1
|
Jing T, Tang D. Intratumoral microbiota: a new force in the development and treatment of esophageal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03757-1. [PMID: 39455494 DOI: 10.1007/s12094-024-03757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Esophageal cancer (EC) ranks among the most prevalent cancers worldwide, with a particularly high incidence in the Asian population. Due to the inconspicuous nature of early symptoms, patients with esophageal cancer are typically diagnosed in the middle to late stages, resulting in suboptimal overall treatment outcomes. Consequently, there is an urgent need to explore and refine therapeutic strategies. Microorganisms have been identified in numerous tumor tissues, including EC, and these microorganisms are referred to as the intratumoral microbiome. Intratumoral microbiota and their metabolic byproducts can influence the progression and treatment of esophageal cancer through various mechanisms, such as modulating tumor cell metabolism and local immune responses. Therefore, the intratumoral microbiota may potentially serve as a target for the treatment of esophageal cancer. This review delineates the composition, origin, and diagnostic significance of intratumoral microbiota in esophageal cancer tissue, and discusses the mechanisms by which intratumoral microbiota contribute to the onset of esophageal cancer. In addition, the impact of intratumoral microbiota on the treatment of esophageal cancer and its intervention measures are also addressed.
Collapse
Affiliation(s)
- Tianyang Jing
- Clinical Medical College, Yangzhou University, Yangzhou, 22500, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Wang S, Tan X, Cheng J, Liu Z, Zhou H, Liao J, Wang X, Liu H. Oral microbiome and its relationship with oral cancer. J Cancer Res Ther 2024; 20:1141-1149. [PMID: 39206975 DOI: 10.4103/jcrt.jcrt_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.
Collapse
Affiliation(s)
- Shengran Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xiao Tan
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Juan Cheng
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Zeyang Liu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Huiping Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Jiyuan Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Hongyun Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| |
Collapse
|
3
|
Kulshrestha A, Gupta P. Real-time biofilm detection techniques: advances and applications. Future Microbiol 2024; 19:1003-1016. [PMID: 38904296 PMCID: PMC11318681 DOI: 10.1080/17460913.2024.2350285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Microbial biofilms, complex assemblies enveloped in extracellular matrices, are significant contributors to various infections. Traditional in vitro biofilm characterization methods, though informative, often disrupt the biofilm structure. The need to address biofilm-related infections urgently emphasizes the importance of continuous monitoring and timely interventions. This review provides a focused examination of advancements in real-time biofilm detection techniques, specifically in electrochemical, optical and mechanical systems. The potential applications of real-time detection in managing and monitoring biofilm growth in industrial settings, preventing medical infections, comprehending biofilm dynamics and evaluating control strategies highlight the necessity for it. Crucially, the review emphasizes the importance of evaluating these methods for their accuracy and reliability in real-time biofilm detection, offering valuable insights for precise interventions across various applications.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
5
|
Kaliamoorthy S, Priya Sayeeram S, Gowdhaman N, Jayaraj M, Radhika B, Chellapandi S, Elumalai A, Archana SP, Raju K, Palla S. Association of Periodontal Red Complex Bacteria With the Incidence of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e59251. [PMID: 38813341 PMCID: PMC11134483 DOI: 10.7759/cureus.59251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Porphyromonas gingivalis is the primary microbe in the "periodontal red complex" bacteria (PRCB) along with Tannerella forsythia and Treponema denticola, which are linked to periodontal disease (PD). These pathogens are also implicated in various systemic disorders, but their association with the incidence of gastrointestinal (GI) cancer is less explored. A systematic review followed by a meta-analysis was conducted as per standard guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2022) to find this association between GI cancers and PRCB after a literature search for full-text papers in the English language (between 2010 and 2023) in databases (Cochrane Library, PubMed, and Web of Science) with suitable keywords using the Boolean search strategy. Data extraction involved titles, abstracts, and full texts retrieved and scored by the modified Newcastle-Ottawa Scale. The data were analyzed by the Review Manager (RevMan 5.2, Cochrane Collaboration, Denmark). Standard Cochran Q test and I2 statistics (for heterogeneity) and a random effects model (pooled OR with 95% CI) were applied to report results. P. gingivalis among the PRCB was linked to GI cancers (OR: 2.16; 95% CI: 1.34-3.47). T. forsythia and T. denticola did not show meaningful associations as per existing evidence for GI cancers.
Collapse
Affiliation(s)
- Sriram Kaliamoorthy
- Department of Dentistry, Vinayaka Missions Medical College and Hospital, Vinayaka Missions Research Foundation, Karaikal, IND
| | - Sugantha Priya Sayeeram
- Department of Prosthodontics, Government Dental College and Hospital, The Tamil Nadu Dr. MGR Medical University, Pudukkottai, IND
| | - N Gowdhaman
- Departmentof Physiology, Dhanalakshmi Srinivasan Medical College and Hospital, The Tamil Nadu Dr. MGR Medical University, Perambalur, IND
| | - Merlin Jayaraj
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - B Radhika
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sugirtha Chellapandi
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Agila Elumalai
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sai P Archana
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Kanmani Raju
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Santosh Palla
- Department of Oral Medicine and Radiology, Sun Dental Care, Chennai, IND
| |
Collapse
|
6
|
Shukla K, Kiran Pebbili K, Bhagat SV, Kaushik K, Sanghavi AP, Kotak BP. An In Vitro Study to Evaluate the Antimicrobial Activity of a Zinc Citrate, Sodium Fluoride, Alum and Xylitol-Based Toothpaste Formulation. Cureus 2024; 16:e59413. [PMID: 38826609 PMCID: PMC11139778 DOI: 10.7759/cureus.59413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Periodontitis is a prevalent condition significantly affecting oral health. Comorbid conditions, such as diabetes, can heighten the severity of periodontal disease and overall oral health. Therefore, to enhance oral health and manage comorbid conditions, comprehensive periodontal care is essential. This approach could involve using toothpaste containing antimicrobial ingredients in routine oral care. This paper presents the results of an in vitro study analysing the antimicrobial properties of the test formulation containing zinc citrate, alum, sodium fluoride, and xylitol-based toothpaste (Stolin-R). These ingredients work together to help in providing comprehensive oral care by controlling growth of bacteria majorly responsible for periodontal disease and thus maintaining optimal oral hygiene. AIM To determine the antimicrobial properties of zinc citrate, alum, sodium fluoride, and xylitol-based toothpaste formulation against key periodontal pathogens through in vitro analyses. MATERIALS AND METHODS The antimicrobial efficacy of test formulation is evaluated through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-dependent antibacterial assessment against key periodontal pathogens, including Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Prevotella intermedia, Streptococcus mutans, and Bacteroides fragilis. RESULTS The test formulation demonstrated potent antimicrobial effectiveness against Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus mutans, and Tannerella forsythia, by exhibiting low MIC and MBC. Additionally, significant bacterial reduction, exceeding 99.99%, was observed within five minutes, emphasising its potential as an effective adjunct in combating periodontal infection. CONCLUSION Zinc citrate, alum, sodium fluoride, and xylitol-based toothpaste formulation demonstrates significant antimicrobial activity against key periodontal pathogens, suggesting its potential as an effective agent for maintaining oral health and combating gingival infection.
Collapse
Affiliation(s)
- Kirti Shukla
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | | | - Seema V Bhagat
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Kriti Kaushik
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Arti P Sanghavi
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Bhavesh P Kotak
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| |
Collapse
|
7
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wang J, Gao B. Mechanisms and Potential Clinical Implications of Oral Microbiome in Oral Squamous Cell Carcinoma. Curr Oncol 2023; 31:168-182. [PMID: 38248096 PMCID: PMC10814288 DOI: 10.3390/curroncol31010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Microorganisms in the oral cavity are abundant in the human body. At present, more than 700 species of oral microorganisms have been identified. Recently, a lot of literature has indicated that the oral microbiota plays an important role in the occurrence, development, and prognosis of oral squamous cell carcinoma (OSCC) through various mechanisms. And researchers are now trying to utilize oral microbiota in cancer diagnosis and treatment. However, few articles systematically summarize the effects of oral microbes in the diagnosis, treatment, and disease outcomes of oral cancer. Herein, we made a summary of the microbial changes at cancerous sites and placed more emphasis on the mechanisms by which the oral microbiome promotes cancerization. Moreover, we aimed to find out the clinical value of the oral microbiome in OSCC.
