851162 DOI: 10.1002/alz.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION The Alzheimer's Association Global Biomarker Standardization Consortium conducted a blinded case-control study to learn which phosphorylated tau (p-tau) assays provide the largest fold-changes in Alzheimer's disease (AD) versus non-AD and show commutability in measuring patient samples and candidate certified reference materials (CRMs). METHODS Thirty-three different p-tau assays measured paired plasma and cerebrospinal fluid (CSF) from 40 participants (25 with "AD pathology" and 15 with "non-AD pathology" by CSF amyloid beta [Aβ]42/Aβ40 and p-tau181 criteria). Four CRMs were assessed. RESULTS Plasma p-tau217 demonstrated higher fold-changes between AD and non-AD than other p-tau epitopes. Fujirebio LUMIPULSE G, UGOT IPMS, and Lilly MSD p-tau217 provided the highest fold-changes. Plasma p-tau217 showed the strongest correlations between plasma assays (rho = 0.81-0.97). The CRMs were not commutable across assays. DISCUSSION Plasma p-tau217 showed larger fold-changes and better accuracy for detecting AD pathology in symptomatic individuals, with greater cross-platform agreement than other p-tau variants. Further work is needed to develop suitable CRMs facilitating cross-assay standardization. HIGHLIGHTS Paired plasma and cerebrospinal fluid (CSF) samples from twenty-five Alzheimer's disease (AD) and 15 non-AD patients were measured blind. Thirty-three plasma assays were compared, for phosphorylated tau-181 (p-tau181), 205, 212, 217 and 231. Plasma p-tau217 consistently had the highest fold-change and was best correlated between assays. Plasma-CSF correlations were weak to moderate. There was lack of commutability for four candidate reference materials.
Collapse
|
3
|
Yamamoto Y, Takahata K, Seki M, Okusa S, Tatebe H, Ueda R, Endo H, Tagai K, Moriguchi S, Kurose S, Ichihashi M, Matsuura S, Kawamura K, Zhang MR, Ueno Y, Takiyama Y, Tokuda T, Higuchi M, Ito D. SLC9A6-Linked Parkinson Syndrome in Female Heterozygotes Is Associated With PET-Detectable Tau Pathology. Neurol Genet 2025; 11:e200235. [PMID: 39810750 PMCID: PMC11731372 DOI: 10.1212/nxg.0000000000200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives A previous postmortem study of men with Christianson syndrome, a disorder caused by loss-of-function mutations in the gene SLC9A6, reported a mechanistic link between pathologic tau accumulation and progressive symptoms such as cerebellar atrophy and cognitive decline. This study aimed to characterize the relationships between neuropathologic manifestations and tau accumulation in heterozygous women with SLC9A6 mutation. Methods We conducted a multimodal neuroimaging and plasma biomarker study on 3 middle-aged heterozygous women with SLC9A6 mutations (proband 1: mid-50s; proband 2: early 50s; proband 3: mid-40s) presenting with progressive extrapyramidal symptoms. Examinations included 11C-PiB PET; 18F-florzolotau PET; structural MRI; and plasma measures of neurofilament light chain (NfL) polypeptide, glial fibrillary acidic protein, phosphorylated (p)Tau181, Aβ40, and Aβ42. Neuroimaging results of all 3 patients were compared with those of 12 healthy age-matched women (49.8 ± 4.7 years) while plasma biomarker levels of probands 1 and 2 were compared with those of 14 age-matched healthy women (54.1 ± 9.0 years). Results Proband 1 was diagnosed with Parkinson disease while probands 2 and 3 were diagnosed with atypical parkinsonism. 11C-PiB PET results were negative in all patients. 18F-florzolotau PET revealed focal tau accumulations in all 3 patients, predominantly in the striatum contralateral to motor symptoms. Moreover, greater extrapyramidal symptom severity was associated with higher standardized uptake value ratios (SUVRs) for 18F-florzolotau in the striatum. Multiple comparisons showed significantly higher 18F-florzolotau SUVR values in both the caudate and putamen of proband 1, who exhibited the most severe extrapyramidal signs, while no significant increases in 18F-florzolotau SUVR values were detected in any brain region of probands 2 and 3. Structural MRI revealed slightly lower regional subcortical and gray matter volumes in all patients but not significant after multiple comparisons. Finally, plasma NfL concentration was significantly higher in probands 1 and 2 compared with healthy controls. Discussion Our 18F-florzolotau PET analysis revealed greater tau accumulation in the striatum of heterozygous women with SLC9A6 mutation associated with worsening extrapyramidal symptom severity. The heterozygosity of loss-of-function SLC9A6 mutations further suggests that tauopathy may be a primary contributor to extrapyramidal signs.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine
| | - Shohei Okusa
- Department of Neurology, Keio University School of Medicine
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Sho Moriguchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Masanori Ichihashi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Sayo Matsuura
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Yuji Ueno
- Department of Neurology, Faculty of Medicine, University of Yamanashi
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi
- Fuefuki Central Hospital, Isawa-cho, Yamanashi; and
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Daisuke Ito
- Memory Center, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Ashton NJ, Zetterberg H. A blood test for Alzheimer's disease: a decade of progress and success. EBioMedicine 2025; 112:105545. [PMID: 39778288 PMCID: PMC11761914 DOI: 10.1016/j.ebiom.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Banner Alzheimer's Institute, Phoenix, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, UCL, London, UK; UK Dementia Research Institute, UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
5
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
6
|
Shinomoto M, Takeuchi C, Tatebe H, Kitani-Morii F, Ohmichi T, Fujino Y, Menjo K, Terada N, Osako M, Mochizuki Y, Teramukai S, Tokuda T, Mizuno T, Kasai T. Comparison between DSQIID total / sub-item scores and plasma p-tau elevation in adults with Down's syndrome. PLoS One 2024; 19:e0311878. [PMID: 39652530 PMCID: PMC11627409 DOI: 10.1371/journal.pone.0311878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/25/2024] [Indexed: 12/12/2024] Open
Abstract
The Dementia Screening Questionnaire for Individuals with Intellectual Disabilities (DSQIID) is an appropriate screening tool for detecting dementia in Down's syndrome patients. However, whether this questionnaire reflects the neuropsychiatric signs of biomarker-confirmed Alzheimer's disease in DS (DS-AD) remains unknown. To address this issue, we compared the plasma phosphorylated tau (P181tau: p-tau) level of a representative AD biomarker with the total score and each sub-score of the DSQIID. The DSQIID was completed by 43 of the 56 individuals enrolled in the study. The DSQIID total scores tended to be positively associated with age, and some sub-scores increased in an age-dependent manner. DSQIID total scores and some sub-scores were also positively correlated with plasma p-tau levels, while all significant correlations disappeared after adjusting for age. Moreover, one sub-score appeared to have a significant negative correlation with plasma p-tau levels after adjusting for age. The DSQIID likely reflects age-associated behavioral changes in patients with DS. Meanwhile, their scores did not correlate with plasma p-tau after adjusting for age, suggesting that there might be room for improvement in the DSQIID for detecting DS-AD.
Collapse
Affiliation(s)
- Makiko Shinomoto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chisen Takeuchi
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
- Department of Genetic Medicine, Jikei University, Tokyo, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Fukiko Kitani-Morii
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuzo Fujino
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanako Menjo
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Miho Osako
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Yoko Mochizuki
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Genetic Medicine, Jikei University, Tokyo, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024; 123:1210-1217. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Tanaka A, Konishi A, Takegami S. Preparation and application of multiple particle binding-liposomes for electrochemiluminescent signal amplification in bioassays. Anal Bioanal Chem 2024; 416:6451-6461. [PMID: 39276213 DOI: 10.1007/s00216-024-05532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
In this study, multiple particle binding-liposomes (MPB-Lips), encapsulating the luminophore tris(2',2-bipyridyl)ruthenium (II) complex ([Ru(bpy)3]2+), were developed as an electrochemiluminescence (ECL) signal amplifier and were applied to detect the model analyte streptavidin (SA) using the indirect competitive ECL method. The MPB-Lips were prepared by mixing various ratios of two different liposomes-one containing a phospholipid with a primary amine group and a biotinyl group (BIO/NH2-Lip) and one containing a phospholipid with an N-hydroxysuccinimide group (NHS-Lip) to allow binding between particles via amide bonds. Quartz crystal microbalance analysis using SA-modified gold-coated quartz crystals showed that the frequency shift values of MPB-Lips gradually decreased in the order BIO/NH2-Lip:NHS-Lip = 1:0 < 1:1 < 1:3 < 1:5. This indicated that MPB-Lips were successfully formed. The indirect competitive ECL method using SA-modified gold electrodes showed that the 1:5-Lip system had greater sensitivity than the 1:0-Lip system-the limit of detection and quantification values for the systems were 1.84 and 6.30 μg mL-1 for 1:0-Lip, and 1.20 and 1.74 μg mL-1 for 1:5-Lip. Finally, the recovery of SA spiked in fetal bovine serum samples using the 1:5-Lip system showed good accuracy and precision with a recovery rate of 83-106% and relative standard deviation of 4-14%. Our study demonstrated that the MPB-Lips system was an effective and useful ECL amplifier and the ECL method using MPB-Lips could be applied to detect an analyte in a real sample.
