1
|
Liao R, Yao J, Zhang Y, Liu Y, Pan H, Han B, Song C. MYB transcription factors in Peucedanum Praeruptorum Dunn: the diverse roles of the R2R3-MYB subfamily in mediating coumarin biosynthesis. BMC PLANT BIOLOGY 2024; 24:1135. [PMID: 39604839 PMCID: PMC11604020 DOI: 10.1186/s12870-024-05864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The MYB superfamily (v-myb avian myeloblastosis viral oncogene homolog) plays a role in plant growth and development, environmental stress defense, and synthesis of secondary metabolites. Little is known about the regulatory function of MYB genes in Peucedanum praeruptorum Dunn, although many MYB family members, especially R2R3-MYB genes, have been extensively studied in model plants. RESULTS A total of 157 R2R3-MYB transcription factors from P. praeruptorum were identified using bioinformatics analysis. Comprehensive analyses including chromosome location, microsynteny, gene structure, conserved motif, phylogenetic tree, and conserved domain were further performed. The length of the 157 transcription factors ranged from 120 to 1,688 amino acids (molecular weight between 14.21 and 182.69 kDa). All proteins were hydrophilic. Subcellular localization predictions showed that 155 PpMYB proteins were localized in the nucleus, with PpMYB12 and PpMYB157 localized in the chloroplasts and mitochondria, respectively. Ten conserved motifs were identified in the PpMYBs, all of which contained typical MYB domains. Transcriptome analysis identified 47,902 unigenes. Kyoto Encyclopedia of Genes and Genomes analysis revealed 136 pathways, of which 524 genes were associated with the phenylpropanoid pathway. Differential expressed genes (DEGs) before and after bolting showed that 11 genes were enriched in the phenylpropanoid pathway. Moreover, the expression patterns of transcription genes were further verified by qRT-PCR. With high-performance liquid chromatography (HPLC), 8 coumarins were quantified from the root, stem, and leaf tissue samples of P. praeruptorum at different stages. Praeruptorin A was found in both roots and leaves before bolting, whereas praeruptorin B was mainly concentrated in the roots, and the content of both decreased in the roots and stems after bolting. Praeruptorin E content was highest in the leaves and increased with plant growth. The correlation analysis between transcription factors and coumarin content showed that the expression patterns of PpMYB3 and PpMYB103 in roots align with the accumulation trends of praeruptorin A, praeruptorin B, praeruptorin E, scopoletin, and isoscopoletin, which declined in content after bolting, suggesting that these genes may positively regulate the biosynthesis of coumarins. Eleven distinct metabolites and 48 DEGs were identified. Correlation analysis revealed that the expression of all DEGs were significantly related to the accumulation of coumarin metabolites, indicating that these genes are involved in the regulation of coumarin biosynthesis. CONCLUSIONS R2R3-MYB transcription factors may be involved in the synthesis of coumarin. Our findings provide basic data and a rationale for future an in-depth studies on the role of R2R3-MYB transcription factors in the growth and regulation of coumarin synthesis.
Collapse
Affiliation(s)
- Ranran Liao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Jinzhuo Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuxian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Bangxing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
2
|
Wang S, Zhan C, Chen R, Li W, Song H, Zhao G, Wen M, Liang D, Qiao J. Achievements and perspectives of synthetic biology in botanical insecticides. J Cell Physiol 2024; 239:e30888. [PMID: 36183373 DOI: 10.1002/jcp.30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Weiguo Li
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Dongmei Liang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
3
|
Li Q, Dai Y, Huang XC, Sun L, Wang K, Guo X, Xu D, Wan D, An L, Wang Z, Tang H, Qi Q, Zeng H, Qin M, Xue JY, Zhao Y. The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins. Acta Pharm Sin B 2024; 14:3760-3773. [PMID: 39220882 PMCID: PMC11365381 DOI: 10.1016/j.apsb.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Digao Wan
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Latai An
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Manoilenko S, Dippe M, Fuchs T, Eisenschmidt-Bönn D, Ziegler J, Bauer AK, Wessjohann LA. Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters. J Biotechnol 2024; 388:72-82. [PMID: 38616039 DOI: 10.1016/j.jbiotec.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6'H1 and AtF6'H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile "green" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modeling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Collapse
Affiliation(s)
- Svitlana Manoilenko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Martin Dippe
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| | - Tristan Fuchs
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Daniela Eisenschmidt-Bönn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anne-Katrin Bauer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| |
Collapse
|
5
|
