1
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
2
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. Mol Neurodegener 2024; 19:68. [PMID: 39385222 PMCID: PMC11465638 DOI: 10.1186/s13024-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aβ)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aβ pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Falcon C, Fauria K, Gispert JD, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM. Sex/gender effects of glial reactivity on preclinical Alzheimer's disease pathology. Mol Psychiatry 2024:10.1038/s41380-024-02753-9. [PMID: 39384963 DOI: 10.1038/s41380-024-02753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Muge Akinci
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
| | | | - Clara Quijano-Rubio
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, Tottenham Ct Rd, W1T 7NF, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, J5/1 Mezzanine, Madison, WI, WI 53792, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain.
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Vermunt L, Sutphen CL, Dicks E, de Leeuw DM, Allegri RF, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day GS, Ewers M, Farlow MR, Fox NC, Ghetti B, Graff-Radford NR, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and inflammation response are biological correlates of decline in small-world values: a cohort study in autosomal dominant Alzheimer's disease. Brain Commun 2024; 6:fcae357. [PMID: 39440304 PMCID: PMC11495221 DOI: 10.1093/braincomms/fcae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The grey matter of the brain develops and declines in coordinated patterns during the lifespan. Such covariation patterns of grey matter structure can be quantified as grey matter networks, which can be measured with magnetic resonance imaging. In Alzheimer's disease, the global organization of grey matter networks becomes more random, which is captured by a decline in the small-world coefficient. Such decline in the small-world value has been robustly associated with cognitive decline across clinical stages of Alzheimer's disease. The biological mechanisms causing this decline in small-world values remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and small-world coefficient in mutation carriers (N = 219) and non-carriers (N = 136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Amyloid beta, Tau, synaptic (Synaptosome associated protein-25, Neurogranin) and neuronal calcium-sensor protein (Visinin-like protein-1) preceded loss of small-world coefficient by several years, while increased levels in CSF markers for inflammation (Chitinase-3-like protein 1) and axonal injury (Neurofilament light) co-occurred with decreasing small-world values. This suggests that axonal loss and inflammation play a role in structural grey matter network changes.
Collapse
Affiliation(s)
- Lisa Vermunt
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | | | - Ellen Dicks
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Diederick M de Leeuw
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Ricardo F Allegri
- Instituto de Investigaciones Neurológicas FLENI, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, Alzheimer’s Disease Research Center, and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin R Farlow
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nick C Fox
- Dementia Research Institute at UCL, University College London Institute of Neurology, London W1T 7NF, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, London WC1N 3AR, UK
| | - Bernardino Ghetti
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | | | - Jason Hassenstab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Celeste M Karch
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, University Hospital and University Basel, 4031 Basel, Switzerland
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Colin L Masters
- Florey Institute, Melbourne, Parkville Vic 3052, Australia
- The University of Melbourne, Melbourne, Parkville Vic 3052, Australia
| | - Eric McDade
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, 558-8585 Osaka, Japan
| | - John C Morris
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Peter R Schofield
- Neuroscience Research Australia & School of Medical Sciences, NSW 2052 Sydney, Sydney, Australia
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Chengjie Xiong
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip Scheltens
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Life Science Partners, 1071 DV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, 6229 ER Maastricht, Netherlands
| | | | | | - Anne M Fagan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Betty M Tijms
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595199. [PMID: 38826305 PMCID: PMC11142088 DOI: 10.1101/2024.05.21.595199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cellcell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
6
|
Warmenhoven N, Sánchez‐Benavides G, González‐Escalante A, Milà‐Alomà M, Shekari M, López‐Martos D, Ortiz‐Romero P, Kollmorgen G, Quijano‐Rubio C, Minguillón C, Gispert JD, Vilor‐Tejedor N, Arenaza‐Urquijo E, Palpatzis E, Ashton NJ, Zetterberg H, Blennow K, Suárez‐Calvet M, Grau‐Rivera O. CSF glial biomarkers are associated with cognition in individuals at risk of Alzheimer's disease. Alzheimers Dement 2024; 20:5819-5832. [PMID: 39032119 PMCID: PMC11497712 DOI: 10.1002/alz.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION We examined whether baseline glial markers soluble triggering receptor expressed on myeloid cell 2 (sTREM2), chitinase 3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF), and plasma GFAP are associated with cognitive change in cognitively unimpaired (CU) individuals at risk of Alzheimer's disease (AD). METHODS A total of 353 CU (mean age 60.9 years) participants were included (mean follow-up time 3.28 years). Linear regression models with cognition as outcome were used. We also tested whether amyloid beta (Aβ) status modified these associations. RESULTS Higher baseline CSF sTREM2 was associated with a positive global cognition (Preclinical Alzheimer's Cognitive Composite) rate of change, and better memory and executive outcomes, independently of AD pathology. Higher baseline plasma GFAP was associated with a decline on attention rate of change. Stratified analyses by Aβ status showed that CSF sTREM2 and YKL-40 were positively associated with executive functioning in amyloid negative (Aβ-) individuals. DISCUSSION Our results suggest that a TREM2-mediated microglial response may be associated with better longitudinal cognitive performance. HIGHLIGHTS Higher cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cell 2 (sTREM2) relates to better longitudinal cognitive performance. The association between CSF sTREM2 and cognition is independent of Alzheimer's disease (AD) pathology. Targeting microglial reactivity may be a therapeutic strategy for AD prevention.
Collapse
Affiliation(s)
- Noëlle Warmenhoven
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Gonzalo Sánchez‐Benavides
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Armand González‐Escalante
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Marta Milà‐Alomà
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
- Department of RadiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - David López‐Martos
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Paula Ortiz‐Romero
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | | | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadridSpain
| | - Natalia Vilor‐Tejedor
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute for Science and TechnologyBarcelonaSpain
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamNetherlands
| | - Eider Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Eleni Palpatzis
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
- ISGlobal, Barcelona Institute of Global HealthBarcelonaSpain
| | - Nicholas J Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaSouth London and Maudsley NHS Foundation, Michael Rutter CentreLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- King's College London, Institute of Psychiatry, Psychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
| | - Marc Suárez‐Calvet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Oriol Grau‐Rivera
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationWellingtonBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Hospital del Mar Research InstituteBarcelonaSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | | |
Collapse
|
7
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
8
|
Reichert Plaska C, Heslegrave A, Bruno D, Ramos-Cejudo J, Han Lee S, Osorio R, Imbimbo BP, Zetterberg H, Blennow K, Pomara N. Evidence for reduced anti-inflammatory microglial phagocytic response in late-life major depression. Brain Behav Immun 2024; 120:248-255. [PMID: 38795783 PMCID: PMC11270917 DOI: 10.1016/j.bbi.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Major depressive disorder (MDD) is associated with Alzheimer's disease (AD) but the precise mechanisms underlying this relationship are not understood. While it is well established that cerebrospinal fluid (CSF) soluble levels of triggering receptor expressed on myeloid cells 2 (sTREM2) increase during early stages of AD, how sTREM2 levels behave in subjects with MDD is not known. In a longitudinal study, we measured CSF sTREM2 levels in 27 elderly cognitively intact individuals with late-life major depression (LLMD) and in 19 healthy controls. We tested the hypothesis that, similarly to what happens in early stages of AD, CSF sTREM2 would be elevated in MDD. In addition, we compared the associations of CSF sTREM2, pro- and anti- inflammatory, and AD biomarkers in LLMD and control subjects. Surprisingly, we found that mean CSF sTREM2 levels were significantly reduced in LLMD compared to controls. This reduction was no longer significant at the 3-year follow-up visit when depression severity improved. In addition, we found that CSF sTREM2 was associated with AD biomarkers and proinflammatory cytokines in controls but not in LLMD. These findings suggest that impaired microglia phagocytic response to AD pathology may be a novel link between MDD and AD.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; VA Boston Cooperative Studies Program MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Sang Han Lee
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Clinical Research Department, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry and Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Lista S, Imbimbo BP, Grasso M, Fidilio A, Emanuele E, Minoretti P, López-Ortiz S, Martín-Hernández J, Gabelle A, Caruso G, Malaguti M, Melchiorri D, Santos-Lozano A, Imbimbo C, Heneka MT, Caraci F. Tracking neuroinflammatory biomarkers in Alzheimer's disease: a strategy for individualized therapeutic approaches? J Neuroinflammation 2024; 21:187. [PMID: 39080712 PMCID: PMC11289964 DOI: 10.1186/s12974-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent trials of anti-amyloid-β (Aβ) monoclonal antibodies, including lecanemab and donanemab, in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a significant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. Genome-wide association studies identified robust associations between AD and several AD risk genes related to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowledge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD. MAIN BODY Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The fact that neuroinflammation is most likely present from earliest pre-stages of AD and co-occurs with the deposition of Aβ reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clinical trials involving anti-inflammatory drugs previously yielded unfavorable outcomes in early and mild-to-moderate AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected for intervention. Indeed, in our review, we observed a stage-dependent neuroinflammatory process in the AD brain. While the initial activation of glial cells counteracts early brain Aβ deposition, the downregulation in the functional state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory modulation therapy is required. The emergence of reliable blood-based neuroinflammatory biomarkers, particularly glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based on the ATI(N) biomarker framework. This expands upon the traditional classification of Aβ ("A"), tau ("T"), and neurodegeneration ("N"), by incorporating a novel inflammatory component ("I"). CONCLUSIONS The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics of cerebral inflammation. Such a precise information on time and place will be required before anti-inflammatory therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti-neuroinflammatory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status of patients.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | | | | | | | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, 94018, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital, 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Esch-Belval, Luxembourg.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018, Troina, Italy.