Collapse
Affiliation(s)
- Aki Tanaka
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Atsuko Konishi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
9
|
Qi SY, Zhang SJ, Lin LL, Li YR, Chen JG, Ni YC, Du X, Zhang J, Ge P, Liu GH, Wu JY, Lin S, Gong M, Lin JW, Chen LF, He LL, Lin D. Quantifying attention in children with intellectual and developmental disabilities through multicenter electrooculogram signal analysis. Sci Rep 2024; 14:22186. [PMID: 39333619 PMCID: PMC11437286 DOI: 10.1038/s41598-024-70304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 09/29/2024] Open
Abstract
In a multicenter case-control investigation, we assessed the efficacy of the Electrooculogram Signal Analysis (EOG-SA) method, which integrates attention-related visual evocation, electrooculography, and nonlinear analysis, for distinguishing between intellectual and developmental disabilities (IDD) and typical development (TD) in children. Analyzing 127 participants (63 IDD, 64 TD), we applied nonlinear dynamics for feature extraction. Results indicated EOG-SA's capability to distinguish IDD, with higher template thresholds and Correlation Dimension values correlating with clinical severity. The template threshold proved a robust indicator, with higher values denoting severe IDD. Discriminative metrics showed areas under the curve of 0.91 (template threshold) and 0.85/0.91 (D2), with sensitivities and specificities of 77.6%/95.9% and 93.5%/71.0%, respectively. EOG-SA emerges as a promising tool, offering interpretable neural biomarkers for early and nuanced diagnosis of IDD.
Collapse
Affiliation(s)
- Shi-Yi Qi
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Si-Jia Zhang
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Tongxiang Hospital of Traditional Chinese Medicine, Tongxiang, Zhejiang Province, China
| | - Li-Li Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China
| | - Yu-Rong Li
- Department of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian Province, China
| | - Jian-Guo Chen
- Department of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian Province, China
| | - You-Cong Ni
- School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Xin Du
- School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Rehabilitation, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Pin Ge
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Gui-Hua Liu
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Jiang-Yun Wu
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Shen Lin
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Meng Gong
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jin-Wen Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lan-Fang Chen
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ling-Ling He
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Dong Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China.
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China.
| |
Collapse
|
10
|
Ashton NJ, Keshavan A, Brum WS, Andreasson U, Arslan B, Droescher M, Barghorn S, Vanbrabant J, Lambrechts C, Van Loo M, Stoops E, Iyengar S, Ji H, Xu X, Forrest-Hay A, Zhang B, Luo Y, Jeromin A, Vandijck M, Bastard NL, Kolb H, Triana-Baltzer G, Bali D, Janelidze S, Yang SY, Demos C, Romero D, Sigal G, Wohlstadter J, Malyavantham K, Khare M, Jethwa A, Stoeckl L, Gobom J, Kac PR, Gonzalez-Ortiz F, Montoliu-Gaya L, Hansson O, Rissman RA, Carillo MC, Shaw LM, Blennow K, Schott JM, Zetterberg H. The Alzheimer's Association Global Biomarker Standardization Consortium (GBSC) plasma phospho-tau Round Robin study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312244. [PMID: 39228740 PMCID: PMC11370527 DOI: 10.1101/2024.08.22.24312244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer's disease (AD) pathology. Multiple p-tau biomarkers on several analytical platforms are poised for clinical use. The Alzheimer's Association Global Biomarker Standardisation Consortium plasma phospho-tau Round Robin study engaged assay developers in a blinded case-control study on plasma p-tau, aiming to learn which assays provide the largest fold-changes in AD compared to non-AD, have the strongest relationship between plasma and cerebrospinal fluid (CSF), and show the most consistent relationships between methods (commutability) in measuring both patient samples and candidate reference materials (CRM). METHODS Thirty-three different p-tau biomarker assays, built on eight different analytical platforms, were used to quantify paired plasma and CSF samples from 40 participants. AD biomarker status was categorised as "AD pathology" (n=25) and "non-AD pathology" (n=15) by CSF Aβ42/Aβ40 (US-FDA; CE-IVDR) and p-tau181 (CE-IVDR) methods. The commutability of four CRM, at three concentrations, was assessed across assays. FINDINGS Plasma p-tau217 consistently demonstrated higher fold-changes between AD and non-AD pathology groups, compared to other p-tau epitopes. Fujirebio LUMIPULSE G, UGOT IPMS, and Lilly MSD p-tau217 assays provided the highest median fold-changes. In CSF, p-tau217 assays also performed best, and exhibited substantially larger fold-changes than their plasma counterparts, despite similar diagnostic performance. P-tau217 showed the strongest correlations between plasma assays (rho=0.81 to 0.97). Plasma p-tau levels were weakly-to-moderately correlated with CSF p-tau, and correlations were non-significant within the AD group alone. The evaluated CRM were not commutable across assays. INTERPRETATION Plasma p-tau217 measures had larger fold-changes and discriminative accuracies for detecting AD pathology, and better agreement across platforms than other plasma p-tau variants. Plasma and CSF markers of p-tau, measured by immunoassays, are not substantially correlated, questioning the interchangeability of their continuous relationship. Further work is warranted to understand the pathophysiology underlying this dissociation, and to develop suitable reference materials facilitating cross-assay standardisation. FUNDING Alzheimer's Association (#ADSF-24-1284328-C).
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Stefan Barghorn
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | | | | | - Maxime Van Loo
- ADx NeuroSciences N.V., Technologiepark 6, 9052 Ghent, Belgium
| | - Erik Stoops
- ADx NeuroSciences N.V., Technologiepark 6, 9052 Ghent, Belgium
| | | | - HaYeun Ji
- Alamar Biosciences, Inc., Fremont, CA, USA
| | - Xiaomei Xu
- Alamar Biosciences, Inc., Fremont, CA, USA
| | | | | | - Yuling Luo
- Alamar Biosciences, Inc., Fremont, CA, USA
| | | | | | | | | | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, California, USA
| | - Divya Bali
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | | | | | - Daniel Romero
- Meso Scale Diagnostics, LLC., Rockville, Maryland, USA
| | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, Maryland, USA
| | | | | | | | | | | | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, USA
| | - Maria C Carillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago, Illinois, USA
| | - Leslie M Shaw
- Department of pathology & laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Science Park, Hong Kong, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Kataoka Y, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Shimizu H, Kakita A, Yokota T, Tokuda T, Higuchi M, Takado Y. In Vivo Assessment of Astrocyte Reactivity in Patients with Progressive Supranuclear Palsy. Ann Neurol 2024; 96:247-261. [PMID: 38771066 DOI: 10.1002/ana.26962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.