Burkhardt I, Dürr L, Grayson NE, Moore BS. Methods for the discovery and characterization of octocoral terpene cyclases. Methods Enzymol 2024; 699:343-371. [PMID: 38942510 PMCID: PMC11590171 DOI: 10.1016/bs.mie.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Octocorals are the most prolific source of terpenoids in the marine environment, with more than 4000 different compounds known from the phylum to date. However, the biochemical and genetic origin of their production remained elusive until recent studies showed that octocorals encode genes responsible for the biosynthesis of terpenoids in their own chromosomal DNA rather than from microbial symbionts as originally proposed. The identified coral genes include those encoding a new group of class I terpene cyclases (TCs) clustered among other candidate classes of tailoring enzymes. Phylogenetic analyses established octocoral TCs as a monophyletic clade, distinct from TCs of plants, bacteria, and other organisms. The newly discovered group of TCs appears to be ubiquitous in octocorals and is evolutionarily ancient. Given the recent discovery of octocoral terpenoid biochemistry and only limited genomic data presently available, there is substantial potential for discovering new biosynthetic pathways from octocorals for terpene production. The following chapter outlines practical experimental procedures for octocoral DNA and RNA extraction, genome and transcriptome assembly and mining, TC cloning and gene expression, protein purification, and in vitro analyses.
Collapse
Affiliation(s)
- Immo Burkhardt
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - Lara Dürr
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Natalie E Grayson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Zhang Y, Cheng C, Fu B, Long T, He N, Fan J, Xue Z, Chen A, Yuan J. Microbial Upcycling of Depolymerized Lignin into Value-Added Chemicals. BIODESIGN RESEARCH 2024; 6:0027. [PMID: 39364043 PMCID: PMC11449046 DOI: 10.34133/bdr.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 10/05/2024] Open
Abstract
Lignin is one of the most widespread organic compounds found on earth, boasting a wealth of aromatic molecules. The use of lignin feedstock for biochemical productions is of great importance for achieving "carbon neutrality." In recent years, a strategy for lignin valorization known as the "bio-funnel" has been proposed as a means to generate a variety of commercially valuable chemicals from lignin-derived compounds. The implementation of biocatalysis and metabolic engineering techniques has substantially advanced the biotransformation of depolymerized lignin into chemicals and materials within the supply chain. In this review, we present an overview of the latest advancements in microbial upcycling of depolymerized lignin into value-added chemicals. Besides, the review provides insights into the problems facing current biological lignin valorization while proposing further research directions to improve these technologies for the extensive accomplishment of the lignin upcycling.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Cheng Cheng
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Bixia Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., Xiamen 361000, Fujian, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Heilongjiang 150040, China
| | - Anqi Chen
- Science Center for Future Foods, Jiangnan University, Jiangsu 214122, China
| | - Jifeng Yuan
- School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
7
|
Song C, Zhang Y, Manzoor MA, Wei P, Yi S, Chu S, Tong Z, Song X, Xu T, Wang F, Peng H, Chen C, Han B. A chromosome-scale genome of Peucedanum praeruptorum provide insights into Apioideae evolution and medicinal ingredient biosynthesis. Int J Biol Macromol 2024; 255:128218. [PMID: 37992933 DOI: 10.1016/j.ijbiomac.2023.128218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Peipei Wei
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanyong Yi
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhenzhen Tong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwen Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Tao Xu
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cunwu Chen
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
8
|
Wang Z, Zhou Y, Wang Y, Yan X. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. ACS Synth Biol 2023; 12:2922-2933. [PMID: 37767718 DOI: 10.1021/acssynbio.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Marmesin is essential in plant defense systems and exhibits various biological activities. In this study, we reconstituted the marmesin biosynthetic pathway in the Saccharomyces cerevisiae BY4741 chassis. We engineered the aromatic amino acid (AAA) biosynthetic pathways by introducing Escherichia coli-derived ppsA to improve the availability of the AAA precursor phosphoenolpyruvate, overexpressing the feedback inhibition resistance genes ARO4K229L and ARO7G141S to direct the metabolic flux toward the tyrosine branch, and deleting ARO10, PDC5, and PDC6 to reduce the byproducts from the Ehrlich pathway. The umbelliferone 6-dimethylallyltransferase (U6DT) and marmesin synthase (MS) involved in marmesin synthesis were optimized to increase marmesin production. Marmesin production was improved by truncating the transmembrane domains of PcU6DT, FcMS, and AtCPR1 and increasing the copy numbers of the genes encoding the truncated enzymes. Finally, a marmesin titer of 27.7 mg/L was obtained in shake flasks using the engineered yeast strain MU5. The constructed marmesin-producing strain provides the foundation for the green and large-scale production of pharmaceutically important furanocoumarins.