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
10
|
McDade E, Liu H, Bui Q, Hassenstab J, Gordon B, Benzinger T, Shen Y, Timsina J, Wang L, Sung YJ, Karch C, Renton A, Daniels A, Morris J, Xiong C, Ibanez L, Perrin R, Llibre-Guerra JJ, Day G, Supnet-Bell C, Xu X, Berman S, Chhatwal J, Ikeuchi T, Kasuga K, Niimi Y, Huey E, Schofield P, Brooks W, Ryan N, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman R, Cruchaga C. Ubiquitin-Proteasome System in the Different Stages of Dominantly Inherited Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4202125. [PMID: 39108475 PMCID: PMC11302696 DOI: 10.21203/rs.3.rs-4202125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating® (CDR®). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers. Our findings also demonstrated consistent correlations between UPS proteins and CSF biomarkers such as Aβ42/40 ratio, total tau, various phosphorylated tau species to total tau ratios (ptau181/T181, ptauT205/T205, ptauS202/S202, ptauT217/T217), and MTBR-tau243, alongside Neurofilament light chain (NfL) and the CDR®. Notably, a positive association was observed with imaging markers (PiB PET, tau PET) and a negative correlation with markers of neurodegeneration (FDG PET, MRI), highlighting a significant link between UPS dysregulation and neurodegenerative processes. The correlations suggest that the increase in multiple UPS proteins with rising tau levels and tau-tangle associated markers, indicating a potential role for the UPS in relation to misfolded tau/neurofibrillary tangles (NFTs) and symptom onset. These findings indicate that elevated CSF UPS proteins in DIAD MCs could serve as early indicators of disease progression and suggest a link between UPS dysregulation and amyloid plaque, tau tangles formation, implicating the UPS as a potential therapeutic target in AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alan Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA: Departments of Neurology and Genetics and Ge
| | | | | | | | | | | | | | | | | | | | | | - Jasmeer Chhatwal
- Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | | | | | | | | - Randall Bateman
- Department of Neurology, Washington University School of Medicine
| | | |
Collapse
|
11
|
Gonçalves PB, Cordeiro Y, Rennó Sodero AC. Understanding the mechanisms of green tea EGCG against amyloid β oligomer neurotoxicity through computational studies. RSC Adv 2024; 14:22525-22539. [PMID: 39015669 PMCID: PMC11251396 DOI: 10.1039/d4ra03343d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Oligomeric species of amyloid β peptide (Aβ) are pivotal in Alzheimer's disease (AD) pathogenesis, making them valuable therapeutic targets. Currently, there is no cure or preventive therapy available for AD, with only a few therapeutics offering temporary alleviation of symptoms. Natural products (NPs) are now considered promising anti-amyloid agents. Green tea catechins have garnered considerable attention due to their ability to remodel the toxic amyloid β peptide oligomers (AβOs) into non-toxic assemblies. Nevertheless, the precise molecular mechanism underlying their effects on AβOs remains unclear. In this study, we employ a combination of binding site prediction, molecular docking, and dynamics simulations to gain mechanistic insights into the binding of the potent anti-amyloid epigallocatechin-3-gallate (EGCG) and the less effective catechin, epicatechin (EC), on the structure of pore-forming Aβ tetramers (PDB ID 6RHY). This recently elucidated structure represents AβO(1-42) with two faces of the hydrophobic β-sheet core and hydrophilic edges. Our simulations revealed three potential druggable binding sites within the AβO: two in hydrophilic edges and one in the β-sheet core. Although both catechins bind via hydrogen bond (H-bond) and aromatic interactions to the three potential binding sites, EGCG interacted with key residues more efficiently than EC. We propose that EGCG may remodel AβOs preventing pore formation by binding to the hydrophilic edge binding sites. Additionally, EGCG interacts with key residues in the oligomer's β-sheet core binding site, crucial for fibrillar aggregation. A better understanding of how anti-amyloid compounds remodelling AβOs could be valuable for the development of new therapeutic strategies targeting Aβ in AD. Further experimental validation using point mutations involving key residues could be useful to define whether the establishment of these interactions is crucial for the EGCG remodelling effect.
Collapse
Affiliation(s)
- Priscila Baltazar Gonçalves
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro RJ 21941-902 Brazil
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
12
|
Nabizadeh F, Seyedmirzaei H, Karami S. Neuroimaging biomarkers and CSF sTREM2 levels in Alzheimer's disease: a longitudinal study. Sci Rep 2024; 14:15318. [PMID: 38961148 PMCID: PMC11222555 DOI: 10.1038/s41598-024-66211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the exact pathophysiological mechanisms underlying the involvement of triggering receptor expressed on myeloid cells 2 (TREM2) related microglia activation is crucial for the development of clinical trials targeting microglia activation at different stages of Alzheimer's disease (AD). Given the contradictory findings in the literature, it is imperative to investigate the longitudinal alterations in cerebrospinal fluid (CSF) soluble TREM2 (sTREM2) levels as a marker for microglia activation, and its potential association with AD biomarkers, in order to address the current knowledge gap. In this study, we aimed to assess the longitudinal changes in CSF sTREM2 levels within the framework of the A/T/N classification system for AD biomarkers and to explore potential associations with AD pathological features, including the presence of amyloid-beta (Aβ) plaques and tau aggregates. The baseline and longitudinal (any available follow-up visit) CSF sTREM2 levels and processed tau-PET and Aβ-PET data of 1001 subjects were recruited from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A+ /TN+ , A+ /TN- , A- /TN+ , and A- /TN- . Linear regression analyses were conducted to assess the relationship between CSF sTREM2 with cognitive performance, tau and Aβ-PET adjusting for age, gender, education, and APOE ε4 status. Based on our analysis there was a significant difference in baseline and rate of change of CSF sTREM2 between ATN groups. While there was no association between baseline CSF sTREM2 and cognitive performance (ADNI-mem), we found that the rate of change of CSF sTREM2 is significantly associated with cognitive performance in the entire cohort but not the ATN groups. We found that the baseline CSF sTREM2 is significantly associated with baseline tau-PET and Aβ-PET rate of change only in the A+ /TN+ group. A significant association was found between the rate of change of CSF sTREM2 and the tau- and Aβ-PET rate of change only in the A+ /TN- group. Our study suggests that the TREM2-related microglia activation and their relations with AD markers and cognitive performance vary the in presence or absence of Aβ and tau pathology. Furthermore, our findings revealed that a faster increase in the level of CSF sTREM2 might attenuate future Aβ plaque formation and tau aggregate accumulation only in the presence of Aβ pathology.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Baumgartner A, Robinson M, Golde T, Jaydev S, Huang S, Hadlock J, Funk C. Fokker-Planck diffusion maps of multiple single cell microglial transcriptomes reveals radial differentiation into substates associated with Alzheimer's pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599924. [PMID: 38979220 PMCID: PMC11230164 DOI: 10.1101/2024.06.21.599924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The identification of microglia subtypes is important for understanding the role of innate immunity in neurodegenerative diseases. Current methods of unsupervised cell type identification assume a small noise-to-signal ratio of transcriptome measurements that would produce well-separated cell clusters. However, identification of subtypes is obscured by gene expression noise, diminishing the distances in transcriptome space between distinct cell types and blurring boundaries. Here we use Fokker-Planck (FP) diffusion maps to model cellular differentiation as a stochastic process whereby cells settle into local minima, corresponding to cell subtypes, in a potential landscape constructed from transcriptome data using a nearest neighbor graph approach. By applying critical transition fields, we identify individual cells on the verge of transitioning between subtypes, revealing microglial cells in inactivated, homeostatic state before radially transitioning into various specialized subtypes. Specifically, we show that cells from Alzheimer's disease patients are enriched in a microglia subtype associated to antigen presentation and T-cell recruitment.