Collapse
Affiliation(s)
- Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for integrated human brain science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Soeda Y, Hayashi E, Nakatani N, Ishigaki S, Takaichi Y, Tachibana T, Riku Y, Chambers JK, Koike R, Mohammad M, Takashima A. A novel monoclonal antibody generated by immunization with granular tau oligomers binds to tau aggregates at 423-430 amino acid sequence. Sci Rep 2024; 14:16391. [PMID: 39060263 PMCID: PMC11282240 DOI: 10.1038/s41598-024-65949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Prior to the formation of amyloid fibrils, the pathological hallmark in tau-related neurodegenerative disease, tau monomers aggregate into a diverse range of oligomers. Granular tau oligomers, consisting of approximately 40 tau protein molecules, are present in the prefrontal cortex of patients at Braak stages I-II, preclinical stages of Alzheimer's disease (AD). Antibodies to granular tau oligomers as antigens have not been reported. Therefore, we generated new rat monoclonal antibodies by immunization with granular tau oligomers. Three antibodies from different hybridoma clones showed stronger immunoreactivity to granular tau oligomers and tau fibrils compared with monomeric tau. Of the three antibodies, 2D6-2C6 showed 3000-fold greater immunoreactivity in P301L-tau transgenic (rTg4510) mice than in non-transgenic mice, while MC1 antibody, which detects pathological conformations of tau, showed a 5.5-fold increase. These results suggest that 2D6-2C6 recognizes aggregates more specifically than MC1. In AD subjects, 2D6-2C6 recognized neurofibrillary tangles and pretangles, and co-localized within AT8-positive cells containing phosphorylated tau aggregates. The epitope of 2D6-2C6 is the 423-430 amino acid (AA) sequence of C-terminal regions. Taken together, a novel monoclonal antibody, 2D6-2C6, generated by immunization with granular tau oligomers binds to tau aggregates at the 423-430 AA sequence.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Emi Hayashi
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Naoko Nakatani
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Shinsuke Ishigaki
- Department of Diagnostics and Therapeutics for Brain Disease, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
- Graduate School of Engineering Division of Science and Engineering for Materials, Chemistry and Biology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka, 558-0022, Japan
| | - Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Moniruzzaman Mohammad
- Department of Diagnostics and Therapeutics for Brain Disease, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| |
Collapse
|
13
|
Antonioni A, Raho EM, Di Lorenzo F. Is blood pTau a reliable indicator of the CSF status? A narrative review. Neurol Sci 2024; 45:2471-2487. [PMID: 38129590 DOI: 10.1007/s10072-023-07258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The identification of biomarkers for the early diagnosis of Alzheimer's disease (AD) is a crucial goal of the current research. Blood biomarkers are less invasive, easier to obtain and achievable by a cheaper means than those on cerebrospinal fluid (CSF) and significantly more economic than functional neuroimaging investigations; thus, a great interest is focused on blood isoforms of the phosphorylated Tau protein (pTau), indicators of ongoing tau pathology (i.e. neurofibrillary tangles, NFTs, an AD neuropathological hallmark) in the central nervous system (CNS). However, current data often highlight discordant results about the ability of blood pTau to predict CSF status. OBJECTIVE We aim to synthesise the studies that compared pTau levels on CSF and blood to assess their correlation in AD continuum. METHODS We performed a narrative literature review using, first, MEDLINE (via PubMed) by means of MeSH terms, and then, we expanded the reults by means of Scopus and Web of Sciences to be as inclusive as possible. Finally, we added work following an expert opinion. Only papers presenting original data on pTau values on both blood and CSF were included. RESULTS The 33 included studies show an extreme heterogeneity in terms of pTau isoform (pTau181, 217 and 231), laboratory methods, diagnostic criteria and choice of comparison groups. Most studies evaluated plasma pTau181, while data on other isoforms and serum are scarcer. DISCUSSION Most papers identify a correlation between CSF and blood measurements. Furthermore, even when not specified, it is often possible to show an increase in blood pTau values as AD-related damage progresses in the AD continuum and higher values in AD than in other neurodegenerative diseases. Notably, plasma pTau231 seems the first biomarker to look for in the earliest and pre-clinical stages, quickly followed by pTau217 and, finally, by pTau181. CONCLUSIONS Our results encourage the use of blood pTau for the early identification of patients with AD continuum.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121, Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121, Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121, Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto Di Ricovero E Cura a Carattere Scientifico Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
14
|
Alty J, Goldberg LR, Roccati E, Lawler K, Bai Q, Huang G, Bindoff AD, Li R, Wang X, St George RJ, Rudd K, Bartlett L, Collins JM, Aiyede M, Fernando N, Bhagwat A, Giffard J, Salmon K, McDonald S, King AE, Vickers JC. Development of a smartphone screening test for preclinical Alzheimer's disease and validation across the dementia continuum. BMC Neurol 2024; 24:127. [PMID: 38627686 PMCID: PMC11020184 DOI: 10.1186/s12883-024-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Dementia prevalence is predicted to triple to 152 million globally by 2050. Alzheimer's disease (AD) constitutes 70% of cases. There is an urgent need to identify individuals with preclinical AD, a 10-20-year period of progressive brain pathology without noticeable cognitive symptoms, for targeted risk reduction. Current tests of AD pathology are either too invasive, specialised or expensive for population-level assessments. Cognitive tests are normal in preclinical AD. Emerging evidence demonstrates that movement analysis is sensitive to AD across the disease continuum, including preclinical AD. Our new smartphone test, TapTalk, combines analysis of hand and speech-like movements to detect AD risk. This study aims to [1] determine which combinations of hand-speech movement data most accurately predict preclinical AD [2], determine usability, reliability, and validity of TapTalk in cognitively asymptomatic older adults and [3], prospectively validate TapTalk in older adults who have cognitive symptoms against cognitive tests and clinical diagnoses of Mild Cognitive Impairment and AD dementia. METHODS Aim 1 will be addressed in a cross-sectional study of at least 500 cognitively asymptomatic older adults who will complete computerised tests comprising measures of hand motor control (finger tapping) and oro-motor control (syllabic diadochokinesis). So far, 1382 adults, mean (SD) age 66.20 (7.65) years, range 50-92 (72.07% female) have been recruited. Motor measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 to develop an algorithm that classifies preclinical AD risk. Aim 2 comprises three sub-studies in cognitively asymptomatic adults: (i) a cross-sectional study of 30-40 adults to determine the validity of data collection from different types of smartphones, (ii) a prospective cohort study of 50-100 adults ≥ 50 years old to determine usability and test-retest reliability, and (iii) a prospective cohort study of ~1,000 adults ≥ 50 years old to validate against cognitive measures. Aim 3 will be addressed in a cross-sectional study of ~200 participants with cognitive symptoms to validate TapTalk against Montreal Cognitive Assessment and interdisciplinary consensus diagnosis. DISCUSSION This study will establish the precision of TapTalk to identify preclinical AD and estimate risk of cognitive decline. If accurate, this innovative smartphone app will enable low-cost, accessible screening of individuals for AD risk. This will have wide applications in public health initiatives and clinical trials. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT06114914, 29 October 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7001, Australia.
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia.
| | - Lynette R Goldberg
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Quan Bai
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guan Huang
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Renjie Li
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Xinyi Wang
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Rebecca J St George
- School of Psychological Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Kaylee Rudd
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Larissa Bartlett
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Mimieveshiofuo Aiyede
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | | | - Anju Bhagwat
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia
| | - Julia Giffard
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Katharine Salmon
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia
| | - Scott McDonald
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| |
Collapse
|
15
|
Igeta Y, Hemmi I, Yuyama K, Ouchi Y. Odor identification score as an alternative method for early identification of amyloidogenesis in Alzheimer's disease. Sci Rep 2024; 14:4658. [PMID: 38409432 PMCID: PMC10897211 DOI: 10.1038/s41598-024-54322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024] Open
Abstract
A simple screening test to identify the early stages of Alzheimer's disease (AD) is urgently needed. We investigated whether odor identification impairment can be used to differentiate between stages of the A/T/N classification (amyloid, tau, neurodegeneration) in individuals with amnestic mild cognitive impairment or AD and in healthy controls. We collected data from 132 Japanese participants visiting the Toranomon Hospital dementia outpatient clinic. The odor identification scores correlated significantly with major neuropsychological scores, regardless of apolipoprotein E4 status, and with effective cerebrospinal fluid (CSF) biomarkers [amyloid β 42 (Aβ42) and the Aβ42/40 and phosphorylated Tau (p-Tau)/Aβ42 ratios] but not with ineffective biomarkers [Aβ40 and the p-Tau/total Tau ratio]. A weak positive correlation was observed between the corrected odor identification score (adjusted for age, sex, ApoE4 and MMSE), CSF Aβ42, and the Aβ42/40 ratio. The odor identification score demonstrated excellent discriminative power for the amyloidogenesis stage , according to the A/T/N classification, but was unsuitable for differentiating between the p-Tau accumulation and the neurodegeneration stages. After twelve odor species were analyzed, a version of the score comprising only four odors-India ink, wood, curry, and sweaty socks-proved highly effective in identifying AD amyloidogenesis, showing promise for the screening of preclinical AD.
Collapse
Affiliation(s)
- Yukifusa Igeta
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Isao Hemmi
- Japanese Red Cross College of Nursing, 4-1-3 Hiroo, Shibuya-ku, Tokyo, 150-0012, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuyoshi Ouchi
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| |
Collapse
|
16
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
17
|
Giuffrè GM, Quaranta D, Vita MG, Costantini EM, Citro S, Carrozza C, De Ninno G, Calabresi P, Marra C. Performance of Fully-Automated High-Throughput Plasma Biomarker Assays for Alzheimer's Disease in Amnestic Mild Cognitive Impairment Subjects. J Prev Alzheimers Dis 2024; 11:1073-1078. [PMID: 39044519 PMCID: PMC11266251 DOI: 10.14283/jpad.2024.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Novel plasma biomarkers are promising for identifying Alzheimer's disease (AD) pathological processes in vivo, but most currently employed assays have limitations precluding widespread use. METHODS CSF and plasma samples were collected from seventy amnestic mild cognitive impairment (aMCI) subjects, stratified as A+ and A-. CSF Aβ40, Aβ42, p-tau181 and t-tau and plasma Aβ40, Aβ42 and p-tau181 quantification were conducted using the Lumipulse G assays (Fujirebio), to evaluate the diagnostic performance of plasma biomarkers and assess their associations with CSF biomarkers. RESULTS All plasma biomarkers except Aβ40 showed a very good accuracy in distinguishing A+ aMCI from A- aMCI, Aβ42/p-tau181 ratio being the most accurate (AUC 0.895, sensitivity 95.1%, specificity 82.8%). Plasma biomarkers levels were significantly associated with CSF biomarkers concentration. DISCUSSION High-throughput and fully-automated plasma assays could be helpful in discriminating with high accuracy between aMCI in the AD continuum and aMCI unlikely due to AD in clinical settings.