Collapse
Affiliation(s)
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
9
|
Lv H, Zhuang Y, Wu W. Lung Abscess Caused by Tannerella forsythia Infection: A Case Report. Infect Drug Resist 2023; 16:6975-6981. [PMID: 37928606 PMCID: PMC10625316 DOI: 10.2147/idr.s434494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Background Tannerella forsythia is a gram-negative anaerobic bacterium commonly found in the oral cavity. It is among the common pathogenic bacteria associated with gingivitis, chronic periodontitis, and aggressive periodontitis. However, there is currently no literature discussing lung abscesses primarily caused by T. forsythia infection. Presentation This article presents the case of a 55-year-old male with a massive lung abscess. The patient underwent ultrasound-guided percutaneous drainage, and the sample was sent for pathogen metagenomic next-generation sequencing (mNGS) testing. The test indicated that the lung abscess was primarily caused by T. forsythia infection. A literature review was conducted to understand the characteristics of this pathogen as well as its clinical features and suitable treatment approaches. Conclusion Currently, there is no literature specifically mentioning T. forsythia as a primary pathogen causing lung abscesses. This anaerobic bacterium is commonly found in the oral cavity and is difficult to cultivate using routine culture methods. mNGS emerges as a value diagnostic method for identifying this pathogen. Treatment recommendations include drainage and antibiotic selection encompassing common periodontal pathogens such as red complex bacteria and Actinomyces.
Collapse
Affiliation(s)
- Huiying Lv
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Yawen Zhuang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| | - Weijing Wu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, People’s Republic of China
| |
Collapse
|
10
|
Fontani F, Boano R, Cinti A, Demarchi B, Sandron S, Rampelli S, Candela M, Traversari M, Latorre A, Iacovera R, Abondio P, Sarno S, Mackie M, Collins M, Radini A, Milani C, Petrella E, Giampalma E, Minelli A, Larocca F, Cilli E, Luiselli D. Bioarchaeological and paleogenomic profiling of the unusual Neolithic burial from Grotta di Pietra Sant'Angelo (Calabria, Italy). Sci Rep 2023; 13:11978. [PMID: 37488251 PMCID: PMC10366206 DOI: 10.1038/s41598-023-39250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.
Collapse
Affiliation(s)
- Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| | - Rosa Boano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alessandra Cinti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sarah Sandron
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Mirko Traversari
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Rocco Iacovera
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Meaghan Mackie
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Collins
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Anita Radini
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chantal Milani
- SIOF - Italian Society of Forensic Odontology, Strada Degli Schiocchi 12, 41124, Modena, Italy
| | - Enrico Petrella
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Emanuela Giampalma
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Antonella Minelli
- Department of Humanities, Education and Social Sciences, University of Molise, Via Francesco De Sanctis, 86100, Campobasso, Italy
| | - Felice Larocca
- Speleo-Archaeological Research Group, University of Bari, Piazza Umberto I 1, 70121, Bari, Italy
- Speleo-Archaeological Research Centre "Enzo dei Medici", Via Lucania 3, 87070, Roseto Capo Spulico (CS), Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| |
Collapse
|
11
|
Visentin D, Gobin I, Maglica Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023; 11:1832. [PMID: 37513004 PMCID: PMC10385044 DOI: 10.3390/microorganisms11071832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Pathogens that play a role in the development and progression of periodontitis have gained significant attention due to their implications in the onset of various systemic diseases. Periodontitis is characterized as an inflammatory disease of the gingival tissue that is mainly caused by bacterial pathogens. Among them, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia are regarded as the main periodontal pathogens. These pathogens elicit the release of cytokines, which in combination with their virulence factors induce chronic systemic inflammation and subsequently impact neural function while also altering the permeability of the blood-brain barrier. The primary objective of this review is to summarize the existing information regarding periodontal pathogens, their virulence factors, and their potential association with neuroinflammation and neurodegenerative diseases. We systematically reviewed longitudinal studies that investigated the association between periodontal disease and the onset of neurodegenerative disorders. Out of the 24 studies examined, 20 showed some degree of positive correlation between periodontal disease and neurodegenerative disorders, with studies focusing on cognitive function demonstrating the most robust effects. Therefore, periodontal pathogens might represent an exciting new approach to develop novel preventive treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Željka Maglica
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
Liang Y, Li Q, Liu Y, Guo Y, Li Q. Awareness of intratumoral bacteria and their potential application in cancer treatment. Discov Oncol 2023; 14:57. [PMID: 37148441 PMCID: PMC10164222 DOI: 10.1007/s12672-023-00670-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Hitherto, the recognition of the microbiota role in tumorigenesis and clinical studies mostly focused on the intestinal flora. In contrast to the gut microbiome, microorganisms resident in tumor tissue are in close contact with cancer cells and therefore have the potential to have similar or even different functional patterns to the gut flora. Some investigations have shown intratumoral bacteria, which might come from commensal microbiota in mucosal areas including the gastrointestinal tract and oral cavity, or from nearby normal tissues. The existence, origin, and interactions of intratumoral bacteria with the tumor microenvironment all contribute to intratumoral microorganism heterogeneity. Intratumoral bacteria have a significant role in tumor formation. They can contribute to cancer at the genetic level by secreting poisons that directly damage DNA and also intimately related to immune system response at the systemic level. Intratumoral bacteria have an impact on chemotherapy and immunotherapy in cancer. Importantly, various properties of bacteria such as targeting and ease of modification make them powerful candidates for precision therapy, and combining microbial therapies with other therapies is expected to improve the effectiveness of cancer treatment. In this review, we mainly described the heterogeneity and potential sources of intratumoral bacteria, overviewed the important mechanisms by which they were involved in tumor progression, and summarized their potential value in oncology therapy. At last, we highlight the problems of research in this field, and look forward to a new wave of studies using the various applications of intratumoral microorganisms in cancer therapy.
Collapse
Affiliation(s)
- Yin Liang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qiyan Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yulin Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Qingjiao Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
13
|
Zhang Y, Xiang X, Zhou S, Dindar DA, Wood S, Zhang Z, Shan B, Zhao L. Relationship between pathogenic microorganisms and the occurrence of esophageal carcinoma based on pathological type: a narrative review. Expert Rev Gastroenterol Hepatol 2023; 17:353-361. [PMID: 36896656 DOI: 10.1080/17474124.2023.2189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Esophageal cancer (EC) is one of the most common malignant tumors of the upper gastrointestinal tract. The etiology of EC is complicated and increasing evidence has shown that microbial infection is closely related to the occurrence of various malignant tumors. Though many studies have been focused on this subject in recent years, the exact relationship between microbial infection and the occurrence of EC remains unclear. AREAS COVERED In this review, we searched all eligible literature reports, summarized the most recent studies in this research field, and analyzed the pathogenic microorganisms associated with EC, providing the latest evidence and references for the prevention of pathogenic microorganism-related EC. EXPERT OPINION In recent years, increasing evidence has shown that pathogenic microbial infections are closely associated with the development of EC. Therefore, it is necessary to describe in detail the relationship between microbial infection and EC and clarify its possible pathogenic mechanism, which will shed a light on clinical prevention and treatment of cancer caused by pathogenic microbial infection.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohan Xiang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaolan Zhou
- Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Duygu Altinok Dindar
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie Wood
- Division of Gastrointestinal and General Surgery, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Evaluation of red-complex bacteria loads in complete denture patients: a pilot study. BDJ Open 2023; 9:7. [PMID: 36801907 PMCID: PMC9938684 DOI: 10.1038/s41405-023-00133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
OBJECTIVE This pilot study aimed to evaluate red-complex bacteria (RCB) loads in edentulous patients, before and after dentures' insertion. MATERIALS AND METHODS Thirty patients were included in the study. Deoxyribonucleic acid (DNA) isolated from bacterial samples were obtained from the dorsum of the tongue before and 3 months after complete dentures (CDs) insertion in order to identify the presence of RCB (Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola) and quantify their loads, using real-time polymerase chain reaction (RT-PCR). Bacterial loads were represented as "Lg (genome equivalents/sample)" and the data classified according to the "ParodontoScreen" test. RESULTS Significant changes in bacterial loads were observed before and 3 months after the CDs insertion for: P. gingivalis (0.40 ± 0.90 vs 1.29 ± 1.64, p = 0.0007), T. forsythia (0.36 ±0.94 vs 0.87 ± 1.45, p = 0.005), and T. denticola (0.11 ± 0.41 vs 0.33 ± 0.75, p = 0.03). Before the CDs insertion, all patients had a normal bacterial prevalence range (100%) for all analyzed bacteria. Three months after the insertion, 2 (6.7%) of them had a moderate bacterial prevalence range for P. gingivalis, while 28 (93.3%) had a normal bacterial prevalence range. CONCLUSION The use of CDs has a significant impact on increasing RCB loads in edentulous patients.
