1
|
Su Z, Chen Z, Cao J, Li C, Duan J, Zhou T, Yang Z, Cheng Y, Xiao Z, Xu F. Feasibility of Using Serum, Plasma, and Platelet 5-hydroxytryptamine as Peripheral Biomarker for the Depression Diagnosis and Response Evaluation to Antidepressants: Animal Experimental Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:594-609. [PMID: 39420607 PMCID: PMC11494436 DOI: 10.9758/cpn.24.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 10/19/2024]
Abstract
Objective Whether peripheral blood 5-hydroxytrptamine (5-HT) levels serve as biomarker for depression diagnosis/response evaluation has not been well determined. This work was explored to address this inconclusive issue. Methods Animals were randomized into normal control group (NC, n = 10) and chronic unpredictable mild stress model group (CUMS-model, n = 20), respectively. Animals in CUMS-model group were subjected to chronic stress, then they were randomly subdivided into CUMS subgroup and CUMS + fluoxetine subgroup (CUMS + FLX). After FLX treatment, blood and tissues were collected. 5-HT and relevant protein expression were measured. Results In mice model, there was a significant increase in serum and a significant reduction in plasma 5-HT levels in CUMS-model group versus NC group, while platelet 5-HT levels change little. After FLX treatment, serum and platelet 5-HT levels were significantly decreased in CUMS + FLX subgroup, while plasma 5-HT levels had not much change versus CUMS subgroup. Chronic stress enhanced colon and platelet serotonin transporter (SERT) expression and FLX treatment mitigated SERT expression. In rats' model, there was a significant increase in serum 5-HT levels while plasma and platelet 5-HT levels showed little change in CUMS group versus NC group. After FLX treatment, serum, plasma and platelet 5-HT levels were significantly decreased in CUMS + FLX subgroup versus CUMS subgroup. The profile of relevant proteins expression changed by FLX were like those in mice. Conclusion Serum 5-HT levels might serve as a potential biomarker for depression diagnosis, meanwhile serum and platelet 5-HT levels might respond to antidepressant treatment.
Collapse
Affiliation(s)
- Zuanjun Su
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Zhicong Chen
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Jinming Cao
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Canye Li
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Ting Zhou
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
| | - Zhen Yang
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Yuanchi Cheng
- Department of Pharmacology, Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Zhijun Xiao
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
| | - Feng Xu
- Department of Clinical Pharmacy, Fengxian Hospital and School of Pharmaceutical Science, Southern Medical University, Shanghai, China
| |
Collapse
|
2
|
Zou Z, Xiao N, Chen Z, Lin X, Li Y, Li P, Cheng Q, Du B. Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota. Mol Nutr Food Res 2024:e2300467. [PMID: 39432823 DOI: 10.1002/mnfr.202300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2024] [Indexed: 10/23/2024]
Abstract
SCOPE Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats. METHODS AND RESULTS After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of Lactobacillus animalis and Lactobacillus johnsonii are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression. CONCLUSION AP, as a natural and safe active substance, has a positive effect in the treatment of depression.
Collapse
Affiliation(s)
- Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zhixian Chen
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Xucong Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Qian Cheng
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
3
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2024:10.1007/s12035-024-04554-1. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
4
|
Chien PY, Su CL, Liu PH, Chang CH, Gean PW. The dorsal raphe-to-ventral hippocampal projection modulates reactive aggression through 5-HT 1B receptors. Eur J Pharmacol 2024; 981:176918. [PMID: 39159717 DOI: 10.1016/j.ejphar.2024.176918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Maladaptive reactive aggression is a core symptom of neuropsychiatric disorders such as schizophrenia. While uncontrolled aggression dampens societal safety, there is a limited understanding of the neural regulation involved in reactive aggression and its treatment. High levels of aggression have been linked to low serotonin (5-HT) levels. Additionally, post-weaning socially isolated (SI) mice exhibit outbursts of aggression following encountering acute stress, and hyperactivated ventral hippocampus (vHip) involves this stress-provoked escalated aggression. Here, we investigated the potential role of the raphe nucleus projecting to the vHip in modulating aggressive behavior. Chemogenetically activating the dorsal raphe nucleus (DRN) soma projecting the vHip or DRN nerve terminals in the vHip reduced reactive aggression. The reduction of attack behavior was abolished by the pretreatment of 5-HT1B receptor antagonist SB-224289. However, activating the median raphe nucleus (MRN)-to-vHip pathway ameliorated depression-like behavior but did not affect reactive aggression. DRN→vHip activation suppressed the vHip downstream area, the ventromedial hypothalamus (VMH), which is a core aggression area. Intra-vHip infusion of 5-HT1B receptor agonists (anpirtoline, CP-93129) suppressed reactive aggression and decreased c-Fos levels in the vHip neurons projecting to the VMH, suggesting an inhibition mechanism. Our findings indicate that activating the DRN projecting to the vHip is sufficient to inhibit reactive aggression in a 5-HT1B receptor-dependent manner. Thus, targeting 5-HT1B receptor could serve as a promising therapeutic approach to ameliorate symptoms of reactive aggression.
Collapse
Affiliation(s)
- Po-Yu Chien
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan; Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Pei-Hua Liu
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Wu Y, Su B, Zhong P, Zhao Y, Chen C, Zheng X. Association between chronic disease status and transitions in depressive symptoms among middle-aged and older Chinese population: Insights from a Markov model-based cohort study. J Affect Disord 2024; 363:445-455. [PMID: 39032710 DOI: 10.1016/j.jad.2024.07.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The relationship between chronic disease status (CDS) and transitions in depressive symptoms (DS) remains unclear. This study explores the association between CDS and DS transitions. METHODS This cohort study analyzed data from 8175 participants aged 45+, sourced from China Family Panel Studies (2016, 2018, 2020). DS were assessed using a brief version of Center for Epidemiologic Studies Depression Scale (CES-D). CDS was categorized into healthy, single disease, and multimorbidity. Markov models were used to estimate state transition intensities, mean sojourn times and hazard ratios (HRs). RESULTS DS transitions occurred between adjacent and non-adjacent states, but transition intensity between adjacent states was higher than among non-adjacent states. Self-transition intensities of severe-DS, mild-DS, and non-DS progressively increased, with average durations of 1.365, 1.482, and 7.854 years, respectively. Both single disease and multimorbidity were significantly associated with an increased risk of transitioning from non-DS to mild-DS, with multimorbidity showing a stronger association. In contrast, HRs for single diseases transitioning from mild-DS to severe-DS were significantly lower than 1. Furthermore, their HRs were almost <1 in recovery transitions but not statistically significant. LIMITATIONS Specific chronic diseases and their combinations were not analyzed. CONCLUSIONS The progression of DS exhibits various pathways. CDS is associated with DS transitions, but the roles of single disease and multimorbidity may differ across different DS progression stages. Both conditions were significantly linked to the risk of new-onset DS, with multimorbidity posing a greater association. However, this relationship is not observed in other progression stages. These findings could provide insights for early prevention and intervention for DS.