Collapse
Affiliation(s)
| | | | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Institute Emory Brain Health, Emory University School of Medicine, Atlanta, GA, USA
| | - Suman Jaydev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Jennifer Hadlock
- Institute for Systems Biology, Seattle, WA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA
| |
Collapse
|
14
|
Wang Y, Ye M, Ji Q, Liu Q, Xu X, Zhan Y. The longitudinal trajectory of CSF sTREM2: the alzheimer's disease neuroimaging initiative. Alzheimers Res Ther 2024; 16:138. [PMID: 38926894 PMCID: PMC11202383 DOI: 10.1186/s13195-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) is considered a biomarker of microglia activity. The objective of this study was to investigate the trajectory of CSF sTREM2 levels over time and examine its association with sex. METHODS A total of 1,017 participants from the Alzheimer's Disease Neuroimaging Initiative Study (ADNI) with at least one CSF sTREM2 record were included. The trajectory of CSF sTREM2 was analyzed using a growth curve model. The association between CSF sTREM2 levels and sex was assessed using linear mixed-effect models. RESULTS CSF sTREM2 levels were increased with age over time (P < 0.0001). No significant sex difference was observed in sTREM2 levels across the entire sample; however, among the APOE ε4 allele carriers, women exhibited significantly higher sTREM2 levels than men (β = 0.146, P = 0.002). CONCLUSION Our findings highlight the association between CSF sTREM2 levels and age-related increments, underscoring the potential influence of aging on sTREM2 dynamics. Furthermore, our observations indicate a noteworthy association between sex and CSF sTREM2 levels, particularly in individuals carrying the APOE ε4 allele.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308975. [PMID: 38947065 PMCID: PMC11213097 DOI: 10.1101/2024.06.15.24308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET+ participants, including TIMP3, which regulates brain Aβ production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pamela C. L. Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Lin C, Kong Y, Chen Q, Zeng J, Pan X, Miao J. Decoding sTREM2: its impact on Alzheimer's disease - a comprehensive review of mechanisms and implications. Front Aging Neurosci 2024; 16:1420731. [PMID: 38912524 PMCID: PMC11190086 DOI: 10.3389/fnagi.2024.1420731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Lin
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Kong
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Chen
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jixiang Zeng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaojin Pan
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jifei Miao
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Wagemann O, Liu H, Wang G, Shi X, Bittner T, Scelsi MA, Farlow MR, Clifford DB, Supnet-Bell C, Santacruz AM, Aschenbrenner AJ, Hassenstab JJ, Benzinger TLS, Gordon BA, Coalier KA, Cruchaga C, Ibanez L, Perrin RJ, Xiong C, Li Y, Morris JC, Lah JJ, Berman SB, Roberson ED, van Dyck CH, Galasko D, Gauthier S, Hsiung GYR, Brooks WS, Pariente J, Mummery CJ, Day GS, Ringman JM, Mendez PC, St. George-Hyslop P, Fox NC, Suzuki K, Okhravi HR, Chhatwal J, Levin J, Jucker M, Sims JR, Holdridge KC, Proctor NK, Yaari R, Andersen SW, Mancini M, Llibre-Guerra J, Bateman RJ, McDade E. Downstream Biomarker Effects of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer Disease: The DIAN-TU-001 Randomized Clinical Trial. JAMA Neurol 2024; 81:582-593. [PMID: 38683602 PMCID: PMC11059071 DOI: 10.1001/jamaneurol.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024]
Abstract
Importance Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] β = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] β = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] β = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] β = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] β = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] β = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] β = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration ClinicalTrials.gov Identifier: NCT04623242.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Xinyu Shi
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | | | - Marzia A. Scelsi
- F. Hoffmann-La Roche Products Ltd, Welwyn Garden City, United Kingdom
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - David B. Clifford
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Charlene Supnet-Bell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Anna M. Santacruz
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Jason J. Hassenstab
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | - Brian A. Gordon
- Department of Radiology, Washington University in St Louis, St Louis, Missouri
| | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Laura Ibanez
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| | - Richard J. Perrin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, Missouri
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - James J. Lah
- Department of Neurology, School of Medicine Emory University, Atlanta, Georgia
| | - Sarah B. Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham
| | | | - Douglas Galasko
- Department of Neurology, University of California, San Diego
| | - Serge Gauthier
- Department of Neurology & Psychiatry, McGill University, Montréal, Québec, Canada
| | - Ging-Yuek R. Hsiung
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William S. Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Jérémie Pariente
- Department of Neurology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Catherine J. Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville
| | - John M. Ringman
- Department of Neurology, University of Southern California, Los Angeles
| | - Patricio Chrem Mendez
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | | | - Nick C. Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hamid R. Okhravi
- Department of Geriatrics, Eastern Virginia Medical School, Norfolk
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | - Roy Yaari
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Jorge Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
18
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
19
|
A Vahab S, Nair A, Raj D, G P A, P P S, S Kumar V. Cubosomes as versatile lipid nanocarriers for neurological disorder therapeutics: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3729-3746. [PMID: 38095651 DOI: 10.1007/s00210-023-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 05/23/2024]
Abstract
Cubosomes are novel vesicular drug delivery systems with lipidic liquid crystal nanoparticles formed of predetermined proportions of amphiphilic lipids. They have a honeycomb-like structure and are thermodynamically stable. These bicontinuous lipid layers are separated into two water-based channels internally that can be used by various bioactive substances, including drugs, proteins, and peptides. This complex structure is responsible for its high drug-loading capacity. Cubosomes are thought to be promising vehicles for various routes of administration because of their extraordinary characteristics, including bioadhesion, the capacity to encapsulate hydrophilic, and hydrophobic, as well as amphiphilic substances, high resistance to environmental stress, and their ability to achieve controlled release through modification. One of the essential elements for improving patient compliance is the ability of these well-defined nano-drug delivery systems to boost the effectiveness of targeting while lowering the side effects/toxicities of payloads. The large internal surface area, a sufficiently uncomplicated fabrication procedure, and biodegradability make it an attractive nano lipid carrier for drug delivery. This review outlines the recent advancement of cubosomes for managing various neurological disorders, highlighting their potential in this field.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ayushi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Devika Raj
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Akhil G P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreelakshmi P P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
20
|
Winfree RL, Nolan E, Dumitrescu L, Blennow K, Zetterberg H, Gifford KA, Pechman KR, Seto M, Petyuk VA, Wang Y, Schneider J, Bennett DA, Jefferson AL, Hohman TJ. Variants in the MS4A cluster interact with soluble TREM2 expression on biomarkers of neuropathology. Mol Neurodegener 2024; 19:41. [PMID: 38760857 PMCID: PMC11101336 DOI: 10.1186/s13024-024-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aβ40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aβ40 (β = -0.44, p-value = 0.017) and replicated this interaction in ADNI (β = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aβ peptides in brain (Aβ total β = -0.14, p = 0.629; Aβ1-38, β = 0.11, p = 0.200). In contrast to the effects on Aβ, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (β = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aβ levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.
Collapse
Affiliation(s)
- Rebecca L Winfree
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Emma Nolan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Iyer AK, Vermunt L, Mirfakhar FS, Minaya M, Acquarone M, Koppisetti RK, Renganathan A, You SF, Danhash EP, Verbeck A, Galasso G, Lee SM, Marsh J, Nana AL, Spina S, Seeley WW, Grinberg LT, Temple S, Teunissen CE, Sato C, Karch CM. Cell autonomous microglia defects in a stem cell model of frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307444. [PMID: 38798451 PMCID: PMC11118656 DOI: 10.1101/2024.05.15.24307444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neuronal dysfunction has been extensively studied as a central feature of neurodegenerative tauopathies. However, across neurodegenerative diseases, there is strong evidence for active involvement of immune cells like microglia in driving disease pathophysiology. Here, we demonstrate that tau mRNA and protein are expressed in microglia in human brains and in human induced pluripotent stem cell (iPSC)-derived microglia like cells (iMGLs). Using iMGLs harboring the MAPT IVS10+16 mutation and isogenic controls, we demonstrate that a tau mutation is sufficient to alter microglial transcriptional states. We discovered that MAPT IVS10+16 microglia exhibit cytoskeletal abnormalities, stalled phagocytosis, disrupted TREM2/TYROBP networks, and altered metabolism. Additionally, we found that secretory factors from MAPT IVS10+16 iMGLs impact neuronal health, reducing synaptic density in neurons. Key features observed in vitro were recapitulated in human brain tissue and cerebrospinal fluid from MAPT mutations carriers. Together, our findings that MAPT IVS10+16 drives cell-intrinsic dysfunction in microglia that impacts neuronal health has major implications for development of therapeutic strategies.