Collapse
|
15
|
Sulit AK, Kolisnik T, Frizelle FA, Purcell R, Schmeier S. MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e4. [PMID: 39295912 PMCID: PMC11406379 DOI: 10.1017/gmb.2022.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 09/21/2024]
Abstract
The identification of functional processes taking place in microbiome communities augment traditional microbiome taxonomic studies, giving a more complete picture of interactions taking place within the community. While there are applications that perform functional annotation on metagenomes or metatranscriptomes, very few of these are able to link taxonomic identity to function or are limited by their input types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads, and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis, mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set enrichment analysis may then be carried out through the pipeline. A final correlation analysis between microbial species and host genes can also be performed. Finally, MetaFunc builds an R shiny application that allows users to view and interact with the microbiome results. In this paper, we showed how MetaFunc can be applied to metatranscriptomic datasets of colorectal cancer.
Collapse
Affiliation(s)
- Arielle Kae Sulit
- Department of Surgery, University of Otago, Christchurch, New Zealand
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tyler Kolisnik
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Rachel Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
16
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
17
|
Honma K, Sasaki H, Hamada N, Sharma A. An Extracytoplasmic Function Sigma/Anti-Sigma Factor System Regulates β-Glucanase Expression in Tannerella forsythia in Response to Fusobacterium nucleatum Sensing. J Bacteriol 2022; 204:e0031322. [PMID: 36448787 PMCID: PMC9765289 DOI: 10.1128/jb.00313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The periodontal pathogen Tannerella forsythia expresses a β-glucanase (TfGlcA) whose expression is induced in response to Fusobacterium nucleatum, a bridge bacterium of the oral cavity. TfGlcA cleaves β-glucans to release glucose, which can serve as a carbon source for F. nucleatum and other cohabiting organisms. A two-gene cluster encoding a putative extracytoplasmic function (ECF) sigma factor and a FecR-like anti-sigma factor has been recognized upstream of a TfGlcA operon. We characterized and analyzed the role of these putative ECF sigma and anti-sigma factors in the regulation of TfGlcA expression. For this purpose, deletion mutants were constructed and analyzed for β-glucanase expression. In addition, an Escherichia coli-produced ECF sigma factor recombinant protein was evaluated for transcriptional and DNA binding activities. The results showed that the recombinant protein promoted transcription by the RNA polymerase core enzyme from the glcA promoter. Furthermore, in comparison to those in the parental strain, the β-glucanase expression levels were significantly reduced in the ECF sigma-factor deletion mutant and increased significantly in the FecR anti-sigma factor deletion mutant. The levels did not change in the mutants following coincubation with the F. nucleatum whole cells or cell extracts. Finally, the levels of β-glucanase produced by T. forsythia strains paralleled F. nucleatum biomass in cobiofilms. In conclusion, we identified a β-glucanase operon regulatory system in T. forsythia comprising an ECF sigma factor (TfSigG) and a cognate FecR-like anti-sigma factor responsive to F. nucleatum and potentially other stimuli. IMPORTANCE Previous studies have shown that F. nucleatum forms robust biofilms with T. forsythia utilizing glucose from the hydrolysis of β-glucans by T. forsythia β-glucanase, induced by F. nucleatum. In this study, we showed that a regulatory system comprising of an ECF sigma factor, TfSigG, and a FecR-like anti-sigma factor, TfFecR, is responsible for the β-glucanase induction in response to F. nucleatum, suggesting that this system plays roles in the mutualistic interactions of T. forsythia and F. nucleatum. The findings suggest the development and potential utility of small-molecule inhibitors targeting the β-glucanase activity or the TfSigG/TfFecR system as therapeutic drugs against dental plaque formation and periodontitis.
Collapse
Affiliation(s)
- Kiyonobu Honma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Haruka Sasaki
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
18
|
Grenda A, Iwan E, Krawczyk P, Frąk M, Chmielewska I, Bomba A, Giza A, Rolska-Kopińska A, Szczyrek M, Kieszko R, Kucharczyk T, Jarosz B, Wasyl D, Milanowski J. Attempting to Identify Bacterial Allies in Immunotherapy of NSCLC Patients. Cancers (Basel) 2022; 14:cancers14246250. [PMID: 36551735 PMCID: PMC9777223 DOI: 10.3390/cancers14246250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Factors other than PD-L1 (Programmed Death Ligand 1) are being sought as predictors for cancer immuno- or chemoimmunotherapy in ongoing studies and long-term observations. Despite high PD-L1 expression on tumor cells, some patients do not benefit from immunotherapy, while others, without the expression of this molecule, respond to immunotherapy. Attention has been paid to the composition of the gut microbiome as a potential predictive factor for immunotherapy effectiveness. Materials and Methods: Our study enrolled 47 Caucasian patients with stage IIIB or IV non-small cell lung cancer (NSCLC). They were eligible for treatment with first- or second-line immunotherapy or chemoimmunotherapy. We collected stool samples before the administration of immunotherapy. We performed next-generation sequencing (NGS) on DNA isolated from the stool sample and analyzed bacterial V3 and V4 of the 16S rRNA gene. Results: We found that bacteria from the families Barnesiellaceae, Ruminococcaceae, Tannerellaceae, and Clostridiaceae could modulate immunotherapy effectiveness. A high abundance of Bacteroidaaceae, Barnesiellaceae, and Tannerellaceae could extend progression-free survival (PFS). Moreover, the risk of death was significantly higher in patients with a high content of Ruminococcaceae family (HR = 6.3, 95% CI: 2.6 to 15.3, p < 0.0001) and in patients with a low abundance of Clostridia UCG-014 (HR = 3.8, 95% CI: 1.5 to 9.8, p = 0.005) regardless of the immunotherapy line. Conclusions: The Clostridia class in gut microbiota could affect the effectiveness of immunotherapy, as well as the length of survival of NSCLC patients who received this method of treatment.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-724-4293
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Małgorzata Frąk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Anna Rolska-Kopińska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Bożena Jarosz
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Dariusz Wasyl
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| |
Collapse
|
19
|
Muszyński D, Kudra A, Sobocki BK, Folwarski M, Vitale E, Filetti V, Dudzic W, Kaźmierczak-Siedlecka K, Połom K. Esophageal cancer and bacterial part of gut microbiota - A multidisciplinary point of view. Front Cell Infect Microbiol 2022; 12:1057668. [PMID: 36467733 PMCID: PMC9709273 DOI: 10.3389/fcimb.2022.1057668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
There is an urgent need to search for new screening methods that allow early detection of esophageal cancer and thus achieve better clinical outcomes. Nowadays, it is known that the esophagus is not a sterile part of the gastrointestinal tract. It is colonized with various microorganisms therefore a "healthy" esophageal microbiome exists. The dysbiotic changes of esophageal microbiome can lead to the development of esophageal diseases including esophageal cancer. There is a strong consensus in the literature that the intestinal microbiome may be involved in esophageal carcinogenesis. Recently, emphasis has also been placed on the relationship between the oral microbiome and the occurrence of esophageal cancer. According to recent studies, some of the bacteria present in the oral cavity, such as Tannerella forsythia, Streptococcus anginosus, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Fusobacterium nucleatum may contribute to the development of this cancer. Moreover, the oral microbiome of patients with esophageal cancer differs significantly from that of healthy individuals. This opens new insights into the search for a microbiome-associated marker for early identification of patients at high risk for developing this cancer.