Collapse
Affiliation(s)
- Yu Wu
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China
| | - Binbin Su
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China
| | - Panliang Zhong
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China
| | - Yihao Zhao
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China
| | - Chen Chen
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China
| | - Xiaoying Zheng
- Department of Population Health and Aging Science, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Road 3rd, Bei-Ji-Ge, Dongcheng District, Beijing 100730, China; APEC Health Science Academy, Peking University, Beijing, China.
| |
Collapse
|
6
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
7
|
Tahiri J, Mian M, Aftan F, Habbal S, Salehi F, Reddy PH, Reddy AP. Serotonin in depression and Alzheimer's disease: Focus on SSRI's beneficial effects. Ageing Res Rev 2024; 101:102537. [PMID: 39389238 DOI: 10.1016/j.arr.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Depression is a complex and pervasive mental health disorder affecting millions globally. Serotonin, a critical neurotransmitter, plays a central role in the pathophysiology of depression. This review explores serotonin's multifaceted role in depression, focusing on its synthesis, bioavailability, receptor interactions, and the impact of various factors, including diet, stress, and gender differences. This review aims to provide a comprehensive understanding of serotonin's role in depression by examining its synthesis and structure, its bioavailability and dietary influences, and its interactions with stress and immune responses. Additionally, it investigates the influence of age, socioeconomic status, and gender on depression, and integrates findings from animal research to elucidate serotonin's impact on mood disorders and cognitive decline. A literature review was conducted using PubMed, Google Scholar, and Embase databases. Key focus areas included serotonin synthesis and receptor interactions, dietary effects on serotonin bioavailability, and the relationship between serotonin, immune responses, and stress. Gender differences, age-related factors, and socioeconomic influences on depression were also examined. Studies were thematically categorized and analyzed to provide a cohesive overview. Our review highlights that serotonin synthesis involves a complex enzymatic process, with recent structural studies revealing intricate receptor interactions. Dietary factors significantly impact serotonin levels, with interventions potentially modulating mood disorders. Stress and immune responses are linked to serotonin dynamics, with chronic stress exacerbating mood disorders and influencing cognitive decline. Animal studies underscore serotonin's role in mood regulation and cognitive function, while human research reveals how age, gender, and socioeconomic factors affect depression. The findings emphasize the need for a multidimensional approach to understanding and treating depression. Various factors, including diet, stress, and immune responses, influence serotonin's role in mood disorders. The review suggests potential therapeutic pathways involving dietary interventions and stress management. Furthermore, gender-specific considerations and the impact of age and socioeconomic status on depression outcomes highlight the need for tailored treatment strategies.
Collapse
Affiliation(s)
- Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA.
| | - Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Fatima Aftan
- School of Biology, University of North Texas, Denton, TX 76201, USA.
| | - Saadeddine Habbal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Farhood Salehi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Wang L, Zhao M, Li J, Xu H, Song Y, Zhao Y, Yu J, Zhou C. Evaluation of 4 quantification methods for monitoring 16 antidepressant drugs and their metabolites in human plasma by LC-MS/MS. J Pharmacol Toxicol Methods 2024; 130:107568. [PMID: 39383999 DOI: 10.1016/j.vascn.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Therapeutic drug monitoring for antidepressants (ADs) is vital due to the potentially serious consequences and disputes related to medical events. Therefore, we created a quick and convenient analysis way for separation and quantification of ADs. METHODS To ensure quantitative stability, we divided the 16 ADs or their metabolites into 4 pools (AD1-AD4), considering the hospital frequency that the clinician prescribed, the physicochemical properties of medicines, and the calibration range of selected ADs. After precipitation with methanol, the analytes were eluted for at least 3.5 min on a BEH C18 analytical column by different gradient elution methods. RESULTS The LLOQ and LOD were 1.25-10 ng/mL and 0.42-5 ng/mL, respectively. High precision (<12 %) and accuracy (87.07-111.47 %) were demonstrated by quality control samples both within and between days. All the compounds were stable at room temperature and within -80 °C. CONCLUSION The method is of wide clinical and laboratory interest due to simpler sample cleanup, shorter chromatographic run times, and wider calibration range compared to other methods.
Collapse
Affiliation(s)
- Lingjiao Wang
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mengqiang Zhao
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiao Li
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hongtao Xu
- HangZhou Biozon Medical Institute Co., Ltd, Hangzhou, China
| | - Yang Song
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhao
- Key Laboratory for Neuroimmunological Regulation and Mental Health of Hebei Province, Shijiazhuang, China; The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jing Yu
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, China.
| | - Chunhua Zhou
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
9
|
Wang W, Wang D, Zhao D, Xu L, Jiang S, Zhang Y, Cui M, Liu J, Meng F, Liu C, Liu D, Li W, Li C. Dorsal raphe dopaminergic neurons target CaMKII + neurons in dorsal bed nucleus of the stria terminalis for mediating depression-related behaviors. Transl Psychiatry 2024; 14:408. [PMID: 39358336 PMCID: PMC11447211 DOI: 10.1038/s41398-024-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Dopamine (DA) neurons play a crucial role in the development and manifestation of depression, as well as in response to antidepressant treatments. While the function of the predominantly distributed DA neurons in the ventral tegmental area (VTA) is well established, the contribution of a small fraction of DA neurons in the dorsal raphe nucleus (DRN) during depression remains unclear. In this study, we found that chronic unpredictable stress (CUS) induces depression-related behaviors and decreases spontaneous firing rates, excitatory and inhibitory postsynaptic currents of DA neurons in the DRN associated with reduced excitatory synaptic transmission in male and female mice. The chemogenetic inhibition of DA neurons in the DRN produces depressive phenotypes. Conversely, their activation completely reversed the anhedonic and despair behaviors induced by CUS. Furthermore, we showed that a DRN dopaminergic projecting to the dorsal bed nucleus of the stria terminalis (dBNST) selectively controls depressive behaviors by influencing the neural activity and N-methyl-D-aspartate receptor (NMDAR) mediating EPSC of calcium/calmodulin-dependent protein kinase II+ (CaMKII+) target neurons by regulating dopamine neurotransmitter and dopamine receptor 2 (DR2) in the dBNST. Overall, these findings highlight the essential role of the DRNDA → dBNSTCaMKII+ neural circuit in bi-directionally mediating stress-induced depression-related behaviors. Our findings indicate that DRN DA neurons are a key component of the neural circuitry involved in regulating depression-related behaviors, making them a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Nursing, Binzhou Medical University, Yantai, Shandong, China
| | - Minghu Cui
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
10
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
11
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Costanza A, Amerio A, Aguglia A, Rossi M, Parise A, Magnani L, Serafini G, Amore M, Martins D, Nguyen KD. Reactive Astrocytosis-A Potential Contributor to Increased Suicide in Long COVID-19 Patients? Brain Sci 2024; 14:973. [PMID: 39451987 PMCID: PMC11505806 DOI: 10.3390/brainsci14100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Long COVID-19 is an emerging chronic illness of significant public health concern due to a myriad of neuropsychiatric sequelae, including increased suicidal ideation (SI) and behavior (SB). METHODS This review provides a concise synthesis of clinical evidence that points toward the dysfunction of astrocytes, the most abundant glial cell type in the central nervous system, as a potential shared pathology between SI/SB and COVID-19. RESULTS Depression, a suicide risk factor, and SI/SB were both associated with reduced frequencies of various astrocyte subsets and complex proteomic/transcriptional changes of astrocyte-related markers in a brain-region-specific manner. Astrocyte-related circulating markers were increased in depressed subjects and, to a less consistent extent, in COVID-19 patients. Furthermore, reactive astrocytosis was observed in subjects with SI/SB and those with COVID-19. CONCLUSIONS Astrocyte dysfunctions occurred in depression, SI/SB, and COVID-19. Reactive-astrocyte-mediated loss of the blood-brain barrier (BBB) integrity and subsequent neuroinflammation-a factor previously linked to SI/SB development-might contribute to increased suicide in individuals with long COVID-19. As such, the formulation of new therapeutic strategies to restore astrocyte homeostasis, enhance BBB integrity, and mitigate neuroinflammation may reduce SI/SB-associated neuropsychiatric manifestations among long COVID-19 patients.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 24 Rue du Général-Dufour, 1211 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Department of Psychiatry, Adult Psychiatry Service, University Hospitals of Geneva (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Rossi
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Luca Magnani
- Department of Psychiatry, San Maurizio Hospital of Bolzano, Via Lorenz Böhler, 5, 39100 Bolzano, Italy;
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)—King’s College London (KCL), Strand Campus, London WC2R 2LS, UK;
- NIHR Maudesley BRC, 16 De Crespigny Park, SE5 8AF South London and Maudesley NHS Trust, Denmark Hill, London SE5 8AZ, UK
| | - Khoa D. Nguyen
- Program in Immunology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA;
- Department of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Alfaro-Rodríguez A, Reyes-Long S, Roldan-Valadez E, González-Torres M, Bonilla-Jaime H, Bandala C, Avila-Luna A, Bueno-Nava A, Cabrera-Ruiz E, Sanchez-Aparicio P, González Maciel A, Dotor-Llerena AL, Cortes-Altamirano JL. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals (Basel) 2024; 17:1205. [PMID: 39338367 PMCID: PMC11434812 DOI: 10.3390/ph17091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a disorder characterized by widespread chronic pain, significant depression, and various neural abnormalities. Recent research suggests a reciprocal exacerbation mechanism between chronic pain and depression. In patients with FM, dysregulation of tryptophan (Trp) metabolism has been identified. Trp, an essential amino acid, serves as a precursor to serotonin (5-HT), a neuromodulator that influences mood, appetite, sleep, and pain perception through the receptors 5-HT1, 5-HT2, and 5-HT3. Additionally, Trp is involved in the kynurenine pathway, a critical route in the immune response, inflammation, and production of neuroactive substances and nicotinamide adenine dinucleotide (NAD+). The activation of this pathway by pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), leads to the production of kynurenic acid (KYNA), which has neuroprotective properties, and quinolinic acid (QA), which is neurotoxic. These findings underscore the crucial balance between Trp metabolism, 5-HT, and kynurenine, where an imbalance can contribute to the dual burden of pain and depression in patients with FM. This review proposes a novel therapeutic approach for FM pain management, focusing on inhibiting QA synthesis while co-administering selective serotonin reuptake inhibitors to potentially increase KYNA levels, thus dampening pain perception and improving patient outcomes.