Collapse
Affiliation(s)
- Zhaoxin Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Mazumdar P, Jalaluddin NSM, Nair I, Tian Tian T, Rejab NAB, Harikrishna JA. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2503-2516. [PMID: 37599849 PMCID: PMC10439074 DOI: 10.1007/s13197-022-05516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 08/22/2023]
Abstract
Hydrocotyle bonariensis is an edible herb, that is also used for traditional medical purposes. It is high in antioxidants, phenols, and flavonoids. However, there is limited information on the nutritional composition and the mechanisms by which nutritional and functional constituents of H. bonariensis affect human metabolism. With an aim to identify gaps in evidence to support the mainstream use of H. bonariensis for health and as a functional food, this review summarises current knowledge of the taxonomy, habitat characteristics, nutritional value and health-related benefits of H. bonariensis and its extracts. Ethno-medical practices for the plant are supported by pharmacological studies, yet animal model studies, clinical trials and food safety assessments are needed to support the promotion of H. bonariensis and its derivatives as superfoods and for use in the modern pharmaceutical industry.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Indiran Nair
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Tian Tian
- Green World Genetics Sdn. Bhd, 52200 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Binti Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Wang P, Fan Z, Wei W, Yang C, Wang Y, Shen X, Yan X, Zhou Z. Biosynthesis of the Plant Coumarin Osthole by Engineered Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:2455-2462. [PMID: 37450901 DOI: 10.1021/acssynbio.3c00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Osthole is a coumarin compound found in the traditional Chinese medicine Cnidium monnieri. Extensive studies have shown that osthole exhibits many medicinal properties, and recently, researchers have found that it possesses potent airway-relaxation activity by inhibiting phosphodiesterase 4D activity, making it a potential novel bronchodilator that does not target β2-adrenoceptors for asthma treatment. Here, we report the complete biosynthesis of osthole in engineered yeast. We created an umbelliferone (UMB)-producing strain by reconstituting the complete UMB pathway in yeast. We found that coumarin synthase (COSY) is essential for the conversion of 2',4'-dihydroxycinnamoyl-CoA into UMB in yeast; this conversion has been treated as a spontaneous step in previously reported UMB-producing microbials. By introducing downstream prenyltransferase and methyltransferase genes and addressing problems such as protein expression and cofactor supply to fulfill the downstream steps, complete biosynthesis of osthole was achieved. Finally, through metabolic engineering, to ensure precursor supply, and the debugging of rate-limited steps, the osthole titer reached 108.10 mg/L in shake flasks and 255.1 mg/L in fed-batch fermentation. Our study is the first to produce osthole using engineered microbes, providing a blueprint for the supply of plant-derived osthole via microbial fermentation, which will remove the barriers of resource limitations for osthole-based drug development.
Collapse
Affiliation(s)
- Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenjun Fan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
12
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
13
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
14
|
Rodrigues JL, Gomes D, Rodrigues LR. Challenges in the Heterologous Production of Furanocoumarins in Escherichia coli. Molecules 2022; 27:molecules27217230. [PMID: 36364054 PMCID: PMC9656933 DOI: 10.3390/molecules27217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Coumarins and furanocoumarins are plant secondary metabolites with known biological activities. As they are present in low amounts in plants, their heterologous production emerged as a more sustainable and efficient approach to plant extraction. Although coumarins biosynthesis has been positively established, furanocoumarin biosynthesis has been far more challenging. This study aims to evaluate if Escherichia coli could be a suitable host for furanocoumarin biosynthesis. The biosynthetic pathway for coumarins biosynthesis in E. coli was effectively constructed, leading to the production of umbelliferone, esculetin and scopoletin (128.7, 17.6, and 15.7 µM, respectively, from tyrosine). However, it was not possible to complete the pathway with the enzymes that ultimately lead to furanocoumarins production. Prenyltransferase, psoralen synthase, and marmesin synthase did not show any activity when expressed in E. coli. Several strategies were tested to improve the enzymes solubility and activity with no success, including removing potential N-terminal transit peptides and expression of cytochrome P450 reductases, chaperones and/or enzymes to increase dimethylallylpyrophosphate availability. Considering the results herein obtained, E. coli does not seem to be an appropriate host to express these enzymes. However, new alternative microbial enzymes may be a suitable option for reconstituting the furanocoumarins pathway in E. coli. Nevertheless, until further microbial enzymes are identified, Saccharomyces cerevisiae may be considered a preferred host as it has already been proven to successfully express some of these plant enzymes.