Collapse
Affiliation(s)
- Damian Muszyński
- Scientific Circle 4.0 associated with Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Kudra
- Scientific Circle 4.0 associated with Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdansk, Poland
| | - Ermanno Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Occupational Medicine, Catania, Italy
| | - Veronica Filetti
- Department of Clinical and Experimental Medicine, University of Catania, Occupational Medicine, Catania, Italy
| | - Wojciech Dudzic
- Department of General and Gastrointestinal Surgery and Nutrition, Copernicus Hospital Gdansk, Gdansk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Wang K, Zhang Z, Wang Z. Assessment of the association between periodontal disease and total cancer incidence and mortality: a meta-analysis. PeerJ 2022; 10:e14320. [PMID: 36389427 PMCID: PMC9648345 DOI: 10.7717/peerj.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background Periodontal disease (PD) is a chronic inflammatory disease that leads to alveolar bone resorption and tooth loss. Many studies have reported the association between periodontal disease and various cancers including oral cancer, lung cancer, breast cancer and so on. However, there is still no specialized meta-analysis that assesses the association between periodontal disease and cancer incidence and mortality in-deepth. Thus, we conducted this meta-analysis. Methods This meta-analysis was registered with PROSPERO: CRD42020183497. We searched five online databases for observational studies about the association between periodontal disease and breast, prostate, lung and bronchial, colorectal, and total cancers by July 2020. Then we evaluated quality of the included studies by the Newcastle-Ottawa scale. Risk ratios (HRs) and their 95% confidence intervals (CIs) were pooled to evaluate the strength of the association between periodontal disease and four cancers, total cancer incidence and mortality. In addition, we analyzed heterogeneity by subgroup analysis and sensitivity analysis. Finally, we inspected publication bias by Begg's and Egger's tests. Results None of the studies included in this meta-analysis were of poor quality. PD is not only related to breast cancer incidence (HR = 1.26,95%CI [1.11-1.43], I 2 = 75.8%, P = 0.000), but also connected with total cancer mortality (HR = 1.40,95%CI [1.24-1.58], I 2 = 0.0%, P = 0.718). Subgroup analyses showed that study population, study design, dental status, follow-up period, adjustment for smoking partially explained the heterogeneity between studies. The results of Begg's test and Egger's test were consistent and indicated that there is no publication bias in this study. Conclusion In conclusion, this meta-analysis revealed a positive relationship between periodontal disease and breast cancer incidence and total cancer mortality. Further well-designed studies with specific inclusion and exclusion criteria are required to strengthen the conclusion of this meta-analysis. However, longer follow-up period, multi-center trials and even multinational studies are required to corroborate the results.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Stomatology, Beijing You ’an Hospital, Capital Medical University, Beijing, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol 2022; 86:633-642. [PMID: 34743032 DOI: 10.1016/j.semcancer.2021.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023]
Abstract
Despite decades of research, cancer continues to be a major global health concern. In recent years, the role played by microorganisms in the development and progression of cancer has come under increased scrutiny. The aim of the present review is to highlight the main associations between members of the human oral microbiota and various cancers. The PubMed database was searched for available literature to outline the current state of understanding regarding the role of the oral microbiota and a variety of human cancers. Oral squamous cell carcinoma (OSCC) is associated with carriage of a number of oral bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.), certain viruses (e.g., human papilloma virus, human herpes virus 8, herpes simplex virus 1 and Epstein-Barr virus) and yeast (Candida albicans). Moreover, members of the oral microbiota are associated with cancers of the esophagus, stomach, pancreas, colon/rectum and lung. Furthermore, the present review outlines a number of the carcinogenic mechanisms underlying the presented microbial associations with cancer. Such information may one day help clinicians to diagnose neoplastic diseases at earlier stages and prescribe treatments that take into account the possible microbial nature of carcinogenesis.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
22
|
Lima DDC, Pitorro TEA, Santiago MB, Franco RR, Silva TDC, Prado DG, Cunha LCS, Espindola FS, Tavares DC, Nicolella HD, Martins CHG, Novais VR. In vitro evaluation of the antibacterial and cytotoxic activities of the Euclea natalensis crude extract and fractions against oral infection agents. Arch Oral Biol 2022; 143:105546. [PMID: 36162339 DOI: 10.1016/j.archoralbio.2022.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed (i) to evaluate the antibacterial and cytotoxic activities of the crude extract and fractions obtained from Euclea natalensis A.D.C. roots against bacteria that cause periodontal disease and caries and (ii) to identify the isolated compounds. DESIGN The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the extract and fractions were determined by the microplate dilution assay. The cytotoxicity of the extract and fractions was evaluated by using the XTT colorimetric assay and normal human fibroblast cells (GM07492A, lung fibroblasts). The compounds present in the most promising fraction were determined by qualitative analysis through liquid chromatography coupled to mass spectrometry (HPLC-MS-ESI). RESULTS The MIC results ranged from 25 to > 400 μg/mL for the extract and from 1.56 to > 400 μg/mL for the fractions. To evaluate cytotoxicity, the tested concentrations of the extract and fractions ranged from 19.5 to 2500 μg/mL; IC50 values between 625 and 1250 μg/mL were obtained. Analysis of the main bioactive fraction by HPLC-MS-ESI identified phenolic acids, coumarins, naphthoquinones, lignans, and fatty acids. CONCLUSIONS The E. natalensis root extract and fractions displayed good antibacterial activity against periodontal pathogenic and cariogenic bacteria. The antibacterial activity may be due to compounds present in the extract and fractions, which also showed low cytotoxicity to normal human cells. These data are relevant and encourage further research into this plant species, which may contribute to the discovery of new herbal medicines that will help to mitigate the problems caused by oral pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Mariana Brentini Santiago
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Tiara da Costa Silva
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Diego Godina Prado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
23
|
de Carvalho JP, Carrilho MC, dos Anjos DS, Hernandez CD, Sichero L, Dagli MLZ. Unraveling the Risk Factors and Etiology of the Canine Oral Mucosal Melanoma: Results of an Epidemiological Questionnaire, Oral Microbiome Analysis and Investigation of Papillomavirus Infection. Cancers (Basel) 2022; 14:cancers14143397. [PMID: 35884456 PMCID: PMC9316277 DOI: 10.3390/cancers14143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Oral mucosal melanoma (OMM) is one of the most common oral cancers in dogs; however, the risk factors for its development remain obscure and the etiology is unknown. This study aimed to investigate the risk factors and etiology of OMM in dogs. An epidemiological questionnaire was applied to the owners of 15 dogs with OMM and their paired controls, and the oral microbiome was comparatively determined in the two groups. Additionally, the presence of papillomavirus was investigated in the same OMM samples. Most OMM and control dogs had grade 3 periodontal disease. No risk factors were identified through the epidemiological questionnaire, and papillomaviruses were not identified in the samples. The bacteria Tannerella forsythia and Porphyromonas gingivalis were significantly overrepresented in dogs with OMM, and their presence could be considered a risk factor for the development of canine OMM. Abstract Oral mucosal melanoma (OMM) is the most common oral cancer in dogs and is very aggressive in this species; its risk factors and etiology are yet to be determined. This study aimed to unravel the risk factors for the development of OMM in dogs and to investigate the possible presence of papillomaviruses as an etiological factor. A case-control study was conducted in 15 dogs with OMM and 15 paired controls whose owners answered an epidemiological questionnaire. Oral swabs from the same dogs were subjected to 16S rRNA sequencing for microbiome analyses. In addition, DNA fragments of OMM had their DNA extracted and amplified by polymerase chain reaction in an attempt to detect canine papillomaviruses. The gingiva was the most frequent anatomical site (47%) of OMM, and most tumors were stage III when diagnosed. Most dogs bearing OMM and the controls had grade 3 periodontal disease, and this factor, along with tartar treatment and tooth brushing, did not differ between cases and controls. Most dogs with OMM and most controls had contact with smokers; there was no statistically significant difference. Canine papillomaviruses were not detected among OMM cases. Tannerella forsythia and Porphyromonas gingivalis were significantly increased in case dogs compared to the controls. As these bacteria are reportedly involved in the pathogenesis of periodontal disease and esophageal cancer in humans, we suggest that they might be risk factors for the development of canine OMM. The limitations of this study include the low number of dogs, and therefore, further studies on canine OMM with larger numbers of animals are encouraged.