Collapse
Affiliation(s)
- Alfonso Alfaro-Rodríguez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Samuel Reyes-Long
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Ernesto Roldan-Valadez
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Maykel González-Torres
- Conahcyt & Biotechnology Laboratory, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 03940, Mexico
| | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alberto Avila-Luna
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Antonio Bueno-Nava
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Pedro Sanchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 50090, Mexico
| | - Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Ana Lilia Dotor-Llerena
- Division of Clinic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - José Luis Cortes-Altamirano
- Division of Basic Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
- Department of Chiropractic, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| |
Collapse
|
15
|
Mou Y, Zhao W, Pan W, Li X, Sun M, Bo Y, Zhao Y, Hu Y, Peng J, Deana C, Kaserer A, Ishii K, Yang L, Jin H. A comparison of ondansetron in preventing postoperative nausea and vomiting for patients with or without preoperative anxiety with painless egg retrieval: a prospective, randomized, controlled trial. Gland Surg 2024; 13:1522-1534. [PMID: 39282027 PMCID: PMC11399016 DOI: 10.21037/gs-24-175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/18/2024] [Indexed: 09/18/2024]
Abstract
Background Patients undergoing painless egg retrieval are prone to preoperative anxiety, and whether preoperative anxiety induces postoperative nausea and vomiting (PONV) is debated. The primary objective of this prospective, randomized, controlled study was to compare the clinical effect of ondansetron in preventing PONV for patients with and without preoperative anxiety. The secondary objective was to investigate whether preoperative anxiety was associated with PONV. Methods The self-rating anxiety scale (SAS) was used to assess the anxiety patients undergoing painless egg retrieval. Patients with a SAS standard score of 50-60 were selected to the anxiety group (n=105); and patients with a SAS standard score of 25-35 were assigned to the non-anxiety group (n=104). Venous blood samples of both groups of patients were obtained during admission and 1 hour after surgery, and all serotonin (5-HT) levels were tested using an enzyme-linked immunosorbent assay. The anxiety group was then randomly assigned into two subgroups: ondansetron (AO group, n=53) and placebo saline (AS group, n=52). Similarly, patients in the non-anxiety group were also randomly assigned to one of two subgroups: ondansetron (NO group, n=51) and placebo saline (NS group, n=53). The AO and NO groups received 8 mg (4 mL) of intravenous ondansetron 15 minutes before surgery, while the AS and NS groups received an equivalent volume (4 mL) of normal saline. We then analyzed the vital signs, risk factors for nausea and vomiting, intraoperative anesthetic doses, incidences of nausea and vomiting in 24 hours after surgery, serum 5-HT level before and after surgery, other adverse responses, pain scores, and satisfaction. Results A total of 200 patients eventually completed this study. The serum 5-HT values in the anxiety group were higher before and after surgery than in the non-anxiety group (P<0.05), but there was no significant difference in serum 5-HT before and after surgery in the same group (P>0.05). The incidence of PONV was more significant in the AS group than in the NS group (P<0.05). The incidence of PONV was also higher in the AS group than in the AO group (P<0.05). Still, there was no statistically significant difference between the NO and NS groups (P>0.05). There were no significant differences between the four groups in vital signs, risk factors for nausea and vomiting, intraoperative anesthetic doses, other adverse responses and pain scores (P>0.05). Patients in the AS group had lower satisfaction scores than those in the other three groups (P<0.05). Conclusions Patients experiencing preoperative anxiety have a greater risk of PONV following painless egg retrieval compared to those without preoperative anxiety. Ondansetron can reduce the occurrence of PONV in patients with preoperative anxiety, but it has no discernible preventative effect in non-anxious patients. Trial Registration Chinese Clinical Trial Registry ChiCTR2400079504.
Collapse
Affiliation(s)
- Ying Mou
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Zhao
- Department of Anesthesiology, The People's Hospital of Guandu District, Kunming, China
| | - Weizhou Pan
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xinnan Li
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Manyun Sun
- Department of Anesthesiology, The People's Hospital of Gejiu City, Gejiu, China
| | - Yun Bo
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yanhua Zhao
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yaoshen Hu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jun Peng
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, ASUFC-Academic Hospital of Udine, Udine, Italy
| | - Alexander Kaserer
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Koji Ishii
- Department of Anesthesia, Nagasaki University Hospital, Nagasaki, Japan
| | - Liu Yang
- Department of Anesthesiology, The People's Hospital of Gejiu City, Gejiu, China
| | - Hua Jin
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
16
|
Witkowska A, Jaromirska J, Gabryelska A, Sochal M. Obstructive Sleep Apnea and Serotoninergic Signalling Pathway: Pathomechanism and Therapeutic Potential. Int J Mol Sci 2024; 25:9427. [PMID: 39273373 PMCID: PMC11395478 DOI: 10.3390/ijms25179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Obstructive Sleep Apnea (OSA) is a disorder characterized by repeated upper airway collapse during sleep, leading to apneas and/or hypopneas, with associated symptoms like intermittent hypoxia and sleep fragmentation. One of the agents contributing to OSA occurrence and development seems to be serotonin (5-HT). Currently, the research focuses on establishing and interlinking OSA pathogenesis and the severity of the disease on the molecular neurotransmitter omnipresent in the human body-serotonin, its pathway, products, receptors, drugs affecting the levels of serotonin, or genetic predisposition. The 5-HT system is associated with numerous physiological processes such as digestion, circulation, sleep, respiration, and muscle tone-all of which are considered factors promoting and influencing the course of OSA because of correlations with comorbid conditions. Comorbidities include obesity, physiological and behavioral disorders as well as cardiovascular diseases. Additionally, both serotonin imbalance and OSA are connected with psychiatric comorbidities, such as depression, anxiety, or cognitive dysfunction. Pharmacological agents that target 5-HT receptors have shown varying degrees of efficacy in reducing the Apnea-Hypopnea Index and improving OSA symptoms. The potential role of the 5-HT signaling pathway in modulating OSA provides a promising avenue for new therapeutic interventions that could accompany the primary treatment of OSA-continuous positive airway pressure. Thus, this review aims to elucidate the complex role of 5-HT and its regulatory mechanisms in OSA pathophysiology, evaluating its potential as a therapeutic target. We also summarize the relationship between 5-HT signaling and various physiological functions, as well as its correlations with comorbid conditions.