Collapse
Affiliation(s)
- Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | | | - Miguel Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mariana Acquarone
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | | | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Emma P. Danhash
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Scott M. Lee
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo
| | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | - Chihiro Sato
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University in St Louis, St Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Karlsson L, Vogel J, Arvidsson I, Åström K, Janelidze S, Blennow K, Palmqvist S, Stomrud E, Mattsson-Carlgren N, Hansson O. Cerebrospinal fluid reference proteins increase accuracy and interpretability of biomarkers for brain diseases. Nat Commun 2024; 15:3676. [PMID: 38693142 PMCID: PMC11063138 DOI: 10.1038/s41467-024-47971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.
Collapse
Affiliation(s)
- Linda Karlsson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
| | - Jacob Vogel
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Clinical Sciences, Clinical Memory Research Unit, SciLifeLab, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Kalle Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sebastian Palmqvist
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
23
|
Lan G, Chen X, Yang J, Sun P, Cai Y, Li A, Zhu Y, Liu Z, Ma S, Guo T. Microglial Reactivity Correlates with Presynaptic Loss Independent of β-Amyloid and Tau. Ann Neurol 2024; 95:917-928. [PMID: 38356322 PMCID: PMC11060909 DOI: 10.1002/ana.26885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Triggering receptor expressed on myeloid cells-2 (TREM2) and progranulin (PGRN) are critical regulators of microglia activation and can be detected in cerebrospinal fluid (CSF). However, whether microglial reactivity is detrimental or neuroprotective for Alzheimer disease (AD) is still debatable. METHODS We identified 663 participants with baseline β-amyloid (Aβ) positron emission tomography (PET) and CSF biomarker data, including phosphorylated tau181 (p-Tau181), soluble TREM2 (sTREM2), PGRN, and growth-associated protein-43 (GAP-43). Among them, 254 participants had concurrent longitudinal CSF biomarkers. We used multivariate regression analysis to study the associations of CSF microglial biomarkers with Aβ PET, CSF p-Tau181, and CSF GAP-43 cross-sectionally and longitudinally. A Chinese aging cohort's independent CSF samples (n = 65) were analyzed as a validation. RESULTS Higher baseline levels of CSF microglial biomarkers were related to faster rates of CSF sTREM2 increase and CSF PGRN decrease. Elevated CSF p-Tau181 was associated with higher levels of CSF microglial biomarkers and faster rates of CSF sTREM2 increase and CSF PGRN decrease. In both cohorts, higher Aβ burden was associated with attenuated CSF p-Tau181 effects on CSF microglial biomarker increases. Independent of Aβ PET and CSF p-Tau181 pathologies, higher levels of CSF sTREM2 but not CSF PGRN were related to elevated CSF GAP-43 levels and faster rates of CSF GAP-43 increase. INTERPRETATION These findings suggest that higher Aβ burden may attenuate the p-Tau-associated microglial responses, and TREM2-related microglial reactivity may independently correlate with GAP-43-related presynaptic loss. This study highlights the two-edged role of microglial reactivity in AD and other neurodegenerative diseases. ANN NEUROL 2024;95:917-928.
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | | | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| |
Collapse
|
24
|
Cai Y, Shi D, Lan G, Chen L, Jiang Y, Zhou L, Guo T. Association of β-Amyloid, Microglial Activation, Cortical Thickness, and Metabolism in Older Adults Without Dementia. Neurology 2024; 102:e209205. [PMID: 38489560 DOI: 10.1212/wnl.0000000000209205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Plasma β-amyloid42 (Aβ42)/Aβ40 levels have shown promise in identifying Aβ-PET positive individuals. This study explored the concordance and discordance of plasma Aβ42/Aβ40 positivity (Plasma±) with CSF Aβ42/Aβ40 positivity (CSF±) and Aβ-PET positivity (PET±) in older adults without dementia. Associations of Aβ deposition, cortical thickness, glucose metabolism, and microglial activation were also investigated. METHODS We selected participants without dementia who had concurrent plasma Aβ42/Aβ40 and Aβ-PET scans from the Alzheimer's Disease Neuroimaging Initiative cohort. Participants were categorized into Plasma±/PET± based on thresholds of composite 18F-florbetapir (FBP) standardized uptake value ratio (SUVR) ≥1.11 and plasma Aβ42/Aβ40 ≤0.1218. Aβ-PET-negative individuals were further divided into Plasma±/CSF± (CSF Aβ42/Aβ40 ≤0.138), and the concordance and discordance of Aβ42/Aβ40 in the plasma and CSF were investigated. Baseline and slopes of regional FBP SUVR were compared among Plasma±/PET± groups, and associations of regional FBP SUVR, FDG SUVR, cortical thickness, and CSF soluble Triggering Receptor Expressed on Myeloid Cell 2 (sTREM2) levels were analyzed. RESULTS One hundred eighty participants (mean age 72.7 years, 51.4% female, 96 cognitively unimpaired, and 84 with mild cognitive impairment) were included. We found that the proportion of Plasma+/PET- individuals was 6.14 times higher (odds ratio (OR) = 6.143, 95% confidence interval (CI) 2.740-16.185, p < 0.001) than that of Plasma-/PET+ individuals, and Plasma+/CSF- individuals showed 8.5 times larger percentage (OR = 8.5, 95% CI: 3.031-32.974, p < 0.001) than Plasma-/CSF+ individuals in Aβ-PET-negative individuals. Besides, Plasma+/PET- individuals exhibited faster (p < 0.05) Aβ accumulation predominantly in bilateral banks of superior temporal sulcus (BANKSSTS) and supramarginal, and superior parietal cortices compared with Plasma-/PET- individuals, despite no difference in baseline FBP SUVRs. In Plasma+/PET+ individuals, higher CSF sTREM2 levels correlated with slower BANKSSTS Aβ accumulation (standardized β (βstd) = -0.418, 95% CI -0.681 to -0.154, p = 0.002). Conversely, thicker cortical thickness and higher glucose metabolism in supramarginal and superior parietal cortices were associated with faster (p < 0.05) CSF sTREM2 increase in Plasma+/PET- individuals rather than in Plasma+/PET+ individuals. DISCUSSION These findings suggest that plasma Aβ42/Aβ40 abnormalities may predate CSF Aβ42/Aβ40 and Aβ-PET abnormalities. Higher sTREM2-related microglial activation is linked to thicker cortical thickness and higher metabolism in early amyloidosis stages but tends to mitigate Aβ accumulation primarily at relatively advanced stages.
Collapse
Affiliation(s)
- Yue Cai
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Dai Shi
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Guoyu Lan
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Linting Chen
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Yanni Jiang
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Liemin Zhou
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Tengfei Guo
- From the Institute of Biomedical Engineering (Y.C., G.L., L.C., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S., L.Z.), The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Psychology (Y.J.), University of Texas at Austin; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| |
Collapse
|
25
|
Mohanty R, Ferreira D, Westman E. Multi-pathological contributions toward atrophy patterns in the Alzheimer's disease continuum. Front Neurosci 2024; 18:1355695. [PMID: 38655107 PMCID: PMC11036869 DOI: 10.3389/fnins.2024.1355695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Heterogeneity in downstream atrophy in Alzheimer's disease (AD) is predominantly investigated in relation to pathological hallmarks (Aβ, tau) and co-pathologies (cerebrovascular burden) independently. However, the proportional contribution of each pathology in determining atrophy pattern remains unclear. We assessed heterogeneity in atrophy using two recently conceptualized dimensions: typicality (typical AD atrophy at the center and deviant atypical atrophy on either extreme including limbic predominant to hippocampal sparing patterns) and severity (overall neurodegeneration spanning minimal atrophy to diffuse typical AD atrophy) in relation to Aβ, tau, and cerebrovascular burden. Methods We included 149 Aβ + individuals on the AD continuum (cognitively normal, prodromal AD, AD dementia) and 163 Aβ- cognitively normal individuals from the ADNI. We modeled heterogeneity in MRI-based atrophy with continuous-scales of typicality (ratio of hippocampus to cortical volume) and severity (total gray matter volume). Partial correlation models investigated the association of typicality/severity with (a) Aβ (global Aβ PET centiloid), tau (global tau PET SUVR), cerebrovascular (total white matter hypointensity volume) burden (b) four cognitive domains (memory, executive function, language, visuospatial composites). Using multiple regression, we assessed the association of each pathological burden and typicality/severity with cognition. Results (a) In the AD continuum, typicality (r = -0.31, p < 0.001) and severity (r = -0.37, p < 0.001) were associated with tau burden after controlling for Aβ, cerebrovascular burden and age. Findings imply greater tau pathology in limbic predominant atrophy and diffuse atrophy. (b) Typicality was associated with memory (r = 0.49, p < 0.001) and language scores (r = 0.19, p = 0.02). Severity was associated with memory (r = 0.26, p < 0.001), executive function (r = 0.24, p = 0.003) and language scores (r = 0.29, p < 0.001). Findings imply better cognitive performance in hippocampal sparing and minimal atrophy patterns. Beyond typicality/severity, tau burden but not Aβ and cerebrovascular burden explained cognition. Conclusion In the AD continuum, atrophy-based severity was more strongly associated with tau burden than typicality after accounting for Aβ and cerebrovascular burden. Cognitive performance in memory, executive function and language domains was explained by typicality and/or severity and additionally tau pathology. Typicality and severity may differentially reflect burden arising from tau pathology but not Aβ or cerebrovascular pathologies which need to be accounted for when investigating AD heterogeneity.