Collapse
Affiliation(s)
- G M Giuffrè
- Dr. Davide Quaranta, Fondazione Policlinico Universitario 'A. Gemelli', Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8 - 00168 - Rome, Italy, e-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fan X, Cai Y, Zhao L, Liu W, Luo Y, Au LWC, Shi L, Mok VCT. Machine Learning-Derived MRI-Based Neurodegeneration Biomarker for Alzheimer's Disease: A Multi-Database Validation Study. J Alzheimers Dis 2024; 97:883-893. [PMID: 38189749 DOI: 10.3233/jad-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Pilot study showed that Alzheimer's disease resemblance atrophy index (AD-RAI), a machine learning-derived MRI-based neurodegeneration biomarker of AD, achieved excellent diagnostic performance in diagnosing AD with moderate to severe dementia. OBJECTIVE The primary objective was to validate and compare the performance of AD-RAI with conventional volumetric hippocampal measures in diagnosing AD with mild dementia. The secondary objectives were 1) to investigate the association between imaging biomarkers with age and gender among cognitively unimpaired (CU) participants; 2) to analyze whether the performance of differentiating AD with mild dementia from CU will improve after adjustment for age/gender. METHODS AD with mild dementia (n = 218) and CU (n = 1,060) participants from 4 databases were included. We investigated the area under curve (AUC), sensitivity, specificity, and balanced accuracy of AD-RAI, hippocampal volume (HV), and hippocampal fraction (HF) in differentiating between AD and CU participants. Among amyloid-negative CU participants, we further analyzed correlation between the biomarkers with age/gender. We also investigated whether adjustment for age/gender will affect performance. RESULTS The AUC of AD-RAI (0.93) was significantly higher than that of HV (0.89) and HF (0.89). Subgroup analysis among A + AD and A- CU showed that AUC of AD-RAI (0.97) was also higher than HV (0.94) and HF (0.93). Diagnostic performance of AD-RAI and HF was not affected by age/gender while that of HV improved after age adjustment. CONCLUSIONS AD-RAI achieves excellent clinical validity and outperforms conventional volumetric hippocampal measures in aiding the diagnosis of AD mild dementia without the need for age adjustment.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yuan Cai
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lei Zhao
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Wanting Liu
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Lisa Wing Chi Au
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Vincent Chung Tong Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, Gerald Choa Neuroscience Institute, Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
19
|
Jethwa A, Stöckl L. Optimized Pre-analytical Handling Protocol for Blood-Based Biomarkers of Alzheimer's Disease. Methods Mol Biol 2024; 2785:67-73. [PMID: 38427188 DOI: 10.1007/978-1-0716-3774-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The therapeutic management of patients with Alzheimer's disease (AD) has been hindered by poor diagnostic accuracy. As such, there is an unmet clinical need for tools that can detect and diagnose the disease in its early stages. Compared with cerebrospinal fluid (CSF)-based biomarkers or positron emission tomography (PET), the use of reliable blood-based biomarkers could offer an accessible and minimally invasive method of streamlining diagnosis in the clinical setting. However, the influence of pre-analytical processing and sample handling parameters on the accurate measurement of protein biomarkers is well established, especially for AD CSF-based biomarkers. In this chapter, we provide recommendations for an optimal sample handling protocol for the analysis of blood-based biomarkers specifically for amyloid pathology in AD.
Collapse
|
20
|
Min S, Mohallem R, Aryal UK, Kinzer-Ursem TL, Rochet JC. Effects of Neighboring Phosphorylation Events on the Affinities of pT181-Tau Antibodies. Anal Chem 2023; 95:18241-18248. [PMID: 38014879 DOI: 10.1021/acs.analchem.3c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential Alzheimer's disease (AD) biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in neurofibrillary tangles (NFTs) of AD brains, and CSF levels of pT181-tau correlate with the overall NFT burden. Various immunobased analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods is dependent on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could, in principle, be affected by phosphorylation within or near the antibody's cognate antigen, such effects have not been extensively studied. Here, we developed a biolayer interferometry assay to determine the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated. These findings highlight the importance of selecting antibodies that have been thoroughly characterized in terms of affinity and binding specificity, addressing the potential disruptive effects of post-translational modifications in the epitope region to ensure accurate biomarker quantitation.
Collapse
Affiliation(s)
- Sehong Min
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Lin J, Ou R, Li C, Hou Y, Zhang L, Wei Q, Liu K, Jiang Q, Yang T, Xiao Y, Pang D, Zhao B, Chen X, Yang J, Shang H. Evolution and Predictive Role of Plasma Alzheimer's Disease-related Pathological Biomarkers in Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2023; 78:2203-2213. [PMID: 37560912 DOI: 10.1093/gerona/glad189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 08/11/2023] Open
Abstract
Plasma Alzheimer's disease-related pathological biomarkers' role in Parkinson's disease (PD) remains unknown. We aimed to determine whether plasma Alzheimer's disease-related biomarkers can predict PD progression. A total of 184 PD patients and 86 healthy controls were included and followed up for 5 years. Plasma phosphorylated tau181 (p-tau181), Aβ40, and Aβ42 were measured at baseline and the 1- and 2-year follow-ups using the Quanterix-single-molecule array. Global cognitive function and motor symptoms were assessed using the Montreal Cognitive Assessment and Unified Parkinson's Disease Rating Scale part III. Genetic analyses were conducted to identify APOE and MAPT genotypes. Plasma p-tau181 levels were higher in PD than healthy controls. APOE-ε4 carriers had lower plasma Aβ42 levels and Aβ42/Aβ40 ratio. The linear mixed-effects models showed that Montreal Cognitive Assessment scores were associated with plasma p-tau181/Aβ42 ratio (β -1.719 [-3.398 to -0.040], p = .045). Higher baseline plasma p-tau181 correlated with faster cognitive decline and motor symptoms deterioration in total patients (β -0.170 [-0.322 to -0.018], p = .029; β 0.329 [0.032 to 0.626], p = .030) and APOE-ε4 carriers (β -0.318 [-0.602 to -0.034], p = .030; β 0.632 [0.017 to 1.246], p = .046), but not in the noncarriers. Higher baseline plasma Aβ40 correlated with faster cognitive decline in total patients (β -0.007 [-0.015 to -0.0001], p = .047) and faster motor symptoms deterioration in total patients (β 0.026 [0.010 to 0.041], p = .001) and APOE-ε4 carriers (β 0.044 [-0.026 to 0.049], p = .020), but not in the noncarriers. The plasma p-tau181/Aβ2 ratio monitors the cognitive status of PD. Higher baseline plasma p-tau181 and Aβ40 predict faster cognitive decline and motor symptoms deterioration in PD, especially in APOE-ε4 carriers.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Carballo Á, López-Dequidt I, Custodia A, Botelho J, Aramburu-Núñez M, Machado V, Pías-Peleteiro JM, Ouro A, Romaus-Sanjurjo D, Vázquez-Vázquez L, Jiménez-Martín I, Aguiar P, Rodríguez-Yáñez M, Aldrey JM, Blanco J, Castillo J, Sobrino T, Leira Y. Association of periodontitis with cognitive decline and its progression: Contribution of blood-based biomarkers of Alzheimer's disease to this relationship. J Clin Periodontol 2023; 50:1444-1454. [PMID: 37584311 DOI: 10.1111/jcpe.13861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
AIM To assess whether periodontitis is associated with cognitive decline and its progression as well as with certain blood-based markers of Alzheimer's disease. MATERIALS AND METHODS Data from a 2-year follow-up prospective cohort study (n = 101) was analysed. Participants with a previous history of hypertension and aged ≥60 years were included in the analysis. All of them received a full-mouth periodontal examination and cognitive function assessments (Addenbrooke's Cognitive Examination (ACE) and Mini-Mental State Examination [MMSE]). Plasma levels of amyloid beta (Aβ)1-40 , Aβ1-42 , phosphorylated and total Tau (p-Tau and t-Tau) were determined at baseline, 12 and 24 months. RESULTS Periodontitis was associated with poor cognitive performance (MMSE: β = -1.5 [0.6]) and progression of cognitive impairment (hazard ratio [HR] = 1.8; 95% confidence interval: 1.0-3.1). Subjects with periodontitis showed greater baseline levels of p-Tau (1.6 [0.7] vs. 1.2 [0.2] pg/mL, p < .001) and Aβ1-40 (242.1 [77.3] vs. 208.2 [73.8] pg/mL, p = .036) compared with those without periodontitis. Concentrations of the latter protein also increased over time only in the periodontitis group (p = .005). CONCLUSIONS Periodontitis is associated with cognitive decline and its progression in elderly patients with a previous history of hypertension. Overexpression of p-Tau and Aβ1-40 may play a role in this association.