Collapse
Affiliation(s)
- Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
17
|
Rucker JJ, Roberts C, Seynaeve M, Young AH, Suttle B, Yamamoto T, Ermakova AO, Dunbar F, Wiegand F. Phase 1, placebo-controlled, single ascending dose trial to evaluate the safety, pharmacokinetics and effect on altered states of consciousness of intranasal BPL-003 (5-methoxy- N,N-dimethyltryptamine benzoate) in healthy participants. J Psychopharmacol 2024; 38:712-723. [PMID: 38616411 PMCID: PMC11311898 DOI: 10.1177/02698811241246857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
AIMS To investigate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of BPL-003, a novel intranasal benzoate salt formulation of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), in healthy participants. METHODS In all, 44 psychedelic-naïve participants enrolled in the double-blind, placebo-controlled single ascending dose study (1-12 mg BPL-003). Concentrations of 5-MeO-DMT and its pharmacologically active metabolite, bufotenine, were determined in plasma and urine. PD endpoints included subjective drug intensity (SDI) rating, the Mystical Experience Questionnaire (MEQ-30) and the Ego Dissolution Inventory (EDI). RESULTS BPL-003 was well tolerated at doses up to 12 mg. There were no serious adverse events (AEs), and most AEs were mild; the most common being nasal discomfort, nausea, headache and vomiting. 5-MeO-DMT was rapidly absorbed and eliminated; the median time to peak plasma concentration was approximately 8-10 min and the mean terminal elimination half-life was <27 min. 5-MeO-DMT systemic exposure increased approximately dose-proportionally, while plasma bufotenine concentrations and urinary excretion of 5-MeO-DMT and bufotenine were negligible. The intensity of the SDI ratings was associated with plasma 5-MeO-DMT concentrations. MEQ-30 and EDI scores generally increased with the BPL-003 dose; 60% of participants had a 'complete mystical experience' at 10 and 12 mg doses. Profound and highly emotional consciousness-altering effects were observed with BPL-003, with a rapid onset and short-lasting duration. CONCLUSION The novel intranasal formulation of BPL-003 was well tolerated with dose-proportional increases in PK and PD effects. The short duration of action and induction of mystical experiences suggest clinical potential, warranting further trials. CLINICAL TRIAL REGISTRATION NCT05347849.
Collapse
Affiliation(s)
- James Jonathan Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The South London and Maudsley NHS Foundation Trust, Beckenham, Kent, UK
| | | | - Mathieu Seynaeve
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Beckley Psytech Ltd, Oxford, UK
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The South London and Maudsley NHS Foundation Trust, Beckenham, Kent, UK
| | | | | | - Anna O. Ermakova
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Beckley Psytech Ltd, Oxford, UK
| | | | | |
Collapse
|
18
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide induces antidepressant-like effect in mice: involvement of the serotonergic system. Psychopharmacology (Berl) 2024; 241:1663-1678. [PMID: 38635075 DOI: 10.1007/s00213-024-06588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
RATIONALE Major Depressive Disorder (MDD) significantly impairs the quality of life for those affected. While the exact causes of MDD are not fully understood, the deficit of monoamines, especially serotonin and noradrenaline, is widely accepted. Resistance to long-term treatments and adverse effects are often observed, highlighting the need for new pharmacological therapies. Synthetic organic compounds containing selenium have exhibited pharmacological properties, including potential antidepressant effects. OBJECTIVE To evaluate the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) benzamide (CF3SePB) in mice and the involvement of the serotonergic and noradrenergic systems. METHODS Male Swiss mice were treated with CF3SePB (1-50 mg/kg, i.g.) and 30 min later the forced swimming test (FST) or tail suspension test (TST) was performed. To investigate the involvement of the serotonergic and noradrenergic systems in the antidepressant-like effect of CF3SePB, mice were pre-treated with p-CPA (a 5-HT depletor, 100 mg/kg, i.p.) or the receptor antagonists WAY100635 (0.1 mg/kg, s.c., a 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ondansetron (1 mg/kg, i.p., a 5-HT3 receptor antagonist), GR110838 (0.1 mg/kg, i.p., a 5-HT4 receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenergic receptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenergic receptor antagonist) and propranolol (2 mg/kg, i.p., a non-selective beta-adrenergic receptor antagonist) at specific times before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the FST was performed. RESULTS CF3SePB showed an antidepressant-like effect in both FST and TST and this effect was related to the modulation of the serotonergic system, specially the 5-HT1A and 5-HT3 receptors. None of the noradrenergic antagonists prevented the antidepressant-like effect of CF3SePB. The compound exhibited a low potential for inducing acute toxicity in adult female Swiss mice. CONCLUSION This study pointed a new compound with antidepressant-like effect, and it could be considered for the development of new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
19
|
Wu Z, Li J, Zhong M, Xu Z, Yang M, Xu C. HTR3A Promotes Non-small Cell Lung Cancer Through the FOXH1/Wnt3A Signaling Pathway. Biochem Genet 2024:10.1007/s10528-024-10872-9. [PMID: 39046651 DOI: 10.1007/s10528-024-10872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
5-Hydroxytryptamine receptors (5-HTRs) are strongly correlated with tumor progression in various types of cancer. Despite this, the underlying mechanisms responsible for the role of 5-HTRs in non-small cell lung cancer (NSCLC) remains unclear. This study aimed to investigate the relationship between 5-hydroxytryptamine receptor 3A (HTR3A) and NSCLC development. Our findings indicated a higher distribution of HTR3A expression in NSCLC tissues when compared with normal tissues, where patients with high HTR3A levels demonstrated shorter overall survival times. In vitro analyses revealed that overexpression of HTR3A facilitated the proliferation and migration of NSCLC cell lines (A549 and NCI-H3255). Similarly, a notable acceleration of tumor growth and enhanced pulmonary tumorigenic potential were observed in HTR3A-overexpressing tumor-bearing mice. Mechanistically, upregulation of Forkhead Box H1 (FOXH1) by HTR3A led to the activation of Wnt3A/β-catenin signaling pathways, thereby promoting the development of NSCLC. Our report thus highlights the significance of the HTR3A/FOXH1 axis during tumor progression in NSCLC, proposing HTR3A as a possible diagnostic indicator and candidate target for clinical therapy.
Collapse
Affiliation(s)
- Zeqin Wu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Jiufei Li
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Minglian Zhong
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
| | - Zhiyuan Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mulan Yang
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China.
| | - Chenyang Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 18 MeiGuan Ave, Zhanggong District, Ganzhou, 341000, China.
| |
Collapse
|
20
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Tejeda-Martínez AR, Ramos-Molina AR, Brand-Rubalcava PA, Flores-Soto ME. Involvement of serotonergic receptors in depressive processes and their modulation by β-arrestins: A review. Medicine (Baltimore) 2024; 103:e38943. [PMID: 38996114 PMCID: PMC11245247 DOI: 10.1097/md.0000000000038943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Over time, several studies have been conducted to demonstrate the functions of the neurotransmitter 5-hydroxytryptamine (5-HT), better known as serotonin. This neurotransmitter is associated with the modulation of various social and physiological behaviors, and its dysregulation has consequences at the behavioral level, leading to various neurophysiological disorders. Disorders such as anxiety, depression, schizophrenia, epilepsy, sexual disorders, and eating disorders, have been closely linked to variations in 5-HT concentrations and modifications in brain structures, including the raphe nuclei (RN), prefrontal cortex, basal ganglia, hippocampus, and hypothalamus, among others. The involvement of β-arrestin proteins has been implicated in the modulation of the serotonergic receptor response, as well as the activation of different signaling pathways related to the serotonergic system, this is particularly relevant in depressive disorders. This review will cover the implications of alterations in 5-HT receptor expression in depressive disorders in one hand and how β-arrestin proteins modulate the response mediated by these receptors in the other hand.