Collapse
Affiliation(s)
- Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
26
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
27
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos I, Peyton SR. Acute and Chronic Neural and Glial Response to Mild Traumatic Brain Injury in the Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587620. [PMID: 38617329 PMCID: PMC11014627 DOI: 10.1101/2024.04.01.587620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to post-mortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute and chronic cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the Cornu Ammonis (CA)3 region of the hippocampus dynamically alters synaptic release onto CA1 pyramidal neurons in a cannabinoid 1 receptor (CB1R)-dependent manner. Further, we show that NIC induces an increase in extracellular matrix proteins associated with neural repair that is mitigated by CB1R antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level, and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry and Department of Engineering, Smith College, Northampton, MA 01063
| | - Brandon L. Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 83072, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 83072, USA
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ilia Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Yin S, Gao PY, Ou YN, Fu Y, Liu Y, Wang ZT, Han BL, Tan L. ANU-ADRI scores, tau pathology, and cognition in non-demented adults: the CABLE study. Alzheimers Res Ther 2024; 16:65. [PMID: 38532501 PMCID: PMC10964631 DOI: 10.1186/s13195-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND It has been reported that the risk of Alzheimer's disease (AD) could be predicted by the Australian National University Alzheimer Disease Risk Index (ANU-ADRI) scores. However, among non-demented Chinese adults, the correlations of ANU-ADRI scores with cerebrospinal fluid (CSF) core biomarkers and cognition remain unclear. METHODS Individuals from the Chinese Alzheimer's Biomarker and LifestyLE (CABLE) study were grouped into three groups (low/intermediate/high risk groups) based on their ANU-ADRI scores. The multiple linear regression models were conducted to investigate the correlations of ANU-ADRI scores with several biomarkers of AD pathology. Mediation model and structural equation model (SEM) were conducted to investigate the mediators of the correlation between ANU-ADRI scores and cognition. RESULTS A total of 1078 non-demented elders were included in our study, with a mean age of 62.58 (standard deviation [SD] 10.06) years as well as a female proportion of 44.16% (n = 476). ANU-ADRI scores were found to be significantly related with MMSE (β = -0.264, P < 0.001) and MoCA (β = -0.393, P < 0.001), as well as CSF t-tau (β = 0.236, P < 0.001), p-tau (β = 0.183, P < 0.001), and t-tau/Aβ42 (β = 0.094, P = 0.005). Mediation analyses indicated that the relationships of ANU-ADRI scores with cognitive scores were mediated by CSF t-tau or p-tau (mediating proportions ranging from 4.45% to 10.50%). SEM did not reveal that ANU-ADRI scores affected cognition by tau-related pathology and level of CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2). CONCLUSION ANU-ADRI scores were associated with cognition and tau pathology. We also revealed a potential pathological mechanism underlying the impact of ANU-ADRI scores on cognition.
Collapse
Affiliation(s)
- Shan Yin
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Ying Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Bao-Lin Han
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| |
Collapse
|
29
|
Plini ERG, Melnychuk MC, Dockree PM. Meditation Experience is Associated with Increased Structural Integrity of the Pineal Gland and greater total Grey Matter maintenance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303649. [PMID: 38496551 PMCID: PMC10942509 DOI: 10.1101/2024.03.04.24303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Growing evidence demonstrates that meditation practice supports cognitive functions including attention and interoceptive processing, and is associated with structural changes across cortical networks including prefrontal regions, and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the Pineal Gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns, and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels as well as increased fMRI BOLD signal in the Pineal Gland has been observed in mediators vs. controls. However, it is not known if long-term meditators exhibit structural change in the Pineal Gland linked to lifetime duration of practice. In the current study we performed Voxel-based morphometry (VBM) analysis to investigate: 1) whether long-term meditators (LTMs) (n=14) exhibited greater Pineal Gland integrity compared to a control group (n=969), 2) a potential association between the estimated lifetime hours of meditation (ELHOM) and Pineal Gland integrity, and 3) whether LTMs show greater Grey Matter (GM) maintenance (BrainPAD) that is associated with Pineal Gland integrity. The results revealed greater Pineal Gland integrity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the Pineal Gland but not with GM maintenance as measured by BrainPAD score. However, greater Pineal integrity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences Pineal Gland function, hormonal metabolism, and GM maintenance are discussed - in particular melatonin's roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.
Collapse
Affiliation(s)
- Emanuele RG Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | | | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| |
Collapse
|
30
|
Nabizadeh F, Zafari R. Progranulin and neuropathological features of Alzheimer's disease: longitudinal study. Aging Clin Exp Res 2024; 36:55. [PMID: 38441695 PMCID: PMC10914850 DOI: 10.1007/s40520-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Progranulin is an anti-inflammatory protein that plays an essential role in the synapse function and the maintenance of neurons in the central nervous system (CNS). It has been shown that the CSF level of progranulin increases in Alzheimer's disease (AD) patients and is associated with the deposition of amyloid-beta (Aβ) and tau in the brain tissue. In this study, we aimed to assess the longitudinal changes in cerebrospinal fluid (CSF) progranulin levels during different pathophysiological stages of AD and investigate associated AD pathologic features. METHODS We obtained the CSF and neuroimaging data of 1001 subjects from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A + /TN + , A + /TN-, A-/TN + , and A-/TN-. RESULTS Based on our analysis there was a significant difference in CSF progranulin (P = 0.001) between ATN groups. Further ANOVA analysis revealed that there was no significant difference in the rate of change of CSF-progranulin ATN groups. We found that the rate of change of CSF progranulin was associated with baseline Aβ-PET only in the A-/TN + group. A significant association was found between the rate of change of CSF progranulin and the Aβ-PET rate of change only in A-/TN + CONCLUSION: Our findings revealed that an increase in CSF progranulin over time is associated with faster formation of Aβ plaques in patients with only tau pathology based on the A/T/N classification (suspected non-Alzheimer's pathology). Together, our findings showed that the role of progranulin-related microglial activity on AD pathology can be stage-dependent, complicated, and more prominent in non-AD pathologic changes. Thus, there is a need for further studies to consider progranulin-based therapies for AD treatment.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
31
|
Zgorzynska E. TREM2 in Alzheimer's disease: Structure, function, therapeutic prospects, and activation challenges. Mol Cell Neurosci 2024; 128:103917. [PMID: 38244651 DOI: 10.1016/j.mcn.2024.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that plays a crucial role in the regulation of microglial survival, activation, phagocytosis, as well as in the maintenance of brain homeostasis and the inflammatory response to injury or neurodegeneration. This review provides a comprehensive overview of TREM2 structure and functions, highlighting the role of its variants in the development and progression of Alzheimer's disease (AD), a devastating neurodegenerative disease that affects millions of people worldwide. Additionally, the article discusses the potential of TREM2 as a therapeutic target in AD, analyzing the current state of research and future prospects. Given the significant challenges associated with the activation of TREM2, particularly due to its diverse isoforms and the delicate balance required to modulate the immune response without triggering hyperactivation, this review aims to enhance our understanding of TREM2 in AD and inspire further research into this promising yet challenging therapeutic target.