Collapse
Affiliation(s)
- Joana L. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +35-125-360-4423
| | - Daniela Gomes
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
He BT, Liu ZH, Li BZ, Yuan YJ. Advances in biosynthesis of scopoletin. Microb Cell Fact 2022; 21:152. [PMID: 35918699 PMCID: PMC9344664 DOI: 10.1186/s12934-022-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Scopoletin is a typical example of coumarins, which can be produced in plants. Scopoletin acts as a precursor for pharmaceutical and health care products, and also possesses promising biological properties, including antibacterial, anti-tubercular, anti-hypertensive, anti-inflammatory, anti-diabetic, and anti-hyperuricemic activity. Despite the potential benefits, the production of scopoletin using traditional extraction processes from plants is unsatisfactory. In recent years, synthetic biology has developed rapidly and enabled the effective construction of microbial cell factories for production of high value-added chemicals. Herein, this review summarizes the progress of scopoletin biosynthesis in artificial microbial cell factories. The two main pathways of scopoletin biosynthesis are summarized firstly. Then, synthetic microbial cell factories are reviewed as an attractive improvement strategy for biosynthesis. Emerging techniques in synthetic biology and metabolic engineering are introduced as innovative tools for the efficient synthesis of scopoletin. This review showcases the potential of biosynthesis of scopoletin in artificial microbial cell factories.
Collapse
Affiliation(s)
- Bo-Tao He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
16
|
Evaluation of Angelica decursiva reference genes under various stimuli for RT-qPCR data normalization. Sci Rep 2021; 11:18993. [PMID: 34556773 PMCID: PMC8460625 DOI: 10.1038/s41598-021-98434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Angelica decursiva is one of the lending traditional Chinese medicinal plants producing coumarins. Notably, several studies have focused on the biosynthesis and not the RT-qPCR (quantitative real-time reverse transcription polymerase chain reaction) study of coumarins. This RT-qPCR technique has been extensively used to investigate gene expression levels in plants and the selection of reference genes which plays a crucial role in standardizing the data form the RT-qPCR analysis. In our study, 11 candidate reference genes were selected from the existing transcriptome data of Angelica decursiva. Here, four different types of statistical algorithms (geNorm, NormFinder, BestKeeper, and Delta Ct) were used to calculate and evaluate the stability of gene expression under different external treatments. Subsequently, RefFinder analysis was used to determine the geometric average of each candidate gene ranking, and to perform comprehensive index ranking. The obtained results showed that among all the 11 candidate reference genes, SAND family protein (SAND), protein phosphatase 2A gene (PP2A), and polypyrimidine tract-binding protein (PTBP) were the most stable reference genes, where Nuclear cap binding protein 2 (NCBP2), TIP41-like protein (TIP41), and Beta-6-tubulin (TUBA) were the least stable genes. To the best of our knowledge, this work is the first to evaluate the stability of reference genes in the Angelica decursiva which has provided an important foundation on the use of RT-qPCR for an accurate and far-reaching gene expression analysis in this medicinal plant.