Collapse
Affiliation(s)
- Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Ana R. Ramos-Molina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Patricia A. Brand-Rubalcava
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
22
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
24
|
Abdelmissih S, Abdelgwad M, Ali DME, Negm MSI, Eshra MA, Youssef A. High-dose Agomelatine Combined with Haloperidol Decanoate Improves Cognition, Downregulates MT2, Upregulates D5, and Maintains Krüppel-like Factor 9 But Alters Cardiac Electrophysiology. J Pharmacol Exp Ther 2024; 390:125-145. [PMID: 38816228 DOI: 10.1124/jpet.123.002087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Haloperidol decanoate (HD) has been implicated in cognitive impairment. Agomelatine (AGO) has been claimed to improve cognition. We aimed at investigating the effects of HD + low- or high-dose AGO on cognition, verifying the melatonergic/dopaminergic to the cholinergic hypothesis of cognition and exploring relevant cardiovascular issues in adult male Wistar albino rats. HD + high-dose AGO prolonged the step-through latency by +61.47% (P < 0.0001), increased the time spent in bright light by +439.49% (P < 0.0001), reduced the time spent in dim light by -66.25% (P < 0.0001), and increased the percent of alternations by +71.25% (P < 0.0001), despite the reductions in brain acetylcholine level by -10.67% (P < 0.0001). Neurodegeneration was minimal, while the mean power frequency of the source wave was reduced by -23.39% (P < 0.05). Concurrently, the relative expression of brain melatonin type 2 receptors was reduced by -18.75% (P < 0.05), against increased expressions of dopamine type 5 receptors by +22.22% (P < 0.0001) and angiopoietin-like 4 by +119.18% (P < 0.0001). Meanwhile, electrocardiogram (ECG) demonstrated inverted P wave, reduced P wave duration by -36.15% (P < 0.0001) and PR interval by -19.91% (P < 0.0001), prolonged RR interval by +27.97% (P < 0.05), increased R wave amplitude by +523.15% (P < 0.0001), and a depressed ST segment and inverted T wave. In rats administered AGO, HD, or HD+ low-dose AGO, Alzheimer's disease (AD)-like neuropathologic features were more evident, accompanied by extensive ECG and neurochemical alterations. HD + high-dose AGO enhances cognition but alters cardiac electrophysiology. SIGNIFICANCE STATEMENT: Given the issue of cognitive impairment associated with HD and the claimed cognitive-enhancing activity of AGO, combined high-dose AGO with HD improved cognition of adult male rats, who exhibited minimal neurodegenerative changes. HD+ high-dose AGO was relatively safe regarding triggering epileptogenesis, while it altered cardiac electrophysiology. In the presence of low acetylcholine, the melatonergic/dopaminergic hypothesis, added to angiopoietin-like 4 and Krüppel-like factor 9, could offer some clue, thus offering novel targets for pharmacologic manipulation of cognition.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Marwa Abdelgwad
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Doaa Mohamed Elroby Ali
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Mohamed Sharif Ismail Negm
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Mohamed Ali Eshra
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| | - Amal Youssef
- Departments of Medical Pharmacology (S.A., A.Y.), Medical Biochemistry and Molecular Biology (M.A.), Pathology (M.S.I.N.), and Medical Physiology (M.A.E.), Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt; and Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Sohag University, Sohag, Egypt (D.M.E.A.)
| |
Collapse
|
25
|
Kiyokawa Y, Ootaki M, Kambe Y, Tanaka KD, Kimura G, Tanikawa T, Takeuchi Y. Approach/Avoidance Behavior to Novel Objects is Correlated with the Serotonergic and Dopaminergic Systems in the Brown Rat (Rattus norvegicus). Neuroscience 2024; 549:110-120. [PMID: 38723837 DOI: 10.1016/j.neuroscience.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Kambe
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Goro Kimura
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Martin H, Bullich S, Martinat M, Chataigner M, Di Miceli M, Simon V, Clark S, Butler J, Schell M, Chopra S, Chaouloff F, Kleinridders A, Cota D, De Deurwaerdere P, Pénicaud L, Layé S, Guiard BP, Fioramonti X. Insulin modulates emotional behavior through a serotonin-dependent mechanism. Mol Psychiatry 2024; 29:1610-1619. [PMID: 36207585 DOI: 10.1038/s41380-022-01812-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
Type-2 Diabetes (T2D) is characterized by insulin resistance and accompanied by psychiatric comorbidities including major depressive disorders (MDD). Patients with T2D are twice more likely to suffer from MDD and clinical studies have shown that insulin resistance is positively correlated with the severity of depressive symptoms. However, the potential contribution of central insulin signaling in MDD in patients with T2D remains elusive. Here we hypothesized that insulin modulates the serotonergic (5-HT) system to control emotional behavior and that insulin resistance in 5-HT neurons contributes to the development of mood disorders in T2D. Our results show that insulin directly modulates the activity of dorsal raphe (DR) 5-HT neurons to dampen 5-HT neurotransmission through a 5-HT1A receptor-mediated inhibitory feedback. In addition, insulin-induced 5-HT neuromodulation is necessary to promote anxiolytic-like effect in response to intranasal insulin delivery. Interestingly, such an anxiolytic effect of intranasal insulin as well as the response of DR 5-HT neurons to insulin are both blunted in high-fat diet-fed T2D animals. Altogether, these findings point to a novel mechanism by which insulin directly modulates the activity of DR 5-HT neurons to dampen 5-HT neurotransmission and control emotional behaviors, and emphasize the idea that impaired insulin-sensitivity in these neurons is critical for the development of T2D-associated mood disorders.
Collapse
Affiliation(s)
- Hugo Martin
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sébastien Bullich
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Toulouse, France
| | - Maud Martinat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Mathilde Chataigner
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Mathieu Di Miceli
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- Worcester Biomedical Research Group, University of Worcester, WR2 6AJ, Worcester, UK
| | - Vincent Simon
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Samantha Clark
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Jasmine Butler
- INCIA, UMR CNRS, Bordeaux University, Neurocampus, Bordeaux, France
| | - Mareike Schell
- University of Potsdam, Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine, Nuthetal, Germany
| | - Simran Chopra
- University of Potsdam, Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine, Nuthetal, Germany
| | - Francis Chaouloff
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Andre Kleinridders
- University of Potsdam, Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine, Nuthetal, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | | | - Luc Pénicaud
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Sophie Layé
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Toulouse, France
| | - Xavier Fioramonti
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France.
| |
Collapse
|
27
|
Wang D, Schneider-Thoma J, Siafis S, Qin M, Wu H, Zhu Y, Davis JM, Priller J, Leucht S. Efficacy, acceptability and side-effects of oral versus long-acting- injectables antipsychotics: Systematic review and network meta-analysis. Eur Neuropsychopharmacol 2024; 83:11-18. [PMID: 38490016 DOI: 10.1016/j.euroneuro.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Long-acting injectable antipsychotics (LAIs) are primarily used for relapse prevention, but in some settings and situations, they may also be useful for acute treatment of schizophrenia. We conducted a systematic review and frequentist network meta-analysis of randomized-controlled trials (RCTs), focusing on adult patients in the acute phase of schizophrenia. Interventions were risperidone, paliperidone, aripiprazole, olanzapine, and placebo, administered either orally or as LAI. We synthesized data on overall symptoms, complemented by 17 other efficacy and tolerability outcomes. Confidence in the evidence was assessed with the Confidence-in-Network-Meta-Analysis-framework (CINeMA). We included 115 RCTs with 25,550 participants. All drugs were significantly more efficacious than placebo with the following standardized mean differences and their 95 % confidence intervals: olanzapine LAI -0.66 [-1.00; -0.33], risperidone LAI -0.59[-0.73;-0.46], olanzapine oral -0.55[-0.62;-0.48], aripiprazole LAI -0.54[-0.71; -0.37], risperidone oral -0.48[-0.55;-0.41], paliperidone oral -0.47[-0.58;-0.37], paliperidone LAI -0.45[-0.57;-0.33], aripiprazole oral -0.40[-0.50; -0.31]. There were no significant efficacy differences between LAIs and oral formulations. Sensitivity analyses of the primary outcome overall symptoms largely confirmed these findings. Moreover, some side effects were less frequent under LAIs than under their oral counterparts. Confidence in the evidence was moderate for most comparisons. LAIs are efficacious for acute schizophrenia and may have some benefits compared to oral formulations in terms of side effects. These findings assist clinicians with insights to weigh the risks and benefits between oral and injectable agents when treating patients in the acute phase.