Collapse
Affiliation(s)
- Álvaro Carballo
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - João Botelho
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz - Cooperativa de Ensino Superior, Caparica, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Vanessa Machado
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz - Cooperativa de Ensino Superior, Caparica, Portugal
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Jiménez-Martín
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Radiology, Faculty of Medicine and Center for Research In Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Manuel Aldrey
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL) Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Yago Leira
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
24
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
25
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Yokota T, Tokuda T, Higuchi M, Takado Y. Altered Brain Energy Metabolism Related to Astrocytes in Alzheimer's Disease. Ann Neurol 2023. [PMID: 37703428 DOI: 10.1002/ana.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
26
|
Lu J, Liang F, Bai P, Liu C, Xu M, Sun Z, Tian W, Dong Y, Zhang Y, Quan Q, Khatri A, Shen Y, Marcantonio E, Crosby G, Culley D, Wang C, Yang G, Xie Z. Blood tau-PT217 contributes to the anesthesia/surgery-induced delirium-like behavior in aged mice. Alzheimers Dement 2023; 19:4110-4126. [PMID: 37249148 PMCID: PMC10524579 DOI: 10.1002/alz.13118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Blood phosphorylated tau at threonine 217 (tau-PT217) is a newly established biomarker for Alzheimer's disease and postoperative delirium in patients. However, the mechanisms and consequences of acute changes in blood tau-PT217 remain largely unknown. METHODS We investigated the effects of anesthesia/surgery on blood tau-PT217 in aged mice, and evaluated the associated changes in B cell populations, neuronal excitability in anterior cingulate cortex, and delirium-like behavior using positron emission tomography imaging, nanoneedle technology, flow cytometry, electrophysiology, and behavioral tests. RESULTS Anesthesia/surgery induced acute increases in blood tau-PT217 via enhanced generation in the lungs and release from B cells. Tau-PT217 might cross the blood-brain barrier, increasing neuronal excitability and inducing delirium-like behavior. B cell transfer and WS635, a mitochondrial function enhancer, mitigated the anesthesia/surgery-induced changes. DISCUSSION Acute increases in blood tau-PT217 may contribute to brain dysfunction and postoperative delirium. Targeting B cells or mitochondrial function may have therapeutic potential for preventing or treating these conditions.
Collapse
Affiliation(s)
- Jing Lu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Ping Bai
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Chenghao Liu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Chinese Academy of Sciences, Institute of Automation, Beijing, 100080, China
| | - Miao Xu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Zhengwang Sun
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Wenjie Tian
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Qimin Quan
- NanoMosaic, Inc., Woburn, MA, 01801, United States
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, United States
| | - Yuan Shen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
- Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Edward Marcantonio
- Divisions of General Medicine and Primary Care and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, United States
| | - Gregory Crosby
- Department of Anesthesiology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, 02115, United States
| | - Deborah Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania Health System, Philadelphia, PA, 19104, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, 10032, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, United States
| |
Collapse
|
27
|
Peng Y, Jin H, Xue YH, Chen Q, Yao SY, Du MQ, Liu S. Current and future therapeutic strategies for Alzheimer's disease: an overview of drug development bottlenecks. Front Aging Neurosci 2023; 15:1206572. [PMID: 37600514 PMCID: PMC10438465 DOI: 10.3389/fnagi.2023.1206572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common chronic neurodegenerative disease worldwide. It causes cognitive dysfunction, such as aphasia and agnosia, and mental symptoms, such as behavioral abnormalities; all of which place a significant psychological and economic burden on the patients' families. No specific drugs are currently available for the treatment of AD, and the current drugs for AD only delay disease onset and progression. The pathophysiological basis of AD involves abnormal deposition of beta-amyloid protein (Aβ), abnormal tau protein phosphorylation, decreased activity of acetylcholine content, glutamate toxicity, autophagy, inflammatory reactions, mitochondria-targeting, and multi-targets. The US Food and Drug Administration (FDA) has approved five drugs for clinical use: tacrine, donepezil, carbalatine, galantamine, memantine, and lecanemab. We have focused on the newer drugs that have undergone clinical trials, most of which have not been successful as a result of excessive clinical side effects or poor efficacy. Although aducanumab received rapid approval from the FDA on 7 June 2021, its long-term safety and tolerability require further monitoring and confirmation. In this literature review, we aimed to explore the possible pathophysiological mechanisms underlying the occurrence and development of AD. We focused on anti-Aβ and anti-tau drugs, mitochondria-targeting and multi-targets, commercially available drugs, bottlenecks encountered in drug development, and the possible targets and therapeutic strategies for future drug development. We hope to present new concepts and methods for future drug therapies for AD.
Collapse
Affiliation(s)
- Yong Peng
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-hui Xue
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
28
|
Alcolea D, Beeri MS, Rojas JC, Gardner RC, Lleó A. Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology 2023; 101:172-180. [PMID: 36878698 PMCID: PMC10435056 DOI: 10.1212/wnl.0000000000207193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Blood-based biomarkers offer a major advance in the clinical evaluation of neurodegenerative diseases. Currently, research studies have reported robust assays of blood markers for the detection of amyloid and tau pathologies specific to Alzheimer disease (amyloid-β peptides, and p-tau) and nonspecific blood markers of neuronal (neurofilament light, β-synuclein, and ubiquitin-C-terminal-hydrolase-L1) and glial degeneration (glial fibrillary acidic protein) that can measure key pathophysiologic processes in several neurodegenerative diseases. In the near future, these markers may be used for screening, diagnosis, or disease and treatment response monitoring. Blood-based biomarkers for neurodegenerative diseases have been rapidly implemented in research, and they have the potential to enter clinical use soon in different clinical settings. In this review, we will describe the main developments and their potential implications for the general neurologist.
Collapse
Affiliation(s)
- Daniel Alcolea
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| | - Michal Schnaider Beeri
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Julio C Rojas
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Raquel C Gardner
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Alberto Lleó
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| |
Collapse
|
29
|
Hsu YP, Hsu CW, Chen LF, Liu YK. Methodological flaws in"diagnostic accuracy of blood biomarkers for Alzheimer's disease and amnestic mild cognitive impairment: A meta-analysis". Ageing Res Rev 2023; 88:101938. [PMID: 37088230 DOI: 10.1016/j.arr.2023.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
We read with interest the review by Chen et al. They intended to examine the diagnostic accuracy of blood-based biomarkers for detecting Alzheimer's disease and amnestic mild cognitive impairment. We believe that there were substantial methodological flaws in their meta-analysis. These methodological flaws included no comprehensive literature search details, neglect of the negative result research, no prespecified cut-off values, erroneous data input in their meta-analysis, and the issue of prevalence determined by the included studies. These factors potentially contributed to overestimation of the discriminative accuracy of blood-based biomarkers. Subsequently, the conclusion that blood-based biomarkers are effective tools for detecting Alzheimer's disease is debatable without correction of these methodological flaws and providing robust and trustworthy estimates.