Collapse
Affiliation(s)
- Joyce Pires de Carvalho
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
| | - Marcella Collaneri Carrilho
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
| | | | | | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo-ICESP, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, Sao Paulo 05403-000, SP, Brazil;
| | - Maria Lúcia Zaidan Dagli
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
- Correspondence:
| |
Collapse
|
24
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
26
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
27
|
Metabolomics Research in Periodontal Disease by Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092864. [PMID: 35566216 PMCID: PMC9104832 DOI: 10.3390/molecules27092864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Periodontology is a newer field relative to other areas of dentistry. Remarkable progress has been made in recent years in periodontology in terms of both research and clinical applications, with researchers worldwide now focusing on periodontology. With recent advances in mass spectrometry technology, metabolomics research is now widely conducted in various research fields. Metabolomics, which is also termed metabolomic analysis, is a technology that enables the comprehensive analysis of small-molecule metabolites in living organisms. With the development of metabolite analysis, methods using gas chromatography–mass spectrometry, liquid chromatography–mass spectrometry, capillary electrophoresis–mass spectrometry, etc. have progressed, making it possible to analyze a wider range of metabolites and to detect metabolites at lower concentrations. Metabolomics is widely used for research in the food, plant, microbial, and medical fields. This paper provides an introduction to metabolomic analysis and a review of the increasing applications of metabolomic analysis in periodontal disease research using mass spectrometry technology.
Collapse
|
28
|
Detection of Periodontal Pathogens from Dental Plaques of Dogs with and without Periodontal Disease. Pathogens 2022; 11:pathogens11040480. [PMID: 35456155 PMCID: PMC9032899 DOI: 10.3390/pathogens11040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Dental plaque bacteria are one of the main factors responsible for the development of a periodontal disease, which is the most common infectious disease in dogs. The aim of this study was to identify the presence of periodontal disease-related bacteria in the dental plaque of dogs. Plaque samples were taken from dogs with and without periodontal disease. Samples were analyzed for the presence of Porphyromonas gulae, Tannerella forsythia and Treponema denticola using a PCR technique amplifying 16S rRNA genes of P. gulae and T. forsythia and flaB2 genes of Treponema species, including T. denticola. The presence of T. forsythia was confirmed in all samples. P. gulae was detected in all dogs with periodontal disease and in 71.43% of dogs without periodontal disease. Treponema spp. were detected in 64.29% of the samples. Based on Sanger sequencing and Basic Local Alignment Search Tool algorithm, Treponema spp. were identified as T. denticola and Treponema putidum. T. denticola was present in 28.57% of dogs with periodontal disease, while T. putidum was present in 42.86% of dogs with periodontal disease and in 57.14% of dogs without periodontal disease. T. putidum was positively correlated with both P. gulae and T. forsythia, suggesting that it may be involved in the development of periodontal disease.
Collapse
|
29
|
García-Sanmartín J, Bobadilla M, Mirpuri E, Grifoll V, Pérez-Clavijo M, Martínez A. Agaricus Mushroom-Enriched Diets Modulate the Microbiota-Gut-Brain Axis and Reduce Brain Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11040695. [PMID: 35453380 PMCID: PMC9026521 DOI: 10.3390/antiox11040695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases pose a major problem for developed countries, and stress has been identified as one of the main risk factors in the development of these disorders. Here, we have examined the protective properties against brain oxidative stress of two diets supplemented with 5% (w/w) of Agaricus bisporus (white button mushroom) or Agaricus bisporus brunnescens (Portobello mushroom) in mice. These diets did not modify the weight gain of the animals when compared to those fed with a regular diet, even after feeding on them for 15 weeks. The long-term modification of the microbiota after 12 weeks on the diets was investigated. At the phylum level, there was a large increase of Verrucomicrobia and a reduction of Cyanobacteria associated with the mushroom diets. No changes were observed in the Firmicutes/Bacteroidetes ratio, whose stability is a marker for a healthy diet. At the family level, three groups presented significant variations. These included Akkermansiaceae and Tannerellaceae, which significantly increased with both diets; and Prevotellaceae, which significantly decreased with both diets. These bacteria participate in the generation of microbiota-derived short-chain fatty acids (SCFAs) and provide a link between the microbiota and the brain. Mice subjected to restraint stress showed an upregulation of Il-6, Nox-2, and Hmox-1 expression; a reduction in the enzymatic activities of catalase and superoxide dismutase; and an increase in lipid peroxidation in their brains. All these parameters were significantly prevented by feeding for 3 weeks on the Agaricus-supplemented diets. In summary, the supplementation of a healthy diet with Agaricus mushrooms may significantly contribute to prevent neurodegenerative diseases in the general population.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Miriam Bobadilla
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Eduardo Mirpuri
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Vanessa Grifoll
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), 26560 Autol, Spain; (V.G.); (M.P.-C.)
| | - Margarita Pérez-Clavijo
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), 26560 Autol, Spain; (V.G.); (M.P.-C.)
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
- Correspondence: ; Tel.: +34-941-278-775
| |
Collapse
|
30
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|
31
|
Lucchese A, Cenciarelli S, Manuelli M, Marcolina M, Barzaghi F, Calbi V, Migliavacca M, Bernardo ME, Tucci F, Gallo V, Fraschetta F, Darin S, Casiraghi M, Aiuti A, Ferrua F, Cicalese MP. Wiskott-Aldrich syndrome: Oral findings and microbiota in children and review of the literature. Clin Exp Dent Res 2022; 8:28-36. [PMID: 35199474 PMCID: PMC8874040 DOI: 10.1002/cre2.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Wiskott–Aldrich syndrome (WAS) is a rare X‐linked primary immunodeficiency, characterized by micro‐thrombocytopenia, recurrent infections, and eczema. This study aims to describe common oral manifestations and evaluate oral microbioma of WAS patients. Material and methods In this cohort study, 11 male WAS patients and 16 male healthy controls were evaluated in our Center between 2010 and 2018. Data about clinical history, oral examination, Gingival Index (GI) and Plaque Index (PI) were collected from both groups. Periodontal microbiological flora was evaluated on samples of the gingival sulcus. Results WAS subjects presented with premature loss of deciduous and permanent teeth, inclusions, eruption disturbance, and significantly worse GI and PI. They also showed a trend toward a higher total bacterial load. Fusobacterium nucleatum, reported to contribute to periodontitis onset, was the most prevalent bacteria, together with Porphyromonas gingivalis and Tannerella forsythia. Conclusions Our data suggest that WAS patients are at greater risk of alterations in the oral cavity. The statistically higher incidence of periodontitis and the trend to higher prevalence of potentially pathological bacterial species in our small cohort, that should be confirmed in future in a larger population, underline the importance of dentistry monitoring as part of the multidisciplinary management of WAS patients.
Collapse
Affiliation(s)
- Alessandra Lucchese
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy.,Unit of Dentistry, Research Center for Oral Pathology and Implantology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Sabina Cenciarelli
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Manuelli
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy.,Private Practice, Milan, Bologna, Pavia, Italy
| | - Marta Marcolina
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
White AE, de-Dios T, Carrión P, Bonora GL, Llovera L, Cilli E, Lizano E, Khabdulina MK, Tleugabulov DT, Olalde I, Marquès-Bonet T, Balloux F, Pettener D, van Dorp L, Luiselli D, Lalueza-Fox C. Genomic Analysis of 18th-Century Kazakh Individuals and Their Oral Microbiome. BIOLOGY 2021; 10:biology10121324. [PMID: 34943238 PMCID: PMC8698332 DOI: 10.3390/biology10121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.