Collapse
Affiliation(s)
- Dongfang Wang
- Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Johannes Schneider-Thoma
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Spyridon Siafis
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
| | - Mengchang Qin
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hui Wu
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Yikang Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - John M Davis
- Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA and Maryland Psychiatric Research Center, Baltimore, MD, USA
| | - Josef Priller
- Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany; German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany.
| |
Collapse
|
28
|
Lim J, Park J, Lee W, Choi HJ. GSK4716 enhances 5-HT1AR expression by glucocorticoid receptor signaling in hippocampal HT22 cells. Neurol Res 2024; 46:398-405. [PMID: 38555524 DOI: 10.1080/01616412.2024.2322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The serotonin (5-hydroxytryptamine, 5-HT) receptor 1A (5-HT1AR) is closely associated with serotonergic neurotransmission in the brain, being the most prevalent and widely distributed receptor of its kind. The purpose of this study is to investigate the regulation mechanism of 5-HT1AR by GSK4716. METHODS To investigate the mechanism of GSK4716-mediated 5-HT1AR regulation, we used hippocampus-derived HT22 cells expressing 5-HT1AR. The expression level of 5-HT1AR and associated proteins, were detected by reporter gene assay and western blotting. RESULTS GSK4716, an estrogen-related receptor gamma agonist increased 5-HT1AR expression by interacting with the GR, a repressor of 5-HT1AR transcription. Dexamethasone, a GR agonist, decreased the GSK4716-induced increase in 5-HT1AR, which was associated with an alteration in nuclear GR. Furthermore, GR antagonist RU486 reversed the effects induced by dexamethasone, including the elevation of nuclear GR levels and the reduction of 5-HT1AR transcription and expression. CONCLUSION The results could provide insight into the potential applications of small molecules, such as GSK4716, in the regulation of 5-HT1AR expression, which plays a role in serotonergic neurotransmission.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
29
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
30
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
31
|
Hao KX, Shen CY, Jiang JG. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117618. [PMID: 38141791 DOI: 10.1016/j.jep.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1β and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
32
|
Sun M, Brivio P, Shan L, Docq S, Heltzel LCMW, Smits CAJ, Middelman A, Vrooman R, Spoelder M, Verheij MMM, Buitelaar JK, Boillot M, Calabrese F, Homberg JR, Hanswijk SI. Offspring's own serotonin transporter genotype, independently from the maternal one, increases anxiety- and depression-like behavior and alters neuroplasticity markers in rats. J Affect Disord 2024; 350:89-101. [PMID: 38220097 DOI: 10.1016/j.jad.2024.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Developmental changes due to early life variations in the serotonin system affect stress-related behavior and neuroplasticity in adulthood. These outcomes can be caused both by offspring's own and maternal serotonergic genotype. We aimed to dissociate the contribution of the own genotype from the influences of mother genotype. METHODS Sixty-six male homozygous (5-HTT-/-) and heterozygous (5-HTT+/-) serotonin transporter knockout and wild-type rats from constant 5-HTT genotype mothers crossed with varying 5-HTT genotype fathers were subjected to tests assessing anxiety- and depression-like behaviors. Additionally, we measured plasma corticosterone levels and mRNA levels of BDNF, GABA system and HPA-axis components in the prelimbic and infralimbic cortex. Finally, we assessed the effect of paternal 5-HTT genotype on these measurements in 5-HTT+/- offspring receiving their knockout allele from their mother or father. RESULTS 5-HTT-/- offspring exhibited increased anxiety- and depression-like behavior in the elevated plus maze and sucrose preference test. Furthermore, Bdnf isoform VI expression was reduced in the prelimbic cortex. Bdnf isoform IV and GABA related gene expression was also altered but did not survive false discovery rate (FDR) correction. Finally, 5-HTT+/- offspring from 5-HTT-/- fathers displayed higher levels of anxiety- and depression-like behavior and changes in GABA, BDNF and HPA-axis related gene expression not surviving FDR correction. LIMITATIONS Only male offspring was tested. CONCLUSIONS Offspring's own 5-HTT genotype influences stress-related behaviors and Bdnf isoform VI expression, independently of maternal 5-HTT genotype. Paternal 5-HTT genotype separately influenced these outcomes. These findings advance our understanding of the 5-HTT genotype dependent susceptibility to stress-related disorders.
Collapse
Affiliation(s)
- Menghan Sun
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ling Shan
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Sylvia Docq
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Lisa C M W Heltzel
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Celine A J Smits
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Anthonieke Middelman
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Roel Vrooman
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands; Department of Molecular Neurobiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands.
| | - Sabrina I Hanswijk
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| |
Collapse
|
33
|
Ni RJ, Yu Y. Relationship between physical activity and risk of depression in a married group. BMC Public Health 2024; 24:829. [PMID: 38491473 PMCID: PMC10943876 DOI: 10.1186/s12889-024-18339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Currently, there are many different findings on the relationship between physical activity and depression, and there may be differences between genders. This study therefore focused on gender differences to understand the relationship between physical activity behaviour and the risk of depression in married individuals. METHODS 15607 married people in the China Family Panel Studies 2020 (CFPS 2020) were used to understand the relationship between physical activity and depression risk in different populations, and the chi-square test, Mann-Whitney U-test, and binary logistic regression were used to explore the relationship between physical activity and depression risk in the married population. RESULTS 527 (6.64%) women were at high risk of depression and 365 (4.76%) men were at high risk of depression; physical activity was associated with the risk of depression in the married population, but after incorporating demographic and relevant cognitive variables, physical activity was negatively associated with the risk of depression in women (OR = 0.94, P < 0.01) but not statistically significant with the risk of depression in men (OR = 0.96, P > 0.05). CONCLUSION Physical activity was directly related to the risk of depression in married women, but not in married men.
Collapse
Affiliation(s)
- Rong Jing Ni
- Physical Education Institute, Liaoning Normal University, Dalian, 116029, China
| | - Ying Yu
- Physical Education Institute, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
34
|
Silva SCDA, de Lemos MDT, Dos Santos Junior OH, Rodrigues TO, Silva TL, da Silva AI, Fiamoncini J, Lagranha CJ. Overweight during development dysregulates cellular metabolism and critical genes that control food intake in the prefrontal cortex. Physiol Behav 2024; 276:114453. [PMID: 38159589 DOI: 10.1016/j.physbeh.2023.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUNDS AND AIMS Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.
Collapse
Affiliation(s)
| | | | | | - Thyago Oliveira Rodrigues
- Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | - Tercya Lucidi Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | | | - Jarlei Fiamoncini
- Food Research Center, Department of Food Science and Experimental Nutrition, University of São Paulo, São Paulo, SP, Brazil
| | - Claudia J Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Biochemistry and Physiology Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil.
| |
Collapse
|
35
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
36
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
37
|
Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav Brain Res 2024; 459:114791. [PMID: 38048912 DOI: 10.1016/j.bbr.2023.114791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
About 280 million people suffer from depression as the most common neurological disorder and the most common cause of death worldwide. Exercise with serotonin released in the brain by the 5-HT3-IGF-1 mechanism can lead to antidepressant effects. Swimming exercise has antidepressant effects by increasing the sensitivity of serotonin 5-HT2 receptors and postsynaptic 5-HT1A receptors, increasing 5-HT and 5HIAA levels, increasing TPH and serotonin, and decreasing inflammatory levels of IFN-γ and TNF-α. Anaerobic and aerobic exercises increase beta-endorphin, enkephalin, and dynorphin and have antidepressant effects. Exercise by increasing dopamine, D1R, and D2R leads to the expression of BDNF and activation of TrkB and has antidepressant behavior. Exercise leads to a significant increase in GABAAR (γ2 and α2 subunits) and reduces neurodegenerative disorders caused by GABA imbalance through anti-inflammatory pathways. By increasing glutamate and PGC1α and reducing glutamatergic neurotoxicity, exercise enhances neurogenesis and synaptogenesis and prevents neurodegeneration and the onset of depression. Irisin release during exercise shows an important role in depression by increasing dopamine, BDNF, NGF, and IGF-1 and decreasing inflammatory mediators such as IL-6 and IL-1β. In addition, exercise-induced orexin and NPY can increase hippocampal neurogenesis and relieve depression. After exercise, the tryptophan to large neutral amino acids (TRP/LNAA) ratio and the tryptophan to branched-chain amino acids (BCAA) ratio increase, which may have antidepressant effects. The expression of M5 receptor and nAChR α7 increases after exercise and significantly increases dopamine and acetylcholine and ameliorates depression. It appears that during exercise, muscarinic receptors can reduce depression through dopamine in the absence of acetylcholine. Therefore, exercise can be used to reduce depression by affecting neurotransmitters, neuromodulators, cytokines, and/or neurotrophins.