Collapse
Affiliation(s)
- Yuan-Pin Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Liang-Fu Chen
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Ying-Kuo Liu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan.
| |
Collapse
|
30
|
Faraz Ahmed T, Bilal Azmi M, Imtiaz F, Zaman U, Ahmed A, Shahbaz N. Plasma levels of phosphorylated tau and neurofilament light chain as potential biomarkers for Alzheimer's disease: A biochemical analysis in Pakistani population. Saudi Pharm J 2023; 31:1202-1209. [PMID: 37273267 PMCID: PMC10236364 DOI: 10.1016/j.jsps.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
The National Institute on Aging-Alzheimer's Association's research framework in 2018 proposed a molecular construct for the diagnosis of Alzheimer's disease (AD). Nonetheless, the clinical exclusionary strategy is still the mainstay of AD diagnosis in Pakistan. We looked at the plasma levels of amyloid beta-42 (Aβ-42), phosphorylated tau (P-tau), and neurofilament light (NFL) in patients with Alzheimer's clinical syndrome (ACS) and healthy controls (HC) from the Pakistani population to keep pace with the global efforts towards establishing accessible and affordable biochemical diagnostic markers for AD in Pakistan. Consultant neurologists screened patients who presented with cognitive impairment to three large tertiary care hospitals in Karachi, and after receiving informed consent, recruited participants with ACS and HC from the same facilities. We collected 5cc of blood in EDTA tubes along with demographic and lifestyle information of the subjects. Plasma aliquots were stored at -80°C after centrifugation. For analysis it was thawed at 4℃ and levels of the three proteins were measured through ELISA. Data from 28 ACS patients and 28 age matched healthy controls were evaluated. Among demographic factors, education and depression were related with health status (p = 0.03 and 0.003, respectively). NFL and P-tau mean values demonstrated a significant difference between the ACS and control groups (p = 0.003 and 0.006), however Aβ42 did not (p = 0.114). ROC analysis showed that plasma P-tau and NFL, with AUCs of 0.717 and 0.735, respectively, could substantially distinguish ACS from the HC group (p = 0.007 and 0.003, respectively). Both plasma P-tau (r = -0.389; p = 0.004) and NFL (r = -0.424; p = 0.001) levels were significantly and negatively correlated with individuals' MMSE scores. NFL and plasma P-tau show promise in differentiating AD patients from healthy individuals. However, similar larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Tehniat Faraz Ahmed
- Department of Biochemistry, Dow International Dental College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Muhammad Bilal Azmi
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Fauzia Imtiaz
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Uzma Zaman
- Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Affan Ahmed
- Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Naila Shahbaz
- Department of Neurology, Dr Ruth Pfau Civil Hospital Karachi, 74400 Karachi, Pakistan
| |
Collapse
|
31
|
Telser J, Grossmann K, Wohlwend N, Risch L, Saely CH, Werner P. Phosphorylated tau in Alzheimer's disease. Adv Clin Chem 2023; 116:31-111. [PMID: 37852722 DOI: 10.1016/bs.acc.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
There is a need for blood biomarkers to detect individuals at different Alzheimer's disease (AD) stages because obtaining cerebrospinal fluid-based biomarkers is invasive and costly. Plasma phosphorylated tau proteins (p-tau) have shown potential as such biomarkers. This systematic review was conducted according to the PRISMA guidelines and aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181), threonine 217 (p-tau217) and threonine 231 (p-tau231) is informative in the diagnosis of AD. All p-tau isoforms increase as a function of Aβ-accumulation and discriminate healthy individuals from those at preclinical AD stages with high accuracy. P-tau231 increases earliest, followed by p-tau181 and p-tau217. In advanced stages, all p-tau isoforms are associated with the clinical classification of AD and increase with disease severity, with the greatest increase seen for p-tau217. This is also reflected by a better correlation of p-tau217 with Aβ scans, whereas both, p-tau217 and p-tau181 correlated equally with tau scans. However, at the very advanced stages, p-tau181 begins to plateau, which may mirror the trajectory of the Aβ pathology and indicate an association with a more intermediate risk of AD. Across the AD continuum, the incremental increase in all biomarkers is associated with structural changes in widespread brain regions and underlying cognitive decline. Furthermore, all isoforms differentiate AD from non-AD neurodegenerative disorders, making them specific for AD. Incorporating p-tau181, p-tau217 and p-tau231 in clinical use requires further studies to examine ideal cut-points and harmonize assays.
Collapse
Affiliation(s)
- Julia Telser
- Faculty of Medical Science, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Laboratory Dr. Risch, Vaduz, Liechtenstein
| | - Kirsten Grossmann
- Faculty of Medical Science, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Laboratory Dr. Risch, Vaduz, Liechtenstein
| | - Niklas Wohlwend
- Laboratory Dr. Risch, Vaduz, Liechtenstein; Department of Internal Medicine Spital Grabs, Spitalregion Rheintal Werdenberg Sarganserland, Grabs, Switzerland
| | - Lorenz Risch
- Faculty of Medical Science, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Laboratory Dr. Risch, Vaduz, Liechtenstein; University Institute of Clinical Chemistry, University Hospital and University of Bern, Inselspital, Bern, Switzerland
| | - Christoph H Saely
- Faculty of Medical Science, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Philipp Werner
- Department of Neurology, State Hospital of Rankweil, Academic Teaching Hospital, Rankweil, Austria.
| |
Collapse
|
32
|
Liang F, Baldyga K, Quan Q, Khatri A, Choi S, Wiener-Kronish J, Akeju O, Westover BM, Cody K, Shen Y, Marcantonio ER, Xie Z. Preoperative Plasma Tau-PT217 and Tau-PT181 Are Associated With Postoperative Delirium. Ann Surg 2023; 277:e1232-e1238. [PMID: 35794069 PMCID: PMC9875943 DOI: 10.1097/sla.0000000000005487] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study aims to identify blood biomarkers of postoperative delirium. BACKGROUND Phosphorylated tau at threonine 217 (Tau-PT217) and 181 (Tau-PT181) are new Alzheimer disease biomarkers. Postoperative delirium is associated with Alzheimer disease. We assessed associations between Tau-PT217 or Tau-PT181 and postoperative delirium. METHODS Of 491 patients (65 years old or older) who had a knee replacement, hip replacement, or laminectomy, 139 participants were eligible and included in the analysis. Presence and severity of postoperative delirium were assessed in the patients. Preoperative plasma concentrations of Tau-PT217 and Tau-PT181 were determined by a newly established Nanoneedle technology. RESULTS Of 139 participants (73±6 years old, 55% female), 18 (13%) developed postoperative delirium. Participants who developed postoperative delirium had higher preoperative plasma concentrations of Tau-PT217 and Tau-PT181 than participants who did not. Preoperative plasma concentrations of Tau-PT217 or Tau-PT181 were independently associated with postoperative delirium after adjusting for age, education, and preoperative Mini-Mental State score [odds ratio (OR) per unit change in the biomarker: 2.05, 95% confidence interval (CI):1.61-2.62, P <0.001 for Tau-PT217; and OR: 4.12; 95% CI: 2.55--6.67, P <0.001 for Tau-PT181]. The areas under the receiver operating curve for predicting delirium were 0.969 (Tau-PT217) and 0.885 (Tau-PT181). The preoperative plasma concentrations of Tau-PT217 or Tau-PT181 were also associated with delirium severity [beta coefficient (β) per unit change in the biomarker: 0.14; 95% CI: 0.09-0.19, P <0.001 for Tau-PT217; and β: 0.41; 95% CI: 0.12-0.70, P =0.006 for Tau-PT181). CONCLUSIONS Preoperative plasma concentrations of Tau-PT217 and Tau-PT181 were associated with postoperative delirium, with Tau-PT217 being a stronger indicator of postoperative delirium than Tau-PT181.
Collapse
Affiliation(s)
- Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathryn Baldyga
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Shawn Choi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Jeanine Wiener-Kronish
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02124, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02124, USA
| | - Brandon M. Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02124, USA
| | - Kathryn Cody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02124, USA
| | - Yuan Shen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Anesthesia and Brain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Edward R. Marcantonio
- Divisions of General Medicine and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
33
|
Gao Y, Sui C, Chen B, Xin H, Che Y, Zhang X, Wang N, Wang Y, Liang C. Voxel-based morphometry reveals the correlation between gray matter volume and serum P-tau-181 in type 2 diabetes mellitus patients with different HbA1c levels. Front Neurosci 2023; 17:1202374. [PMID: 37255749 PMCID: PMC10225590 DOI: 10.3389/fnins.2023.1202374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Emerging evidence suggested widespread decreased gray matter volume (GMV) and tau hyperphosphorylation were associated with type 2 diabetes mellitus (T2DM). Insulin resistance is one of the mechanisms of neuron degeneration in T2DM; it can decrease the activity of protein kinase B and increase the activity of glycogen synthesis kinase-3β, thus promoting the hyperphosphorylation of tau protein and finally leading to neuronal degeneration. However, the association between GMV and serum tau protein phosphorylated at threonine 181 (P-tau-181) in T2DM patients lacks neuroimaging evidence. We aimed to investigate the difference in brain GMV between T2DM patients with different glycated hemoglobin A1c (HbA1c) levels and healthy control (HC) subjects and the correlation between serum P-tau-181 and GMV in T2DM patients. Methods Clinical parameters, biochemical indicators, and MRI data were collected for 41 T2DM patients with high glycosylated hemoglobin level (HGL), 17 T2DM patients with normal glycosylated hemoglobin level (NGL), and 42 HC subjects. Voxel-based morphometry (VBM) method was applied to investigate GMV differences among groups, and multiple regression analysis was used to examine the correlation between serum P-tau-181 and GMV. Results Compared with HC subjects, the T2DM patients with HGL or NGL all showed significantly decreased GMV. Briefly, the GMV decreased in T2DM patients with HGL was mainly in the bilateral parahippocampal gyrus (PHG), right middle temporal gyrus (MTG), temporal pole (TPOmid), hippocampus (HIP), and left lingual gyrus. The GMV reduction in T2DM patients with NGL was in the right superior temporal gyrus (STG), and there was no significant difference in GMV between the two diabetic groups. The GMV values of bilateral PHG, right MTG, TPOmid, HIP, and STG can significantly (p < 0.0001) distinguish T2DM patients from HC subjects in ROC curve analysis. In addition, we found that serum P-tau-181 levels were positively correlated with GMV in the right superior and middle occipital gyrus and cuneus, and negatively correlated with GMV in the right inferior temporal gyrus in T2DM patients. Conclusion Our study shows that GMV atrophy can be used as a potential biological indicator of T2DM and also emphasizes the important role of P-tau-181 in diabetic brain injury, providing new insights into the neuropathological mechanism of diabetic encephalopathy.