Collapse
Affiliation(s)
- Anna E. White
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Toni de-Dios
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Gian Luca Bonora
- ISMEO—International Association for Mediterranean and East Studies, 00186 Rome, Italy;
| | - Laia Llovera
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
| | - Esther Lizano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Maral K. Khabdulina
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Daniyar T. Tleugabulov
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Centro de Investigación “Lascaray” Ikergunea, BIOMICs Research Group, Universidad del País Vasco, 01006 Vitoria-Gasteiz, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| |
Collapse
|
33
|
Sex Variations in the Oral Microbiomes of Youths with Severe Periodontitis. J Immunol Res 2021; 2021:8124593. [PMID: 34722781 PMCID: PMC8550847 DOI: 10.1155/2021/8124593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Objective Periodontitis is an inflammatory disease of microbial etiology caused primarily by dysbiosis of the oral microbiota. Our aim was to compare variations in the composition of the oral microbiomes of youths with severe periodontitis according to gender. Methods Subgingival plaque samples collected from 17 patients with severe periodontitis (11 males and 6 females) were split for 16S rRNA gene sequencing. The composition, α-diversity, and β-diversity of the patients' oral microbiomes were compared between the males and the females. Linear discriminant analysis effect size (LEfSe) was used to analyze the specific taxa enriched in the two groups. Functional profiles (KEGG pathways) were obtained using PICRUSt based on 16S rRNA gene sequencing data. Results The Chao1 index and phylogenetic diversity whole tree were significantly higher in males than in females. The Simpson and Shannon indices were not significantly different between the two groups. β-Diversity suggested that the samples were reasonably divided into groups. The Kruskal-Wallis test based on the relative abundance of species, combined with the LEfSe analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were Fusobacteriales and Tannerella. KEGG analysis predicted that the variation in the oral microbiome may be related to the immune system in women, whereas immune system diseases were the dominant pathway in men. Conclusion We found sex-specific differences in the oral microbiome in a sample of youths with severe periodontitis. The differences may be related to changes in immune homeostasis and lead to a better understanding of periodontitis.
Collapse
|
34
|
Understanding the link between the oral microbiome and the development and progression of head and neck squamous cell carcinoma. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
36
|
Herreros-Pomares A, Llorens C, Soriano B, Zhang F, Gallach S, Bagan L, Murillo J, Jantus-Lewintre E, Bagan J. Oral microbiome in Proliferative Verrucous Leukoplakia exhibits loss of diversity and enrichment of pathogens. Oral Oncol 2021; 120:105404. [PMID: 34225130 DOI: 10.1016/j.oraloncology.2021.105404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oral microbiome plays an important role in oral diseases. Among them, proliferative verrucous leucoplakia (PVL) is an uncommon form of progressive multifocal leukoplakia with a worryingly rate of malignant transformation. Here, we aimed to characterize the oral microbiome of PVL patients and compare it with those of healthy controls. MATERIAL AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their microbial communities. The sequence of the V3-V4 region of 16S rRNA gene was used as the taxonomic basis to estimate and analyze the composition and diversity of bacterial populations present in the samples. RESULTS Our results show that the oral microbial composition and diversity are significantly different among PVL patients and healthy donors. The average number of observed operational taxonomic units (OTUs) was higher for healthy donors than for PVL, proving a loss of diversity in PVL. Several OTUs were found to be more abundant in either group. Among those that were significantly enriched in PVL patients, potential protumorigenic pathogens like Oribacterium sp. oral taxon 108, Campylobacter jejuni, uncultured Eubacterium sp., Tannerella, and Porphyromonas were identified. CONCLUSION Oral microbiome dysbiosis was found in patients suffering from PVL. To the best of our knowledge, this is the first study investigating the oral microbiome alterations in PVL and, due to the limited number of participants, additional studies are needed. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of PVL.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Judith Murillo
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
37
|
Zeng H, Safratowich BD, Liu Z, Bukowski MR, Ishaq SL. Adequacy of calcium and vitamin D reduces inflammation, β-catenin signaling, and dysbiotic Parasutterela bacteria in the colon of C57BL/6 mice fed a western-style diet. J Nutr Biochem 2021; 92:108613. [PMID: 33705950 DOI: 10.1016/j.jnutbio.2021.108613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent "new Western diet" (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and β-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, β-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine
| |
Collapse
|
38
|
Söder B, Källmén H, Yucel-Lindberg T, Meurman JH. Periodontal microorganisms and diagnosis of malignancy: A cross-sectional study. Tumour Biol 2021; 43:1-9. [PMID: 33935124 DOI: 10.3233/tub-200066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral infections associate statistically with cancer. OBJECTIVE We hypothesized that certain periodontal microorganisms might specifically link to malignancies in general and set out to investigate this in our ongoing cohort study. METHODS A sample of 99 clinically examined patients from our cohort of 1676 subjects was used to statistically investigate the associations between harboring periodontal microorganisms Aggregatibacter actinomycetemcomitans (A.a), Porphyromonas gingivalis (P.g), Prevotella intermedia (P.i), Tannerella forsythia (T.f) and Treponema denticola (T.d). We used oral infection indexes and the incidence figures of malignancies as registered in 2008-2016 in the Swedish National Cancer Register. RESULTS The pathogen A.a showed strong association with malignancy in 32 out of the 99 patients while P.g and P.i were more prevalent among patients without malignancy. In principal component analyses, A.a appeared in the strongest component while the second strongest component consisted of a combination of T.f and T.d. The third component consisted of a combination of P.g and P.i, respectively. Of basic and oral health variables, gingival index appeared to be the strongest expression of inflammation (Eigen value 4.11 and Explained Variance 68.44 percent). CONCLUSIONS The results partly confirmed our hypothesis by showing that harboring certain periodontal bacteria might link to malignancy. However, the associations are statistical and no conclusions can be drawn about causality.
Collapse
Affiliation(s)
- Birgitta Söder
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Källmén
- Center for psychiatry research Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
39
|
Chen MF, Lu MS, Hsieh CC, Chen WC. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell Oncol (Dordr) 2021; 44:373-384. [PMID: 33201403 DOI: 10.1007/s13402-020-00573-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Increasing evidence indicates that the microbiome may influence tumor growth and modulate the tumor microenvironment of gastrointestinal cancers. However, the role of oral bacteria in the development of esophageal squamous cell carcinoma (EsoSCC) has remained unclear. Herein, we investigated the relationship between the periodontal pathogen Porphyromonas gingivalis and EsoSCC. METHODS To identify bacterial biomarkers associated with EsoSCC, we analyzed microbiomes in oral biofilms. The presence of P. gingivalis in esophageal tissues and relationships of P. gingivalis infection with clinicopathologic characteristics in 156 patients with EsoSCC were assessed using immunohistochemistry. The role of P. gingivalis infection in in vitro and in vivo EsoSCC progression was also assessed. RESULTS Microbiota profiles in oral biofilms revealed that P. gingivalis abundance was associated with an increased risk of EsoSCC development. In total, 57% of patients with EsoSCC were found to be infected with P. gingivalis. The presence of P. gingivalis was found to be associated with advanced clinical stages and a poor prognosis. It was also found to be associated with an elevated esophageal cancer incidence in a 4-nitroquinoline 1-oxide-induced mouse model and with an increased xenograft tumor growth. P. gingivalis infection increased interleukin (IL)-6 production and it promoted epithelial-mesenchymal transition and the recruitment of myeloid-derived suppressor cells. Furthermore, inhibited IL-6 signaling attenuated the tumor-promoting effects of P. gingivalis in 4-nitroquinoline 1-oxide-treated mice and xenograft mouse models. CONCLUSIONS Our data indicate that P. gingivalis may promote esophageal cancer development and progression. Direct targeting of P. gingivalis or concomitant IL-6 signaling may be a promising strategy to prevent and/or treat EsoSCC associated with P. gingivalis infection.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
- Chang Gung University, College of Medicine, Taoyuan, Taiwan.