Collapse
Affiliation(s)
- Emilia Zgorzynska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
32
|
Lee J, Burkett BJ, Min HK, Senjem ML, Dicks E, Corriveau-Lecavalier N, Mester CT, Wiste HJ, Lundt ES, Murray ME, Nguyen AT, Reichard RR, Botha H, Graff-Radford J, Barnard LR, Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack CR, Jones DT. Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning. Brain 2024; 147:980-995. [PMID: 37804318 PMCID: PMC10907092 DOI: 10.1093/brain/awad346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023] Open
Abstract
Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Brian J Burkett
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carly T Mester
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Yin T, Yesiltepe M, D'Adamio L. Functional BRI2-TREM2 interactions in microglia: implications for Alzheimer's and related dementias. EMBO Rep 2024; 25:1326-1360. [PMID: 38347225 PMCID: PMC10933458 DOI: 10.1038/s44319-024-00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction. α-secretase cleaves TREM2 into TREM2-CTF and sTREM2. As BRI2 hinders α-secretase cleavage of the AD-related Aβ-Precursor-Protein, we probed whether BRI2 influences TREM2 processing. Our findings indicate a BRI2-TREM2 interaction that inhibits TREM2 processing in heterologous cells. Recombinant BRI2 and TREM2 proteins demonstrate a direct, cell-free BRI2-TREM2 ectodomain interaction. Constitutive and microglial-specific Itm2b-Knock-out mice, and Itm2b-Knock-out primary microglia provide evidence that Bri2 reduces Trem2 processing, boosts Trem2 mRNA expression, and influences Trem2 protein levels through α-secretase-independent pathways, revealing a multifaceted BRI2-TREM2 functional interaction. Moreover, a mutant Itm2b dementia mouse model exhibits elevated Trem2-CTF and sTrem2, mirroring sTREM2 increases in AD patients. Lastly, Bri2 deletion reduces phagocytosis similarly to a pathogenic TREM2 variant that enhances processing. Given BRI2's role in regulating Aβ-Precursor-Protein and TREM2 functions, it holds promise as a therapeutic target for AD and related dementias.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| | - Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
34
|
Pomara N, Imbimbo BP. Do anti-Aβ monoclonal antibodies lower brain plaques in Alzheimer patients through microglia activation? Alzheimers Dement 2024; 20:2289-2290. [PMID: 38224269 PMCID: PMC10984452 DOI: 10.1002/alz.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Nunzio Pomara
- Nathan S Kline Institute for Psychiatric ResearchGeriatric Psychiatry DivisionOrangeburgNew YorkUSA
| | | |
Collapse
|
35
|
Slingerland S, van der Zee S, Carli G, Slomp AC, Boertien JM, d’Angremont E, Bohnen NI, Albin RL, van Laar T. Cholinergic innervation topography in GBA-associated de novo Parkinson's disease patients. Brain 2024; 147:900-910. [PMID: 37748026 PMCID: PMC10907081 DOI: 10.1093/brain/awad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand 18F-F-fluoroethoxybenzovesamicol (18F-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD. The study investigated 123 newly diagnosed, treatment-naïve Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and 18F-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient. Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower 18F-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in 18F-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD. De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.
Collapse
Affiliation(s)
- Sofie Slingerland
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne C Slomp
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Emile d’Angremont
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
36
|
Qiang Q, Skudder-Hill L, Toyota T, Huang Z, Wei W, Adachi H. CSF 14-3-3 zeta(ζ) isoform is associated with tau pathology and cognitive decline in Alzheimer's disease. J Neurol Sci 2024; 457:122861. [PMID: 38194803 DOI: 10.1016/j.jns.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
14-3-3 is a family of conserved proteins that consist of seven isoforms which are highly expressed in the brain, and 14-3-3 zeta(ζ) is one of the isoforms encoded by the YWHAZ gene. Previous studies demonstrated that 14-3-3ζ is deposited in the neurofibrillary tangles of Alzheimer's disease (AD) brains, and that 14-3-3ζ interacts with tau from the purified neurofibrillary tangles of AD brain extract. The present study examined the cerebrospinal fluid (CSF) 14-3-3ζ levels of 719 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively normal (CN) participants, patients with mild cognitive impairment (MCI) and patients with AD dementia, and aimed to identify whether CSF 14-3-3ζ is associated with tau pathology. CSF 14-3-3ζ levels were increased in AD, and particularly elevated among tau pathology positive individuals. CSF 14-3-3ζ levels were associated with CSF phosphorylated tau 181 (p-tau) (r = 0.741, P < 0.001) and plasma p-tau (r = 0.293, P < 0.001), which are fluid biomarkers of tau pathology, and could predict tau pathology positive status with high accuracy (area under the receiver operating characteristic curve [AUC], 0.891). CSF 14-3-3ζ levels were also correlated to synaptic biomarker CSF GAP-43 (r = 0.609, P < 0.001) and neuroinflammatory biomarker CSF sTREM-2 (r = 0.507, P < 0.001). High CSF 14-3-3ζ levels at baseline were associated with progressive decline of cognitive function and neuroimaging findings during follow up. In conclusion, this study suggests that CSF 14-3-3ζ is a potential biomarker of AD that may be useful in clinical practice.
Collapse
Affiliation(s)
- Qiang Qiang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China; Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Loren Skudder-Hill
- Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China; School of Medicine, University of Auckland, Auckland, New Zealand
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.
| |
Collapse
|
37
|
Wang Q, Schindler SE, Chen G, Mckay NS, McCullough A, Flores S, Liu J, Sun Z, Wang S, Wang W, Hassenstab J, Cruchaga C, Perrin RJ, Fagan AM, Morris JC, Wang Y, Benzinger TLS. Investigating White Matter Neuroinflammation in Alzheimer Disease Using Diffusion-Based Neuroinflammation Imaging. Neurology 2024; 102:e208013. [PMID: 38315956 PMCID: PMC10890836 DOI: 10.1212/wnl.0000000000208013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/13/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of β-amyloid (Aβ) 42/Aβ40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aβ42/Aβ40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aβ42/Aβ40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aβ42/Aβ40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aβ42/Aβ40 was found in individuals with positive CSF Aβ42/Aβ40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.
Collapse
Affiliation(s)
- Qing Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne E Schindler
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Gengsheng Chen
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Nicole S Mckay
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Austin McCullough
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Shaney Flores
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Zhexian Sun
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Sicheng Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Wenshang Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Jason Hassenstab
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Carlos Cruchaga
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Richard J Perrin
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Anne M Fagan
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - John C Morris
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Yong Wang
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- From the Mallinckrodt Institute of Radiology (Q.W., G.C., N.S.M., A.M., S.F., Y.W., T.L.S.B.), Knight Alzheimer Disease Research Center (Q.W., S.E.S., G.C., N.S.M., A.M., J.H., R.J.P., A.M.F., J.C.M., T.L.S.B.), Department of Neurology (S.E.S., J.H., C.C., A.M.F., J.C.M.), Department of Surgery (J.L.), Department of Biomedical Engineering (Z.S.), Department of Electrical and System Engineering (S.W., W.W., Y.W.), Department of Psychiatry (C.C.), Department of Pathology & Immunology (R.J.P.), Department of Obstetrics & Gynecology (Y.W.), and Department of Neurosurgery (T.L.S.B.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
38
|
Arsenault R, Marshall S, Salois P, Li Q, Zhang W. sTREM2 Differentially Affects Cytokine Expression in Myeloid-Derived Cell Models via MAPK-JNK Signaling Pathway. BIOLOGY 2024; 13:87. [PMID: 38392305 PMCID: PMC10886855 DOI: 10.3390/biology13020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
TREM2 is a critical innate immune receptor primarily expressed on myeloid-derived cells, such as microglia and macrophages. Mutations in TREM2 are linked to several neurodegenerative diseases including Alzheimer's disease (AD). TREM2 can be cleaved from the cell membrane and released as soluble TREM2 (sTREM2). sTREM2 levels are shown to peak prior to AD, with its levels fluctuating throughout disease progression. However, the mechanism by which sTREM2 may affect innate immune responses is largely uncharacterized. In this study, we investigated whether sTREM2 can induce inflammatory response in myeloid-derived THP-1 monocytes and macrophages and characterized the signaling mechanisms involved. Our results show that sTREM2 was capable of stimulating the expression of several inflammatory cytokines in THP-1 cells throughout the time course of 2 h to 8 h but inducing anti-inflammatory cytokine expression at later time points. A TREM2 antibody was capable of inhibiting the expression of some cytokines induced by sTREM2 but enhancing others. The complex of sTREM2/TREM2 antibody was shown to enhance IL-1β expression, which was partially blocked by an NLRP3 specific inhibitor, indicating that the complex activated the NRLP3 inflammasome pathway. sTREM2 was also shown to have differential effects on cytokine expression in M0, M1, and M2 macrophages differentiated from THP-1 cells. sTREM2 has a more stimulating effect on cytokine expression in M0 macrophages, less of an effect on M2 macrophages, and some inhibitory effects on cytokine expression in M1 macrophages at early time points. Analyses of several signaling pathways revealed that sTREM2-induced expression of cytokines occurs mainly through MAPK-JNK signaling. Our work reveals differential effects of sTREM2 on cytokine expression profiles of THP-1 cells and macrophages and demonstrates that the MAPK-JNK signaling pathway is mainly responsible for sTREM2-induced cytokine expression.