Collapse
|
38
|
Midya V, Nagdeo K, Lane J, Torres-Olascoaga L, Martínez G, Horton M, Gennings C, Téllez-Rojo M, Wright R, Arora M, Eggers S. Akkermansia muciniphila modifies the association between metal exposure during pregnancy and depressive symptoms in late childhood. RESEARCH SQUARE 2024:rs.3.rs-3922286. [PMID: 38410473 PMCID: PMC10896378 DOI: 10.21203/rs.3.rs-3922286/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Emerging research suggests that exposures to metals during pregnancy and gut microbiome (GM) disruptions are associated with depressive disorders in childhood. Akkermansia muciniphila, a GM bacteria, has been studied for its potential antidepressant effects. However, its role in the influence of prenatal metal exposures on depressive symptoms during childhood is unknown. Leveraging a well-characterized pediatric longitudinal birth cohort and its microbiome substudy (n=112) and using a state-of-the-art machine-learning model, we investigated whether the presence of A.muciniphila in GM of 9-11-year-olds modifies the associations between exposure to a specific group of metals (or metal-clique) during pregnancy and concurrent childhood depressive symptoms. Among children with no A.muciniphila, a metal-clique of Zinc-Chromium-Cobalt was strongly associated with increased depression score (P<0.0001), whereas, for children with A.muciniphila, this same metal-clique was weakly associated with decreased depression score(P<0.4). Our analysis provides the first exploratory evidence hypothesizing A. muciniphila as a probiotic intervention attenuating the effect of prenatal metal-exposures-associated depressive disorders in late childhood.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Martínez
- Center for Research on Nutrition and Health, National Institute of Public Health
| | | | | | - Martha Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health
| | | | | | | |
Collapse
|
39
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
40
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
41
|
Yang W, Gong X, Sun H, Wu C, Suo J, Ji J, Jiang X, Shen J, He Y, Aisa HA. Discovery of a CB 2 and 5-HT 1A receptor dual agonist for the treatment of depression and anxiety. Eur J Med Chem 2024; 265:116048. [PMID: 38150961 DOI: 10.1016/j.ejmech.2023.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Cannabinoid CB2R agonists have gained considerable attention as potential novel therapies for psychiatric disorders due to their non-psychoactive nature, in contrast to CB1R agonists. In this study, we employed molecular docking to design and synthesize 23 derivatives of cannabidiol (CBD) with the aim of discovering potent CB2R agonists rather than CB2R antagonists or inverse agonists. Structure-activity relationship (SAR) investigations highlighted the critical importance of the amide group at the C-3' site and the cycloalkyl group at the C-4' site for CB2R activation. Interestingly, three CBD derivatives, namely 2o, 6g, and 6h, exhibited substantial partial agonistic activity towards the CB2 receptor, in contrast to the inverse agonistic property of CBD. Among these, 2o acted as a CB2R and 5-HT1AR dual agonist, albeit with some undesired antagonist activity for CB1R. It demonstrated significant CB2R partial agonism while maintaining a level of 5-HT1AR agonistic and CB1R antagonistic activity similar to CBD. Pharmacokinetic experiments confirmed that 2o possesses favorable pharmacokinetic properties. Behavioral studies further revealed that 2o elicits significant antidepressant-like and anxiolytic-like effects while maintaining a good safety profile.
Collapse
Affiliation(s)
- Wenjiao Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Gong
- Vigonvita Shanghai Co., Ltd, Shanghai, 201210, China
| | - Haiguo Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunhui Wu
- Vigonvita Shanghai Co., Ltd, Shanghai, 201210, China
| | - Jin Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ji
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingshan Shen
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yang He
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Zhao C, Wang M, Li T, Song T, Cui W, Zhang Q, Hou Y. Antidepressant-like effects of Jieyu Chufan capsules in the olfactory bulbectomy rat model. Brain Res 2024; 1824:148676. [PMID: 37956747 DOI: 10.1016/j.brainres.2023.148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The olfactory bulbectomy (OBX) animal model of depression reproduces the behavioral and neurochemical changes observed in depressed patients. We assessed the therapeutic effects of the Jieyu Chufan (JYCF) capsule on OBX rats. JYCF ameliorated the hedonic and anxiety-like behavior of OBX rats and attenuated the cortical and hippocampal damage. JYCF enhanced the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and adiponectin (ADPN) in the cortex and hippocampus of OBX rats. JYCF also reduced cortisol levels and restored the levels of excitatory neurotransmitters, such as 5-hydroxytryptamine (5-HT), acetylcholine (ACH), and glutamic acid (Glu), in the brain tissue of OBX rats. Our results suggest that JYCF preserves the synaptic structure by increasing the levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) and alleviates the histological alterations of brain tissue by activating AKT/PKA-CREB-BDNF pathways, and by upregulating ADPN and FGF2 expression in OBX rats. JYCF exerts multiple therapeutic effects on depression, including modulating neurotransmitters, repairing neuronal damage, and maintaining synaptic integrity. These findings support the potential of JYCF as a novel antidepressant agent with therapeutic effects on depression and related neurological disorders.
Collapse
Affiliation(s)
- Chi Zhao
- Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, the South of Xinshi Street, Shijiazhuang 050091, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, the South of Xinshi Street, Shijiazhuang 050091, Hebei, China
| | - Tao Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, the South of Xinshi Street, Shijiazhuang 050091, Hebei, China
| | - Wenwen Cui
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang 050035, China
| | - Qiuyan Zhang
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Yunlong Hou
- Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, China.
| |
Collapse
|
43
|
Sreeja V, Jose A, Patel S, Menon B, Athira KV, Chakravarty S. Pharmacogenetics of selective serotonin reuptake inhibitors (SSRI): A serotonin reuptake transporter (SERT)-based approach. Neurochem Int 2024; 173:105672. [PMID: 38157886 DOI: 10.1016/j.neuint.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Neuropsychiatric disorders are considered to be the most common cause of disability worldwide. Serotonin and its transporter is a prominent paradigm in mood disorders. Response to selective serotonin reuptake inhibitors (SSRI) is altered due to heterogeneity in the serotonin transporter gene, SLC6A4 (solute carrier family 6 member 4). The reported polymorphisms are found to be in different regions of the transporter gene: promoter region (5-HTTLPR and various single nucleotide polymorphisms within it), intron (STin2), and exon 9 (I425V). The long and short alleles of the 5-HTTLPR gene, which are prevalent among variations, may mediate differential effects. In long allelic variant carriers, an increased response to SSRI and timely recovery is due to increased availability of SERT. Whereas, SERT availability is significantly decreased in short allelic carriers, necessitating a reduction in SSRI dosage due to the increased risk of adverse drug reactions. Thus, pharmacogenetic investigations are required to understand the impact of functional variations on the efficacy and tolerability of SSRI. Identifying the carrier variants may aid in clear-decision making of the treatment regimen, aiding the approach of personalized medication.