Collapse
|
17
|
Song C, Li X, Jia B, Liu L, Ou J, Han B. De novo Transcriptome Sequencing Coupled With Co-expression Analysis Reveal the Transcriptional Regulation of Key Genes Involved in the Formation of Active Ingredients in Peucedanum praeruptorum Dunn Under Bolting Period. Front Genet 2021; 12:683037. [PMID: 34194480 PMCID: PMC8236723 DOI: 10.3389/fgene.2021.683037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Peucedanum praeruptorum Dunn is a perennial and one-off flowering plant of the Peucedanum genus in Umbelliferae. The cultivated P. praeruptorum Dunn usually grows nutritionally in the first year and then moves into the reproductive growth in the second year. The lignification of the roots caused by bolting leads to the quality decline of crude materials. Since most of the previous studies have dealt with coumarin biosynthesis and identification of functional genes in P. praeruptorum, the scientific connotation of the inability that the bolted P. praeruptorum cannot be used medically is still unclear. Here, we employed a transcriptome sequencing combined with coexpression analysis to unearth the regulation mechanism of key genes related to coumarin synthesis in pre- and postbolting period, and to explore the mechanisms underlying the effects of bolting on the formation and transport of coumarins between the annual and biennial plants. Six cDNA libraries were constructed, and the transcripts were sequenced and assembled by Illumina Hiseq platform. A total of 336,505 unigenes were obtained from 824,129 non-redundant spliced transcripts. Unigenes (114,488) were annotated to the NCBI nr database, 119,017 and 10,475 unigenes were aligned to Gene Ontology (GO) functional groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Differential expression analysis screened out a series of upregulated and downregulated genes related to the phenylpropanoid pathway. The heatmap clustering showed that the similar expression patterns were both observed in groups C vs. D and groups C vs. F. The WGCNA-based coexpression was performed to elucidate the module and trait relationship to unearth important genes related to the bolting process. Seven pivotal modules on the KEGG functional annotations suggested these genes were mainly enriched in the process of plant–pathogen interaction, plant hormone signal transduction, MAPK signaling pathway, α-linolenic acid metabolism, circadian rhythm, and phenylpropanoid pathway. Further analysis provided clues that the key genes of the phenylpropanoid pathway, the ABC transporters, the apoptosis-related and circadian rhythm regulatory genes may play pivotal roles in regulating bolting signaling, biosynthesis, and transportation of coumarins.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China
| | - Xiaoli Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Jia
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmei Ou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
19
|
Rodrigues JL, Rodrigues LR. Biosynthesis and heterologous production of furanocoumarins: perspectives and current challenges. Nat Prod Rep 2021; 38:869-879. [PMID: 33174568 DOI: 10.1039/d0np00074d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to October 2020 Furanocoumarins are plant secondary metabolites used to treat several skin disorders, such as psoriasis and vitiligo, and also with other potential therapeutic activities. Furanocoumarins are extracted from plants where they accumulate in low amounts over long growth periods. In addition, their extraction and purification are difficult in an environmentally unfriendly and expensive process. Hence, new sustainable and greener production schemes able to overcome such limitations ought to be developed. While the heterologous production of simple coumarins has been demonstrated, the biosynthesis of more complex furanocoumarins remains greatly unexplored. Although several important steps of the pathway have been elucidated in the last decade, the complete pathway has not been completely unravelled. In this paper, we review the natural conversion of amino acids into furanocoumarins, as well as the heterologous expression of each enzyme of the pathway. We also explore the challenges that need to be addressed so that their heterologous production can become a viable alternative.
Collapse
Affiliation(s)
- Joana L Rodrigues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
20
|
Wang Z, Jian X, Zhao Y, Li S, Sui Z, Li L, Kong L, Luo J. Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method. Gene 2020; 758:144950. [PMID: 32683078 DOI: 10.1016/j.gene.2020.144950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Sunflower (Helianthus annuus L.) is an important oil crop, the secondary metabolites of it include many compounds such as flavonoids and lignin. However, the research on the biosynthesis of phenolic compounds in sunflowers is still scarce. Cinnamate 4-hydroxylase (C4H) belongs to the cytochrome P450-dependent monooxygenase family and is involved in the synthesis of many phenolic compounds, but C4H in sunflowers has not yet been cloned and functionally characterized. In this study, we screened three C4H genes from the sunflower transcriptome and genomic databases, named HaC4H1, HaC4H2, and, HaC4H3, respectively. In heterologous expression experiments, we had improved a method from previous studies by the addition of restriction sites to make it easier to express multiple C4H functions and suitable for in vitro activity verification. HaC4Hs without the N-terminal membrane anchor region was fused with a redox partner of Arabidopsis thaliana cytochrome P450 enzyme (CYP450) by the method and functionally expressed in E. coli and the results showed that these three enzymes catalyzed the formation of p-coumaric acid. To further investigate whether our fusion protein approach is applicable to other C4Hs, we used this method to explore the functions of C4H from Peucedanum praeruptorum and Angelica decursiva, and they can also convert trans-cinnamic acid to p-coumaric acid. The gene expression profile showed that all three HaC4H genes showed the highest transcription levels in the roots and might be up-regulated by MeJA. In summary, these results reveal the function of HaC4Hs in sunflower and provide a simpler way to explore C4H and even other cytochrome P450 enzymes in prokaryotic expression systems.