Collapse
Affiliation(s)
- Ryan Arsenault
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Steven Marshall
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick Salois
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
39
|
Ly MT, Tuz-Zahra F, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind ER, Au R, Banks SJ, Barr WB, Wethe JV, Bondi MW, Delano-Wood LM, Cantu RC, Coleman MJ, Dodick DW, McClean MD, Mez JB, Palmisano J, Martin B, Hartlage K, Lin AP, Koerte IK, Cummings JL, Reiman EM, Shenton ME, Stern RA, Bouix S, Alosco ML. Association of Vascular Risk Factors and CSF and Imaging Biomarkers With White Matter Hyperintensities in Former American Football Players. Neurology 2024; 102:e208030. [PMID: 38165330 PMCID: PMC10870736 DOI: 10.1212/wnl.0000000000208030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent data link exposure to repetitive head impacts (RHIs) from American football with increased white matter hyperintensity (WMH) burden. WMH might have unique characteristics in the context of RHI beyond vascular risk and normal aging processes. We evaluated biological correlates of WMH in former American football players, including markers of amyloid, tau, inflammation, axonal injury, neurodegeneration, and vascular health. METHODS Participants underwent clinical interviews, MRI, and lumbar puncture as part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy Research Project. Structural equation modeling tested direct and indirect effects between log-transformed total fluid-attenuated inversion recovery (FLAIR) lesion volumes (TLV) and the revised Framingham stroke risk profile (rFSRP), MRI-derived global metrics of cortical thickness and fractional anisotropy (FA), and CSF levels of amyloid β1-42, p-tau181, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and neurofilament light. Covariates included age, race, education, body mass index, APOE ε4 carrier status, and evaluation site. Models were performed separately for former football players and a control group of asymptomatic men unexposed to RHI. RESULTS In 180 former football players (mean age = 57.2, 36% Black), higher log(TLV) had direct associations with the following: higher rFSRP score (B = 0.26, 95% CI 0.07-0.40), higher p-tau181 (B = 0.17, 95% CI 0.01-0.43), lower FA (B = -0.28, 95% CI -0.42 to -0.13), and reduced cortical thickness (B = -0.25, 95% CI -0.45 to -0.08). In 60 asymptomatic unexposed men (mean age = 59.3, 40% Black), there were no direct effects on log(TLV) (rFSRP: B = -0.03, 95% CI -0.48 to 0.57; p-tau181: B = -0.30, 95% CI -1.14 to 0.37; FA: B = -0.07, 95% CI -0.48 to 0.42; or cortical thickness: B = -0.28, 95% CI -0.64 to 0.10). The former football players showed stronger associations between log(TLV) and rFSRP (1,069% difference in estimates), p-tau181 (158%), and FA (287%) than the unexposed men. DISCUSSION Risk factors and biological correlates of WMH differed between former American football players and asymptomatic unexposed men. In addition to vascular health, p-tau181 and diffusion tensor imaging indices of white matter integrity showed stronger associations with WMH in the former football players. FLAIR WMH may have specific risk factors and pathologic underpinnings in RHI-exposed individuals.
Collapse
Affiliation(s)
- Monica T Ly
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Fatima Tuz-Zahra
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Yorghos Tripodis
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Charles H Adler
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Laura J Balcer
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Charles Bernick
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Henrik Zetterberg
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Kaj Blennow
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Elaine R Peskind
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Rhoda Au
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Sarah J Banks
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - William B Barr
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jennifer V Wethe
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Mark W Bondi
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Lisa M Delano-Wood
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Robert C Cantu
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael J Coleman
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - David W Dodick
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael D McClean
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jesse B Mez
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Joseph Palmisano
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Brett Martin
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Kaitlin Hartlage
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Alexander P Lin
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Inga K Koerte
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Jeffrey L Cummings
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Eric M Reiman
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Martha E Shenton
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Robert A Stern
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Sylvain Bouix
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| | - Michael L Alosco
- From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada
| |
Collapse
|
40
|
Van Hulle C, Ince S, Okonkwo OC, Bendlin BB, Johnson SC, Carlsson CM, Asthana S, Love S, Blennow K, Zetterberg H, Scott Miners J. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease. Transl Psychiatry 2024; 14:3. [PMID: 38182581 PMCID: PMC10770135 DOI: 10.1038/s41398-023-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Breakdown of the neurovascular unit is associated with blood-brain barrier (BBB) leakiness contributing to cognitive decline and disease pathology in the early stages of Alzheimer's disease (AD). Vascular stability depends on angiopoietin-1 (ANGPT-1) signalling, antagonised by angiopoietin-2 (ANGPT-2) expressed upon endothelial injury. We examined the relationship between CSF ANGPT-2 and CSF markers of BBB leakiness and core AD biomarkers across three independent cohorts: (i) 31 AD patients and 33 healthy controls grouped according to their biomarker profile (i.e., AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL); (ii) 121 participants in the Wisconsin Registry for Alzheimer's Prevention or Wisconsin Alzheimer's Disease Research study (84 participants cognitively unimpaired (CU) enriched for a parental history of AD, 20 participants with mild cognitive impairment (MCI), and 17 with AD); (iii) a neurologically normal cohort aged 23-78 years with paired CSF and serum samples. CSF ANGPT-2, sPDGFRβ, albumin and fibrinogen levels were measured by sandwich ELISA. In cohort (i), CSF ANGPT-2 was elevated in AD and correlated with CSF t-tau and p-tau181 but not Aβ42. ANGPT-2 also correlated positively with CSF sPDGFRβ and fibrinogen - markers of pericyte injury and BBB leakiness. In cohort (ii), CSF ANGPT-2 was highest in MCI and correlated with CSF albumin in the CU and MCI cohorts but not in AD. CSF ANGPT-2 also correlated with CSF t-tau and p-tau and with markers of neuronal injury (neurogranin and α-synuclein) and neuroinflammation (GFAP and YKL-40). In cohort (iii), CSF ANGPT-2 correlated strongly with the CSF/serum albumin ratio. Serum ANGPT-2 showed non-significant positive associations with CSF ANGPT-2 and the CSF/serum albumin ratio. Together, these data indicate that CSF and possibly serum ANGPT-2 is associated with BBB leakiness in early AD and is closely related to tau pathology and neuronal injury. The utility of serum ANGPT-2 as a biomarker of BBB damage in AD requires further study.
Collapse
Affiliation(s)
- Carol Van Hulle
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Selvi Ince
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth Love
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - J Scott Miners
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
41
|
Wang L, Nykänen NP, Western D, Gorijala P, Timsina J, Li F, Wang Z, Ali M, Yang C, Liu M, Brock W, Marquié M, Boada M, Alvarez I, Aguilar M, Pastor P, Ruiz A, Puerta R, Orellana A, Rutledge J, Oh H, Greicius MD, Le Guen Y, Perrin RJ, Wyss-Coray T, Jefferson A, Hohman TJ, Graff-Radford N, Mori H, Goate A, Levin J, Sung YJ, Cruchaga C. Proteo-genomics of soluble TREM2 in cerebrospinal fluid provides novel insights and identifies novel modulators for Alzheimer's disease. Mol Neurodegener 2024; 19:1. [PMID: 38172904 PMCID: PMC10763080 DOI: 10.1186/s13024-023-00687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Niko-Petteri Nykänen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Fuhai Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhaohua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William Brock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Marquié
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mercè Boada
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Agustín Ruiz
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adelina Orellana
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jarod Rutledge
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hamilton Oh
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | | | - Yann Le Guen
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Richard J Perrin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Angela Jefferson
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave, Box 8134, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA.
| |
Collapse
|
42
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Teipel SJ, Dyrba M, Kleineidam L, Brosseron F, Levin F, Bruno D, Buerger K, Cosma N, Schneider L, Düzel E, Glanz W, Fliessbach K, Janowitz D, Kilimann I, Laske C, Munk MH, Maier F, Peters O, Pomara N, Perneczky R, Rauchmann B, Priller J, Ramirez A, Roy N, Schneider A, Spottke A, Spruth EJ, Roeske S, Wagner M, Wiltfang J, Wolfsgruber S, Bartels C, Jessen F, Heneka MT. Association of latent factors of neuroinflammation with Alzheimer's disease pathology and longitudinal cognitive decline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12510. [PMID: 38213951 PMCID: PMC10781650 DOI: 10.1002/dad2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION We investigated the association of inflammatory mechanisms with markers of Alzheimer's disease (AD) pathology and rates of cognitive decline in the AD spectrum. METHODS We studied 296 cases from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study (DELCODE) cohort, and an extension cohort of 276 cases of the Alzheimer's Disease Neuroimaging Initiative study. Using Bayesian confirmatory factor analysis, we constructed latent factors for synaptic integrity, microglia, cerebrovascular endothelial function, cytokine/chemokine, and complement components of the inflammatory response using a set of inflammatory markers in cerebrospinal fluid. RESULTS We found strong evidence for an association of synaptic integrity, microglia response, and cerebrovascular endothelial function with a latent factor of AD pathology and with rates of cognitive decline. We found evidence against an association of complement and cytokine/chemokine factors with AD pathology and rates of cognitive decline. DISCUSSION Latent factors provided access to directly unobservable components of the neuroinflammatory response and their association with AD pathology and cognitive decline.