| | - Ming-Shian Lu
- Department of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Chuan Hsieh
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wen-Cheng Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
40
|
Yang W, Chen CH, Jia M, Xing X, Gao L, Tsai HT, Zhang Z, Liu Z, Zeng B, Yeung SCJ, Lee MH, Cheng C. Tumor-Associated Microbiota in Esophageal Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:641270. [PMID: 33681225 PMCID: PMC7930383 DOI: 10.3389/fcell.2021.641270] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Important evidence indicates the microbiota plays a key role in esophageal squamous cell carcinoma (ESCC). The esophageal microbiota was prospectively investigated in 18 patients with ESCC and 11 patients with physiological normal (PN) esophagus by 16S rRNA gene profiling, using next-generation sequencing. The microbiota composition in tumor tissues of ESCC patients were significantly different from that of patients with PN tissues. The ESCC microbiota was characterized by reduced microbial diversity, by decreased abundance of Bacteroidetes, Fusobacteria, and Spirochaetes. Employing these taxa into a microbial dysbiosis index demonstrated that dysbiosis microbiota had good capacity to discriminate between ESCC and PN esophagus. Functional analysis characterized that ESCC microbiota had altered nitrate reductase and nitrite reductase functions compared with PN group. These results suggest that specific microbes and the microbiota may drive or mitigate ESCC carcinogenesis, and this study will facilitate assigning causal roles in ESCC development to certain microbes and microbiota.
Collapse
Affiliation(s)
- Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Minghan Jia
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangbin Xing
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hsin-Ting Tsai
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Zhanfei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Come J, Pereira JB, Pinto R, Carrilho C, Pereira L, Lara Santos L. The Upper Digestive Tract Microbiome and Oesophageal Squamous Cell Carcinoma: Epidemiology, Pathogenesis, and Clinical Implications in Africa. Pathobiology 2020; 88:141-155. [PMID: 33291118 DOI: 10.1159/000511422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
The study of the microbiome has significantly contributed to our understanding of complex diseases including cancer, with a profound influence of the microbiota on clinical prognosis and the efficacy of cancer treatments. Oesophageal cancer is positioned amongst the most aggressive malignant diseases, resulting from a complex interaction between anthropometric, genetic, immune response, and environmental factors. Oesophageal squamous cell carcinoma (OSCC) is the most common type of oesophageal cancer and is a serious burden in Eastern Africa, in the area known as the African oesophageal cancer corridor (AOCC). OSCC is often diagnosed at a late stage, with patients already suffering from severe malnutrition and dehydration due to swallowing difficulties, leading to high mortality rates. So far, aetiological factors have been individually analysed with an inappropriate contextualisation. The upper digestive tract microbiome has been proposed to contribute to the onset and progression of OSCC but with limited understanding of the mechanisms behind this interaction. Data on African populations are limited, and the aetiology of AOCC is still poorly understood. This review discusses the current knowledge of the aetiology of OSCC in Africa, with special focus on the probable influence of the upper digestive tract microbiota.
Collapse
Affiliation(s)
- Jotamo Come
- Departamento de Cirurgia, Hospital Central de Maputo, Maputo, Mozambique
| | - Joana Barbosa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ricardo Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Carla Carrilho
- Departamento de Patologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique.,Departamento de Patologia, Hospital Central de Maputo, Maputo, Mozambique
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Grupo de Patologia e Terapêutica Experimental e Departamento de Oncologia do Instituto Português de Oncologia do Porto, Porto, Portugal, .,ONCOCIR - Education and Care in Oncology, PALOP - Lusophone Africa, Porto, Portugal,
| |
Collapse
|
42
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
43
|
Lopez LR, Bleich RM, Arthur JC. Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annu Rev Med 2020; 72:243-261. [PMID: 33052764 DOI: 10.1146/annurev-med-080719-091604] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carcinogenesis is a multistep process by which normal cells acquire genetic and epigenetic changes that result in cancer. In combination with host genetic susceptibility and environmental exposures, a prominent procarcinogenic role for the microbiota has recently emerged. In colorectal cancer (CRC), three nefarious microbes have been consistently linked to cancer development: (a) Colibactin-producing Escherichia coli initiates carcinogenic DNA damage, (b) enterotoxigenic Bacteroides fragilis promotes tumorigenesis via toxin-induced cell proliferation and tumor-promoting inflammation, and (c) Fusobacterium nucleatum enhances CRC progression through two adhesins, Fap2 and FadA, that promote proliferation and antitumor immune evasion and may contribute to metastases. Herein, we use these three prominent microbes to discuss the experimental evidence linking microbial activities to carcinogenesis and the specific mechanisms driving this stepwise process. Precisely defining mechanisms by which the microbiota impacts carcinogenesis at each stage is essential for developing microbiota-targeted strategies for the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Lacey R Lopez
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rachel M Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina 28608, USA;
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; , .,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Center for Gastrointestinal Biology and Disease, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
44
|
An Antibacterial Strategy of Mg-Cu Bone Grafting in Infection-Mediated Periodontics. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7289208. [PMID: 32908908 PMCID: PMC7474743 DOI: 10.1155/2020/7289208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Periodontal diseases are mainly the results of infections and inflammation of the gum and bone that surround and support the teeth. In this study, the alveolar bone destruction in periodontitis is hypothesized to be treated with novel Mg-Cu alloy grafts due to their antimicrobial and osteopromotive properties. In order to study this new strategy using Mg-Cu alloy grafts as a periodontal bone substitute, the in vitro degradation and antibacterial performance were examined. The pH variation and Mg2+ and Cu2+ release of Mg-Cu alloy extracts were measured. Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), two common bacteria associated with periodontal disease, were cultured in Mg-Cu alloy extracts, and bacterial survival rate was evaluated. The changes of bacterial biofilm and its structure were revealed by scanning electron microscopy (SEM) and transmission electronic microscopy (TEM), respectively. The results showed that the Mg-Cu alloy could significantly decrease the survival rates of both P. gingivalis and A. actinomycetemcomitans. Furthermore, the bacterial biofilms were completely destroyed in Mg-Cu alloy extracts, and the bacterial cell membranes were damaged, finally leading to bacterial apoptosis. These results indicate that the Mg-Cu alloy can effectively eliminate periodontal pathogens, and the use of Mg-Cu in periodontal bone grafts has a great potential to prevent infections after periodontal surgery.
Collapse
|
45
|
Moghimi M, Bakhtiari R, Mehrabadi JF, Jamshidi N, Jamshidi N, Siyadatpanah A, Mitsuwan W, Nissapatorn V. Interaction of human oral cancer and the expression of virulence genes of dental pathogenic bacteria. Microb Pathog 2020; 149:104464. [PMID: 32858118 DOI: 10.1016/j.micpath.2020.104464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/25/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) are one of the major causes of cancer morbidity and mortality worldwide. Dental microbiome has been considered as inducing agents in oral carcinogenesis. Therefore, the objective of this study was to investigate the interaction of the gene expression of the dental microbiome and OSCC patients. A cross-sectional study was designed by recruiting confirmed OSCC patients attending the University hospital during October 2018 and July 2019. The dental bacteria were isolated and confirmed by PCR technique. The expression of host and bacterial virulence genes was determined using qPCR. This study shows that 54% of T. forsythia found to be the most predominant organisms in 30 positive cases, followed by 34% of Campylobacter rectus and 29% of Prevotella intermedia. The expression of mRNA levels of bspA, csxA, fadA and interpain A in the OSCC- bacteria positive cases was significantly higher than the control group (P < 0.001). It was further found that interpainA, csxA, fadA, and bspA genes have the potential effects on the cellular gene expression in OSCC patients. A significant correlation was seen between expression patterns of CXCL10, DIAPH1, NCLN and MMP9 genes with interpain A, fadA, and bspA involved in OSCC cases The results indicate that the species specific bacteria may play a role in triggering chronic inflammation in OSCC patients. Therefore, alteration in the gene expression through the dental microbiome could be used as an alternative target in the clinical practice to detect OSCC.