Collapse
Affiliation(s)
- Ziwen Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiangyun Jian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ziwei Sui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
21
|
Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life (Basel) 2020; 10:life10050056. [PMID: 32370107 PMCID: PMC7281501 DOI: 10.3390/life10050056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are plant secondary metabolites with diverse biological and potential therapeutic activities such as antioxidant, anti-inflammatory and anticancer, among others. However, their extraction from the native plants is not enough to satisfy the increasing demand for this type of compounds. The development of microbial cell factories to effectively produce polyphenols may represent the most attractive solution to overcome this limitation and produce high amounts of these bioactive molecules. With the advances in the synthetic biology field, the development of efficient microbial cell factories has become easier, largely due to the development of the molecular biology techniques and by the identification of novel isoenzymes in plants or simpler organisms to construct the heterologous pathways. Furthermore, efforts have been made to make the process more profitable through improvements in the host chassis. In this review, advances in the production of polyphenols by genetically engineered Saccharomyces cerevisiae as well as by synthetic biology and metabolic engineering approaches to improve the production of these compounds at industrial settings are discussed.
Collapse
|
22
|
Xu W, Yang C, Xia Y, Zhang L, Liu C, Yang H, Shen W, Chen X. High-Level Production of Tyrosol with Noninduced Recombinant Escherichia coli by Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4616-4623. [PMID: 32208625 DOI: 10.1021/acs.jafc.9b07610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tyrosol is a pharmacologically active phenolic compound widely used in the pharmaceutical and chemical industries. Microbial fermentation has potential value as an environmentally friendly approach to tyrosol production, but suffers from low tyrosol yields and the need for expensive media additives. In this study, Escherichia coli MG1655 was modified by integrating an E. coli codon-optimized version of the Saccharomyces cerevisiae phenylpyruvate decarboxylase gene, named ARO10*, into the lacI locus. The resulting strain (YMGA*) produced 0.14 mM tyrosol from 2% glucose without the need for expensive media supplements. Subsequent deletion of E. coli genes designed to eliminate competing metabolic pathways (feaB, pheA, tyrB) or undesirable gene regulation (tyrR) produced a strain (YMGA*R) that produced 3.11 mM tyrosol. Tyrosol production was then increased to 10.92 mM by increasing the ARO10* copy number to five copies (strain YMG5A*R). Finally, tyrosol production was increased to 28 mM (ca. 3.9 g/L) by optimizing fermentation conditions in a 5 L fermenter. Engineering a productive E. coli strain with high tyrosol titer from glucose using a medium that does not require added amino acids, inducer, or antibiotic provides a solid basis to produce tyrosol through microbial fermentation.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cui Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lihua Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunxiao Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Zhao Y, Wang N, Wu H, Zhou Y, Huang C, Luo J, Zeng Z, Kong L. Structure-based tailoring of the first coumarins-specific bergaptol O-methyltransferase to synthesize bergapten for depigmentation disorder treatment. J Adv Res 2019; 21:57-64. [PMID: 31666994 PMCID: PMC6812039 DOI: 10.1016/j.jare.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023] Open
Abstract
Bergapten has long been used in combination with ultraviolet A irradiation to treat depigmentation disorder. However, extremely low bergapten contents in plants and difficulties in synthesizing bergapten have limited its application. Here, we developed an alternative bergapten-production method. We first determined the crystal structures of bergaptol O-methyltransferase from Peucedanum praeruptorum (PpBMT) and the ternary PpBMT-S-adenosyl-L-homocysteine (SAH)-bergaptol complex to identify key residues involved in bergaptol binding. Then, structure-based protein engineering was performed to obtain PpBMT mutants with improved catalytic activity towards bergaptol. Subsequently, a high-activity mutant was used to produce bergapten for pharmacological-activity analysis. Key PpBMT amino acids involved in bergaptol binding and substrate specificity were identified, such as Asp226, Asp246, Ser265, and Val320. Site-directed mutagenesis and biochemical analysis revealed that the V320I mutant efficiently transformed bergaptol to produce bergapten. Pharmacological-activity analysis indicated that bergapten positively affected hair pigmentation in mice and improved pigmentation levels in zebrafish embryos. This report provides the first description of the catalytic mechanism of coumarins-specific O-methyltransferase. The high-activity V320I mutant protein could be used in metabolic engineering to produce bergapten in order to treat depigmentation disorder. This structure-function study provides an alternative synthesis method and important advances for treating depigmentation disorders.
Collapse
Affiliation(s)
- Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nana Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanze Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhixiong Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|