Collapse
|
44
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
45
|
Chiang YK, Lin YS, Chen CY, Lirng JF, Yang YH, Lee WJ, Fuh JL. Different Splice Isoforms of Peripheral Triggering Receptor Expressed on Myeloid Cells 2 mRNA Expressions are Associated With Cognitive Decline in Mild Dementia Due to Alzheimer's Disease and Reflect Central Neuroinflammation. Am J Alzheimers Dis Other Demen 2024; 39:15333175241243183. [PMID: 38592304 PMCID: PMC11005501 DOI: 10.1177/15333175241243183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is upregulated in activated microglia and may be related to cognitive decline in patients with Alzheimer's disease (AD). There is conflicting evidence regarding the association of peripheral TREM2 mRNA expression/soluble TREM2 (the extracellular domain of TREM2) with cognitive function/neuroinflammation in patients with AD. Herein, we studied the TREM2 and TREM2alt mRNA expression and their association with the cognitive performance in subjects with mild dementia due to AD and healthy controls. In a subgroup of patients with AD, magnetic resonance spectroscopy was used to measure the myo-inositol level in the posterior cingulate cortex, a surrogate marker for neuroinflammation. The results showed that increased TREM2 and TREM2alt mRNA expression is associated with AD pathogenesis at the mild dementia stage, thereby serving as a potential biomarker for early symptomatic stage of AD. TREM2 may exert protective effects on both cognition and central neuroinflammation.
Collapse
Affiliation(s)
- Yi-Kuan Chiang
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Shuan Lin
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Hsiu Yang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
46
|
de Gea P, Benkeder S, Bouvet P, Aimard M, Chounlamountri N, Honnorat J, Do LD, Meissirel C. VEGF controls microglial phagocytic response to amyloid-β. Front Cell Neurosci 2023; 17:1264402. [PMID: 38162003 PMCID: PMC10757340 DOI: 10.3389/fncel.2023.1264402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglial cells are well known to be implicated in the pathogenesis of Alzheimer's disease (AD), due to the impaired clearance of amyloid-β (Aβ) protein. In AD, Aβ accumulates in the brain parenchyma as soluble oligomers and protofibrils, and its aggregation process further give rise to amyloid plaques. Compelling evidence now indicate that Aβ oligomers (Aβo) are the most toxic forms responsible for neuronal and synaptic alterations. Recently, we showed that the Vascular Endothelial Growth Factor (VEGF) counteracts Aβo-induced synaptic alterations and that a peptide derived from VEGF is able to inhibit Aβ aggregation process. Moreover, VEGF has been reported to promote microglial chemotaxis to Aβ brain deposits. We therefore investigated whether VEGF could influence microglial phagocytic response to Aβ, using in vitro and ex vivo models of amyloid accumulation. We report here that VEGF increases Aβo phagocytosis by microglial cells and further characterized the molecular basis of the VEGF effect. VEGF is able to control α-secretase activity in microglial cells, resulting in the increased cleavage of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), a major microglial Aβ receptor. Consistently, the soluble form sTREM2 also increases Aβo phagocytosis by microglial cells. Taken together, these findings propose VEGF as a new regulator of Aβ clearance and suggest its potential role in rescuing compromised microglial function in AD.
Collapse
Affiliation(s)
- Priscille de Gea
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Benkeder
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Bouvet
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Mélanie Aimard
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Naura Chounlamountri
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Le Duy Do
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Claire Meissirel
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
47
|
Schlepckow K, Morenas-Rodríguez E, Hong S, Haass C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer's disease. Lancet Neurol 2023; 22:1048-1060. [PMID: 37863592 DOI: 10.1016/s1474-4422(23)00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/22/2023]
Abstract
Neurodegenerative disorders, including Alzheimer's disease, are associated with microgliosis. Microglia have long been considered to have detrimental roles in Alzheimer's disease. However, functional analyses of genes encoding risk factors that are linked to late-onset Alzheimer's disease, and that are enriched or exclusively expressed in microglia, have revealed unexpected protective functions. One of the major risk genes for Alzheimer's disease is TREM2. Risk variants of TREM2 are loss-of-function mutations affecting chemotaxis, phagocytosis, lipid and energy metabolism, and survival and proliferation. Agonistic anti-TREM2 antibodies have been developed to boost these protective functions in patients with intact TREM2 alleles. Several anti-TREM2 antibodies are in early clinical trials, and current efforts aim to achieve more efficient transport of these antibodies across the blood-brain barrier. PET imaging could be used to monitor target engagement. Data from animal models, and biomarker studies in patients, further support a rationale for boosting TREM2 functions during the preclinical stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Kai Schlepckow
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Estrella Morenas-Rodríguez
- Memory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain; Group of Neurogenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Christian Haass
- German Centre for Neurodegenerative Diseases, Munich, Germany; Metabolic Biochemistry, Biomedical Centre, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
48
|
Nabizadeh F. sTREM2 is associated with attenuated tau aggregate accumulation in the presence of amyloid-β pathology. Brain Commun 2023; 5:fcad286. [PMID: 37942087 PMCID: PMC10629471 DOI: 10.1093/braincomms/fcad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Triggering Receptor Expressed on Myeloid Cell 2 (TREM2) plays a crucial role in the transition of microglia from a state of homeostasis to a state associated with the disease. Mutations in TREM2 are strongly linked with a higher risk of developing neurodegenerative diseases, including Alzheimer's disease. There have been contradictory findings regarding the potential detrimental or protective effects of microglial activation and TREM2-related microglial responses in Alzheimer's disease. Although previous studies reported increased CSF soluble TREM2 (sTREM2) in different clinical stages of Alzheimer's disease, the exact association between Alzheimer's disease hallmarks such as amyloid-beta and tau pathology remains unclear. In the present study, I aimed to investigate the association between TREM2-related microglial responses and tau accumulation in the presence and absence of amyloid-beta pathology in order to give a better view of the role of microglial activation in Alzheimer's disease development. Imaging data of 178 non-demented participants including 107 amyloid-beta-negative participants, 71 amyloid-beta-positive were recruited from Alzheimer's disease Neuroimaging Initiative. The CSF sTREM2 was used as an in vivo indicator of microglial responses associated with TREM2. Furthermore, I used longitudinal tau-PET and resting-state functional MRI connectomes in order to investigate the association of TREM2-related microglial activation and tau spreading through functional connections. A higher level of sTREM2 was associated with slower tau aggregate accumulation in non-demented amyloid-beta-positive. Furthermore, measuring the tau spreading through inter-connected regions using functional MRI connectomes confirms that the TREM2-related microglial activity might be a protective factor against tau pathology in brain tissue. These findings demonstrate that in individuals with initial amyloid-beta abnormalities, TREM2-related microglial activation is linked to reduced regional accumulation of tau aggregates and also, spreading across inter-connected brain regions, as evaluated through functional MRI connectomes during the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
49
|
Zhang X, Tang L, Yang J, Meng L, Chen J, Zhou L, Wang J, Xiong M, Zhang Z. Soluble TREM2 ameliorates tau phosphorylation and cognitive deficits through activating transgelin-2 in Alzheimer's disease. Nat Commun 2023; 14:6670. [PMID: 37865646 PMCID: PMC10590452 DOI: 10.1038/s41467-023-42505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein that is predominantly expressed by microglia in the brain. The proteolytic shedding of TREM2 results in the release of soluble TREM2 (sTREM2), which is increased in the cerebrospinal fluid of patients with Alzheimer's disease (AD). It remains unknown whether sTREM2 regulates the pathogenesis of AD. Here we identified transgelin-2 (TG2) expressed on neurons as the receptor for sTREM2. The microglia-derived sTREM2 binds to TG2, induces RhoA phosphorylation at S188, and deactivates the RhoA-ROCK-GSK3β pathway, ameliorating tau phosphorylation. The sTREM2 (77-89) fragment, which is the minimal active sequence of sTREM2 to activate TG2, mimics the inhibitory effect of sTREM2 on tau phosphorylation. Overexpression of sTREM2 or administration of the active peptide rescues tau pathology and behavioral defects in the tau P301S transgenic mice. Together, these findings demonstrate that the sTREM2-TG2 interaction mediates the cross-talk between microglia and neurons. sTREM2 and its active peptide may be a potential therapeutic intervention for tauopathies including AD.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Tang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiaolong Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiehui Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
50
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|