Collapse
Affiliation(s)
- Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Boyao Chen
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, Shandong, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yena Che
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- Department of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
34
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. Revolutionizing the Early Detection of Alzheimer's Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:4184. [PMID: 37177386 PMCID: PMC10180573 DOI: 10.3390/s23094184] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is now classified as a silent pandemic due to concerning current statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted a shift in research towards non-invasive treatments. In light of this, there is a growing need for early detection of AD through non-invasive approaches. The abundance of data generated by non-invasive techniques such as blood component monitoring, imaging, wearable sensors, and bio-sensors not only offers a platform for more accurate and reliable bio-marker developments but also significantly reduces patient pain, psychological impact, risk of complications, and cost. Nevertheless, there are challenges concerning the computational analysis of the large quantities of data generated, which can provide crucial information for the early diagnosis of AD. Hence, the integration of artificial intelligence and deep learning is critical to addressing these challenges. This work attempts to examine some of the facts and the current situation of these approaches to AD diagnosis by leveraging the potential of these tools and utilizing the vast amount of non-invasive data in order to revolutionize the early detection of AD according to the principles of a new non-invasive medicine era.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | | | | | | |
Collapse
|
36
|
Moloney CM, Labuzan SA, Crook JE, Siddiqui H, Castanedes-Casey M, Lachner C, Petersen RC, Duara R, Graff-Radford NR, Dickson DW, Mielke MM, Murray ME. Phosphorylated tau sites that are elevated in Alzheimer's disease fluid biomarkers are visualized in early neurofibrillary tangle maturity levels in the post mortem brain. Alzheimers Dement 2023; 19:1029-1040. [PMID: 35920592 PMCID: PMC9895127 DOI: 10.1002/alz.12749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) biomarkers are increasingly more reliable in predicting neuropathology. To facilitate interpretation of phosphorylated tau sites as an early fluid biomarker, we sought to characterize which neurofibrillary tangle maturity levels (pretangle, intermediary 1, mature tangle, intermediary 2, and ghost tangle) are recognized. METHODS We queried the Florida Autopsied Multi-Ethnic (FLAME) cohort for cases ranging from Braak stages I through VI, excluding non-AD neuropathologies and tauopathies. Thioflavin-S staining was compared to immunohistochemical measures of phosphorylated threonine (pT) 181, pT205, pT217, and pT231 in two hippocampal subsectors across n = 24 cases. RESULTS Each phosphorylated tau site immunohistochemically labeled early neurofibrillary tangle maturity levels compared to advanced levels recognized by thioflavin-S. Hippocampal burden generally increased with each Braak stage. DISCUSSION These results provide neurobiologic evidence that these phosphorylated tau fluid biomarker sites are present during early neurofibrillary tangle maturity levels and may explain why these fluid biomarker measures are observed before symptom onset. HIGHLIGHTS Immunohistochemical evaluation of four phosphorylated tau fluid biomarker sites. Earlier neurofibrillary tangle maturity levels recognized by phosphorylated tau in proline-rich region. Advanced tangle pathology is elevated in the subiculum compared to the cornu ammonis 1 of the hippocampus. Novel semi-quantitative frequency to calculate tangle maturity frequency.
Collapse
Affiliation(s)
| | | | - Julia E. Crook
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Habeeba Siddiqui
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Christian Lachner
- Division of Psychiatry, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
37
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
38
|
Abed SS, Hamdan FB, Hussein MM, Al-Mayah QS. Plasma tau and neurofilament light chain as biomarkers of Alzheimer's disease and their relation to cognitive functions. J Med Life 2023; 16:284-289. [PMID: 36937471 PMCID: PMC10015560 DOI: 10.25122/jml-2022-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) dementia is the most frequent cause of neurodegenerative dementia. The cognitive and behavioral symptoms associated with this disorder often have overlapping characteristics, potentially resulting in delayed diagnosis or misdiagnosis. This study aimed to assess the level of peripheral blood neurofilament light chain (NfL) and total tau (t-tau) protein in AD patients and investigate their relationship with cognitive impairment. The study included 80 participants of both sexes between the ages of 60 to 85 years. The participants were divided into two groups, consisting of 40 individuals in the control group (mean age 75±6.6 years) who had no cognitive or functional impairments and 40 AD patients (mean age 74.98±5.03 years). This study utilized the DSM-5 diagnostic criteria for major or mild neurocognitive disorder attributed to Alzheimer's disease (AD). The clinical and biochemical features of all participants were documented, and the Alzheimer's disease Assessment Scale cognitive subscale (ADAS-cog) scores were evaluated. Sandwich ELISA was employed to determine serum NfL and t-tau protein levels. The median serum NfL and t-tau protein levels in AD patients were significantly higher than those of the controls (47.84 pg/ml versus 17.66 pg/ml and 12.05 pg/ml versus 11.13 pg/ml, respectively). Age was positively correlated with NfL, t-tau levels, and ADAS-cog. Although elevated NfL and t-tau protein levels may play a role in disease progression, their diagnostic value for AD was limited.
Collapse
Affiliation(s)
- Sadiruldeen Sami Abed
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
- Corresponding Author: Sadiruldeen Sami Abed, Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq. E-mail:
| | - Farqad Bader Hamdan
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | | |
Collapse
|
39
|
Assessment of Plasma and Cerebrospinal Fluid Biomarkers in Different Stages of Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2023; 24:ijms24021226. [PMID: 36674742 PMCID: PMC9864037 DOI: 10.3390/ijms24021226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is the primary type of dementia, followed by frontotemporal lobar degeneration (FTLD). They share some clinical characteristics, mainly at the early stages. So, the identification of early, specific, and minimally invasive biomarkers is required. In this study, some plasma biomarkers (Amyloid β42, p-Tau181, t-Tau, neurofilament light (NfL), TAR DNA-binding protein 43 (TDP-43)) were determined by single molecule array technology (SIMOA®) in control subjects (n = 22), mild cognitive impairment due to AD (MCI-AD, n = 33), mild dementia due to AD (n = 12), and FTLD (n = 11) patients. The correlations between plasma and cerebrospinal fluid (CSF) levels and the accuracy of plasma biomarkers for AD early diagnosis and discriminating from FTLD were analyzed. As result, plasma p-Tau181 and NfL levels correlated with the corresponding CSF levels. Additionally, plasma p-Tau181 showed good accuracy for distinguishing between the controls and AD, as well as discriminating between AD and FTLD. Moreover, plasma NfL could discriminate dementia-AD vs. controls, FTLD vs. controls, and MCI-AD vs. dementia-AD. Therefore, the determination of these biomarkers in plasma is potentially helpful in AD spectrum diagnosis, but also discriminating from FTLD. In addition, the accessibility of these potential early and specific biomarkers may be useful for AD screening protocols in the future.
Collapse
|
40
|
He H, Wu C, Saqib M, Hao R. Single-molecule fluorescence methods for protein biomarker analysis. Anal Bioanal Chem 2023:10.1007/s00216-022-04502-9. [PMID: 36609860 DOI: 10.1007/s00216-022-04502-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuhong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.,Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. .,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
41
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Satoh-Asahara N, Yamakage H, Tanaka M, Kawasaki T, Matsuura S, Tatebe H, Akiguchi I, Tokuda T. Soluble TREM2 and Alzheimer-related biomarker trajectories in the blood of patients with diabetes based on their cognitive status. Diabetes Res Clin Pract 2022; 193:110121. [PMID: 36272585 DOI: 10.1016/j.diabres.2022.110121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022]
Abstract
AIM We aimed to elucidate the dynamics of blood biomarkers according to the severity of cognitive impairment in patients with type 2 diabetes mellitus (DM) and to identify useful biomarkers for diabetes-related dementia. METHODS This was a cross-sectional, nested case-control study of 121 Japanese DM and non-DM patients with different levels of cognitive functioning. We evaluated participants' cognitive functions, blood biomarkers related to Alzheimer's disease, and soluble triggering receptors expressed on myeloid cells 2 (sTREM2). We then compared these biomarkers between the DM and non-DM and across the different cognitive strata. RESULTS In all cognitive strata, significantly lower levels of serum sTREM2 were observed in the DM than in the non-DM. We also found that plasma levels of phosphorylated tau (p-tau) increased with increasing levels of cognitive decline in both the DM and non-DM. However, this was accompanied by a decrease in plasma amyloid-β(Aβ42/Aβ40 ratios in non-DM only. CONCLUSION This study revealed novel characteristic trajectories of dementia-related blood biomarkers in diabetes-related dementia, suggesting the pathological involvement of molecular cascades initiated by impaired microglial activation. This results in decreased serum sTREM2, followed by tauopathy without substantial amyloid plaques, reflected by plasma p-tau elevation with no decrease in the Aβ42/Aβ40 ratio. Clinical trials (the unique trial number and the name of the registry): UMIN000048032, https://www.umin.ac.jp.