Collapse
Affiliation(s)
- V Sreeja
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Shashikant Patel
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - K V Athira
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
44
|
Zou H, Gao H, Liu Y, Zhang Z, Zhao J, Wang W, Ren B, Tan X. Dietary inulin alleviated constipation induced depression and anxiety-like behaviors: Involvement of gut microbiota and microbial metabolite short-chain fatty acid. Int J Biol Macromol 2024; 259:129420. [PMID: 38219945 DOI: 10.1016/j.ijbiomac.2024.129420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Chronic constipation has been associated with depression-like behavior. Previous study identified the crucial role of gut microbiota in the development of constipation and depression. Dietary inulin (INU) could regulate gut microbiota. Whether INU treatment could ameliorate constipation induced depression was not clear. For this purpose, male CD-1 mice were administered diphenoxylate (20 mg/kg body weight/day) to induce constipation. We found that INU (10 % in standard diet) alleviated the diphenoxylate-induced constipation, manifested as the increase weight and moisture content of feces. Furthermore, the associated depression and anxiety-like behavior disorders were improved by inhibiting neuro-inflammation and preventing synaptic ultrastructure damage under INU treatment. Moreover, INU pretreatment improved the diphenoxylate-induced gut barrier damage by upregulating tight junction protein expression. INU also reshaped gut microbiota in constipation mice by increasing the relative abundance of Bacteroides and Proteobacteria and downregulating the abundance of Muribacalum and Melaminabacteria. The effects of INU on diphenoxylate-induced depression were abolished by gut microbiota depletion via antibiotic treatment. In addition, INU increased the concentration of short chain fatty acids (SCFAs) in feces contents. Meanwhile, supplementation of SCFAs could also partly improve diphenoxylate-induced depression. In conclusion, INU intake was a potential nutritional intervention strategy to prevent constipation induced depression via microbiota-gut-SCFAs axis.
Collapse
Affiliation(s)
- Hui Zou
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Huajing Gao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Yanhong Liu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Zhiwo Zhang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Jia Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Wenxuan Wang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xintong Tan
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
45
|
Tao Y, Shen W, Zhou H, Li Z, Pi T, Wu H, Shi H, Huang F, Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res 2024; 1823:148678. [PMID: 37979605 DOI: 10.1016/j.brainres.2023.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Depression is characterized by a significant sex disparity, with higher rates observed in women compared to men. This study aimed to investigate the impact of sex on depressive behaviors and explore the underlying mechanisms using a corticosterone (CORT)-induced depression model in mice. Behavioral tests, Nissl staining, UPLC-MS/MS, and Western blot analysis were performed to assess behavioral changes, as well as neuronal alterations, neurotransmitter levels, and protein expressions in the hippocampus. The mice in the model group exhibited sex-specific anxiety- and depression-like behaviors. Nissl staining revealed structural abnormalities in the CA3 region of the hippocampus in females. Neurotransmitter analysis indicated decreased serotonin and norepinephrine levels in both sexes, while glutamate levels were elevated in females. Furthermore, female mice demonstrated elevated serum CORT levels. Western blot analysis revealed sex-specific alterations in specific protein expression. Female mice exhibited downregulated glucocorticoid receptor and brain-derived neurotrophic factor expression, whereas male mice showed minimal changes. Additionally, female mice displayed reduced phosphorylated AKT, phosphorylated PI3K, and phosphorylated mTOR levels. These findings enhance our understanding of sex-specific differences in the CORT-induced depression model and provide insights into the underlying mechanisms of depression. This research emphasizes sex in depression studies and supports tailored interventions.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ting Pi
- Kunming Yan'an Hospital Chenggong Hospital, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
46
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
47
|
Zhang Z, Yang Y, Kong W, Huang S, Tan Y, Huang S, Zhang M, Lu H, Li Y, Li X, Liu S, Wen Y, Shang D. A Bibliometric and Visual Analysis of Single Nucleotide Polymorphism Studies in Depression. Curr Neuropharmacol 2024; 22:302-322. [PMID: 37581520 PMCID: PMC10788886 DOI: 10.2174/1570159x21666230815125430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Genetic polymorphism has been proven to have an important association with depression, which can influence the risk of developing depression, the efficacy of medications, and adverse effects via metabolic and neurological pathways. Nonetheless, aspects of the association between single nucleotide polymorphisms and depression have not been systematically investigated by bibliometric analysis. OBJECTIVE The aim of this study was to analyze the current status and trends of single nucleotide polymorphism research on depression through bibliometric and visual analysis. METHODS The Web of Science Core Collection was used to retrieve 10,043 articles that were published between 1998 and 2021. CiteSpace (6.1 R4) was used to perform collaborative network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. RESULTS The most productive and co-cited journals were the Journal of Affective Disorders and Biological Psychiatry, respectively, and an analysis of the references showed that the most recent research focused on the largest thematic cluster, "5-HT", reflecting the important research base in this area. "CYP2D6" has been in the spotlight since its emergence in 2009 and has become a research hotspot since its outbreak in 2019. However, "BDNF ", "COMT ", "older adults", "loci", and "DNA methylation" are also the new frontier of research, and some of them are currently in the process of exploration. CONCLUSION These findings offer a useful perspective on existing research and potential future approaches in the study of the association between single nucleotide polymorphisms and depression, which may assist researchers in selecting appropriate collaborators or journals.
Collapse
Affiliation(s)
- Zi Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Ye Yang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Wan Kong
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shanshan Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhua Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| |
Collapse
|
48
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
49
|
El Abdali Y, Saghrouchni H, Kara M, Mssillou I, Allali A, Jardan YAB, Kafkas NE, El-Assri EM, Nafidi HA, Bourhia M, Almaary KS, Eloutassi N, Bouia A. Exploring the Bioactive Compounds in Some Apple Vinegar Samples and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3850. [PMID: 38005745 PMCID: PMC10675503 DOI: 10.3390/plants12223850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Apple vinegar is highly recommended for nutrition due to its health benefits and bioactive components. However, the apple cultivar greatly influences the quality of the vinegar. In this research, our focus was on examining the impact of four different apple cultivars on the physicochemical attributes, chemical composition, as well as biological properties-including antidepressant and anti-inflammatory activities-of vinegar. Interestingly, the physicochemical properties of vinegar and the contents of acetic acid and polyphenols depend on the apple cultivars. HPLC chromatographic analysis showed that citric acid (820.62-193.63 mg/100 g) and gallic acid (285.70-54.40 µg/g) were mostly abundant in the vinegar samples. The in vivo results showed that administration of Golden Delicious apple vinegar (10 mL/kg) to adult Wistar rats reduced carrageenan-induced inflammation by 37.50%. The same vinegar sample exhibited a significant antidepressant effect by reducing the rats' immobility time by 31.07% in the forced swimming test. Due to its high acidity, Golden Delicious vinegar was found to be more effective against bacteria, particularly Bacillus subtilis and Candida albicans, resulting in a MIC value of 31.81 mg/mL. Furthermore, the antioxidant activity of various vinegar samples was found to be powerful, displaying optimal values of IC50 = 65.20 mg/mL, 85.83%, and 26.45 AAE/g in the DPPH, β-carotene decolorization and TAC assays, respectively. In conclusion, the apple cultivars used in this study impact the chemical composition and biological activities of vinegar, which may help demonstrate the importance of raw material selection for the production of vinegar.
Collapse
Affiliation(s)
- Youness El Abdali
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı/Sarıçam, Adana 01330, Turkey;
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Aimad Allali
- Laboratory of Plant, Animal and Agro-Industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra 14000, Morocco;
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Balcalı/Sarıçam, Adana 01330, Turkey
| | - El-Mehdi El-Assri
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Noureddine Eloutassi
- Laboratory of Pedagogy and Technological Innovation, Regional Centre of Education and Formation Professions, Fez 30050, Morocco
| | - Abdelhak Bouia
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
50
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|