Collapse
Affiliation(s)
- Mansour Moghimi
- Department of Pathology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
46
|
Steve M D, Lindsey B C, Byung Soo Y, Parth J P, David A J. Microbiome and Gastroesophageal Disease: Pathogenesis and Implications for Therapy. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.acgh.1001018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Xiao L, Zhang Q, Peng Y, Wang D, Liu Y. The effect of periodontal bacteria infection on incidence and prognosis of cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19698. [PMID: 32282725 PMCID: PMC7220362 DOI: 10.1097/md.0000000000019698] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Periodontal bacteria is the major pathogens in the oral cavity and the main cause of adult chronic periodontitis, but their association with incidence and prognosis in cancer is controversial. The aim of this study was to evaluate the effect of periodontal bacteria infection on incidence and prognosis of cancer. METHODS A systematic literature search of PubMed, Embase, Web of Science, and Cochrane Library databases was performed to obtain 39 studies comprising 7184 participants. The incidence of cancer was evaluated as odd ratios (OR) with a 95% confidence interval (95% CI) using Review Manager 5.2 software. Overall survival, cancer-specific survival and disease-free survival, which were measured as hazard ratios (HR) with a 95% CI using Review Manager 5.2 software. RESULTS Our results indicated that periodontal bacteria infection increased the incidence of cancer (OR = 1.25; 95%CI: 1.03-1.52) and was associated with poor overall survival (HR = 1.75; 95% CI: 1.40-2.20), disease-free survival (HR = 2.18; 95%CI: 1.24-3.84) and cancer-specific survival (HR = 1.85, 95%CI: 1.44-2.39). Subgroup analysis indicted that the risk of cancer was associated with Porphyromonas gingivalis (Pg) infection (OR = 2.16; 95%CI: 1.34-3.47) and Prevotella intermedia (Pi) infection (OR = 1.28; 95%CI: 1.01-1.63) but not Tannerella forsythia (Tf) (OR = 1.06; 95%CI: 0.8-1.41), Treponema denticola (Td) (OR = 1.30; 95%CI: 0.99-1.72), Aggregatibacter actinomycetemcomitans (Aa) (OR = 1.00; 95%CI: 0.48-2.08) and Fusobacterium nucleatum (Fn) (OR = 0.61; 95%CI: 0.32-1.16). CONCLUSION This meta-analysis revealed periodontal bacteria infection increased the incidence of cancer and predicted poor prognosis of cancer.
Collapse
Affiliation(s)
- Li Xiao
- Department of Stomatology North Sichuan Medical College
| | - Qianyu Zhang
- Department of Stomatology North Sichuan Medical College
| | | | - Daqing Wang
- Department of Ophthalmology North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology North Sichuan Medical College
| |
Collapse
|
48
|
Ma H, Zheng J, Li X. Potential risk of certain cancers among patients with Periodontitis: a supplementary meta-analysis of a large-scale population. Int J Med Sci 2020; 17:2531-2543. [PMID: 33029095 PMCID: PMC7532473 DOI: 10.7150/ijms.46812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Some studies have reported biological linkages between periodontitis and esophageal cancer, prostate cancer, kidney cancer, hematological malignancy, and melanoma of the skin. This meta-analysis aimed to assess the relationship between periodontitis and the aforementioned five cancers. Methods: Eligible studies on the association between periodontitis and the aforementioned five kinds of cancers were retrieved. The statistical analysis was conducted using Stata 12.0. Results: Ten articles (more than 100,000 samples for most cancers) were included. With statistical significance, participants with periodontitis might have enhanced risks of esophageal cancer (HR = 1.79, 95% CI: 1.15-2.79), prostate cancer (HR = 1.20, 95% CI: 1.09-1.31), hematological malignancy (HR = 1.19, 95% CI: 1.09-1.29), and melanoma of skin (HR = 1.21, 95% CI: 1.03-1.42), compared with those without periodontitis. However, the evidence regarding the correlation between periodontitis and the susceptibility to kidney cancer was lacking (HR=1.30, 95% CI: 0.96-1.76). Conclusions: The present meta-analysis revealed a potential link between periodontitis and esophageal cancer, prostate cancer, hematological malignancy, and melanoma of the skin. However, multi-center studies with large sample sizes and multivariable adjustments are still needed to support the conclusion.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou/PR. China.,Guanghua School of Stomatology, Sun Yat-sen University, 510055 Guangzhou/PR. China
| | - Jianmao Zheng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou/PR. China.,Guanghua School of Stomatology, Sun Yat-sen University, 510055 Guangzhou/PR. China
| | - Xiaolan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou/PR. China.,Guanghua School of Stomatology, Sun Yat-sen University, 510055 Guangzhou/PR. China
| |
Collapse
|
49
|
Lafuente Ibáñez de Mendoza I, Maritxalar Mendia X, García de la Fuente AM, Quindós Andrés G, Aguirre Urizar JM. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review. J Periodontal Res 2019; 55:13-22. [PMID: 31529626 DOI: 10.1111/jre.12691] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/13/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The target of the current systematic review is to gather and synthesize the most recent scientific information about the role of Porphyromonas gingivalis in the molecular pathways of oral squamous cell carcinoma (OSCC). BACKGROUND Oral squamous cell carcinoma is the most common malignancy of the oral cavity, with a poor prognosis and a low survival rate. Etiology is multifactorial but consumption of tobacco and alcohol is the most important risk factors. P gingivalis is a Gram-negative anaerobic bacterium commonly found in oral microbiota that has been linked to periodontal disease (PD), and recently to OSCC. However, its association with OSCC development is not well defined. MATERIAL AND METHODS A bibliographic research was carried out selecting articles published until 2019, on PubMed, Web of Science, and Scopus databases, with the keywords "Porphyromonas gingivalis," "oral cancer," "oral squamous cell carcinoma," and "periodontal pathogen." RESULTS Seventeen articles, 14 in vitro and three in animal models, were selected. Models mimicking OSCC were OSCC pre-established cell lines (11 studies), OSCC/ healthy human biopsies (three studies), and animals with OSCC (three studies). P gingivalis strains used to cause infection in these studies were ATCC 33277, 381, and W83. CONCLUSIONS Porphyromonas gingivalis could play an important role in OSCC development and could be involved in three different stages: epithelial-mesenchymal transition of malignant cells, neoplastic proliferation, and tumor invasion. Current findings emphasize the convenience of treatment and control approaches of PD as part of the primary prevention of OSCC.
Collapse
Affiliation(s)
| | | | | | - Guillermo Quindós Andrés
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Vizcaya, Spain
| | | |
Collapse
|
50
|
Periodontitis Stage III-IV, Grade C and Correlated Factors: A Histomorphometric Study. Biomedicines 2019; 7:biomedicines7020043. [PMID: 31212787 PMCID: PMC6632030 DOI: 10.3390/biomedicines7020043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022] Open
Abstract
Background: Periodontitis is a disease that leads to serious functional and esthetic dysfunctions. Periodontitis exists in different forms, and its etiology is related to multiple component causes. Two key processes involved in the evolution of this pathology are angiogenesis and inflammatory infiltrate. The aim of this study was to understand if important factors such as smoking, gender, age, plaque, pus, and probing pocket depth could influence the histomorphological pattern of generalized stage III–IV, grade C periodontitis (GPIII–IVC), which is a particular form of periodontitis. Methods: Eighteen subjects with GPIII–IVC were enrolled in this study. The percentage of inflammatory cells and the vascular area were measured and evaluated in relation to each periodontal disease-associated factor. Results: Females showed a significant increase in the percentage of inflammatory cells compared to males (6.29% vs. 2.28%, p-value = 0.020) and it was higher in non-smokers than in smokers (4.56% vs. 3.14%, p-value = 0.048). Young patients showed a significant increase in vascular area percentage compared to older patients (0.60% vs. 0.46%, p-value = 0.0006) and this percentage was also higher in non-smokers compared to smokers (0.41% vs. 0.55%, p-value = 0.0008). The vascular area was also more than halved in subjects with residual plaque on tooth surfaces (0.74% vs. 0.36%, p-value = 0.0005). Conclusions: These results suggested that even if these factors are commonly related to the worsening of periodontal status, some of them (pus and periodontal probing depth (PPD)) do not affect the inflammatory and vascular patterns.
Collapse
|