Collapse
Affiliation(s)
- Noriko Satoh-Asahara
- Clinical Research Institute for Endocrine & Metabolic Disease, National Hospital Organization, Kyoto Medical Center, 1-1 Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan; Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Aichi 464-8601, Japan.
| | - Hajime Yamakage
- Clinical Research Institute for Endocrine & Metabolic Disease, National Hospital Organization, Kyoto Medical Center, 1-1 Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Masashi Tanaka
- Clinical Research Institute for Endocrine & Metabolic Disease, National Hospital Organization, Kyoto Medical Center, 1-1 Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan; Department of Physical Therapy, Health Science University, Yamanashi 401-0380, Japan
| | - Teruaki Kawasaki
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan
| | - Sayo Matsuura
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-0024, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-0024, Japan
| | - Ichiro Akiguchi
- Center of Neurological and Cerebrovascular Diseases, Koseikai Takeda Hospital, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-0024, Japan
| |
Collapse
|
43
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
44
|
Nabizadeh F, Balabandian M, Rostami MR, Ward RT, Ahmadi N, Pourhamzeh M. Plasma p-tau181 associated with structural changes in mild cognitive impairment. Aging Clin Exp Res 2022; 34:2139-2147. [PMID: 35648357 DOI: 10.1007/s40520-022-02148-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with dementia and is a serious concern for the health of individuals and government health care systems worldwide. Gray matter atrophy and white matter damage are major contributors to cognitive deficits in AD patients, as demonstrated by magnetic resonance imaging (MRI). Many of these brain changes associated with AD begin to occur about 15 years before the onset of initial clinical symptoms. Therefore, it is critical to find biomarkers reflective of these brain changes associated with AD to identify this disease and monitor its prognosis and development. The increased plasma level of hyperphosphorylated tau 181 (p-tau181) has been recently considered a novel biomarker for the diagnosis of AD, preclinical AD, and mild cognitive impairment (MCI). In the current study, we examined the association of cerebrospinal fluid (CSF) and plasma levels of p-tau181 with structural brain changes in cortical thickness, cortical volume, surface area, and subcortical volume in MCI patients. In this cross-sectional study, we included the information of 461 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The results of voxel-wise partial correlation analyses showed a significant negative correlation between the increased levels of plasma p-tau181, CSF total tau, and CSF p-tau181 with structural changes in widespread brain regions. These results provide evidence for the use of plasma p-tau181 as a diagnostic marker for structural changes in the brain associated with the early stages of AD and neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Balabandian
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Rostami
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Richard T Ward
- Center for the Study of Emotion and Attention, University of Florida, Florida, USA
- Department of Psychology, University of Florida, Florida, USA
| | - Niloufar Ahmadi
- Student Research Committee, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Sonuç Karaboğa MN, Sezgintürk M. A practical approach for the detection of protein tau with a portable potentiostat. ELECTROANAL 2022. [DOI: 10.1002/elan.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S, Pothast M, Shah A, Kelley H, Esnault C, McCormack R, Dixon E, Fishbein L, Cherry JD, Huber BR, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1511-1522. [PMID: 34854540 PMCID: PMC9160206 DOI: 10.1002/alz.12502] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/03/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI) typically sustained by contact sport athletes. Post-translation modifications to tau in CTE have not been well delineated or compared to Alzheimer's disease (AD). METHODS We measured phosphorylated tau epitopes within dorsolateral frontal cortex from post mortem brains with neither CTE nor AD (n = 108), CTE (n = 109), AD (n = 223), and both CTE and AD (n = 33). RESULTS Levels of hyperphosphorylated tau (p-tau)202 , p-tau231 , and p-tau396 were significantly increased in CTE. Total years of RHI exposure was significantly associated with increased p-tau202 levels (P = .001), but not p-tau396 . Instead, p-tau396 was most closely related to amyloid beta (Aβ)1-42 levels (P < .001). The p-tau202 :p-tau396 ratio was significantly increased in early and late CTE compared to AD. DISCUSSION In frontal cortex, p-tau202 is the most upregulated p-tau species in CTE, while p-tau396 is most increased in AD. p-tau202 and p-tau396 measurements may aid in developing biomarkers for disease.
Collapse
Affiliation(s)
- SpiroAnthony Stathas
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Sarah Daley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Morgan Pothast
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Hunter Kelley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Camille Esnault
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Robert McCormack
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Lucas Fishbein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| |
Collapse
|
47
|
Alty J, Bai Q, Li R, Lawler K, St George RJ, Hill E, Bindoff A, Garg S, Wang X, Huang G, Zhang K, Rudd KD, Bartlett L, Goldberg LR, Collins JM, Hinder MR, Naismith SL, Hogg DC, King AE, Vickers JC. The TAS Test project: a prospective longitudinal validation of new online motor-cognitive tests to detect preclinical Alzheimer's disease and estimate 5-year risks of cognitive decline and dementia. BMC Neurol 2022; 22:266. [PMID: 35850660 PMCID: PMC9289357 DOI: 10.1186/s12883-022-02772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The worldwide prevalence of dementia is rapidly rising. Alzheimer's disease (AD), accounts for 70% of cases and has a 10-20-year preclinical period, when brain pathology covertly progresses before cognitive symptoms appear. The 2020 Lancet Commission estimates that 40% of dementia cases could be prevented by modifying lifestyle/medical risk factors. To optimise dementia prevention effectiveness, there is urgent need to identify individuals with preclinical AD for targeted risk reduction. Current preclinical AD tests are too invasive, specialist or costly for population-level assessments. We have developed a new online test, TAS Test, that assesses a range of motor-cognitive functions and has capacity to be delivered at significant scale. TAS Test combines two innovations: using hand movement analysis to detect preclinical AD, and computer-human interface technologies to enable robust 'self-testing' data collection. The aims are to validate TAS Test to [1] identify preclinical AD, and [2] predict risk of cognitive decline and AD dementia. METHODS Aim 1 will be addressed through a cross-sectional study of 500 cognitively healthy older adults, who will complete TAS Test items comprising measures of motor control, processing speed, attention, visuospatial ability, memory and language. TAS Test measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 (p-tau181). Aim 2 will be addressed through a 5-year prospective cohort study of 10,000 older adults. Participants will complete TAS Test annually and subtests of the Cambridge Neuropsychological Test Battery (CANTAB) biennially. 300 participants will undergo in-person clinical assessments. We will use machine learning of motor-cognitive performance on TAS Test to develop an algorithm that classifies preclinical AD risk (p-tau181-defined) and determine the precision to prospectively estimate 5-year risks of cognitive decline and AD. DISCUSSION This study will establish the precision of TAS Test to identify preclinical AD and estimate risk of cognitive decline and AD. If accurate, TAS Test will provide a low-cost, accessible enrichment strategy to pre-screen individuals for their likelihood of AD pathology prior to more expensive tests such as blood or imaging biomarkers. This would have wide applications in public health initiatives and clinical trials. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05194787 , 18 January 2022. Retrospectively registered.
Collapse
Affiliation(s)
- Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia. .,School of Medicine, University of Tasmania, Hobart, Australia. .,Royal Hobart Hospital, Hobart, Tasmania, Australia.
| | - Quan Bai
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Renjie Li
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.,Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Rebecca J St George
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.,School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Edward Hill
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Saurabh Garg
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Xinyi Wang
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Guan Huang
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Kaining Zhang
- School of Information and Communication Technologies, University of Tasmania, Hobart, Australia
| | - Kaylee D Rudd
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Larissa Bartlett
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Lynette R Goldberg
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, University of Sydney, Sydney, Australia
| | - David C Hogg
- School of Computing, University of Leeds, Leeds, UK
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| |
Collapse
|
48
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
49
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
50
|
Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol 2022; 18:400-418. [PMID: 35585226 DOI: 10.1038/s41582-022-00665-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
Collapse
|