1
|
de Oliveira Canedo G, Roddie C, Amrolia PJ. Dual-targeting CAR T cells for B-cell acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma. Blood Adv 2025; 9:704-721. [PMID: 39631066 PMCID: PMC11869864 DOI: 10.1182/bloodadvances.2024013586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy remains a major challenge in B-cell acute lymphoblastic leukemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL). One of the main strategies to avoid CD19-negative relapse has been the development of dual CAR T cells targeting CD19 and an additional target, such as CD22 or CD20. Different methods have been used to achieve this, including coadministration of 2 products targeting 1 single antigen, cotransduction of autologous T cells, use of a bicistronic vector, or the development of bivalent CARs. Phase 1 and 2 trials across all manufacturing strategies have shown this to be a safe approach with equivalent remission rates and initial product expansion. CAR T-cell persistence remains a significant issue, with the majority of relapses being antigen-positive after CAR T-cell infusion. Further, despite adding a second antigen, antigen-negative relapses have not yet been eliminated. This review summarizes the state of the art with dual-targeting CAR T cells for B-cell ALL and B-NHL, the challenges encountered, and possible next steps to overcome them.
Collapse
Affiliation(s)
- Gustavo de Oliveira Canedo
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| | - Claire Roddie
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
2
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Jamil A, Qureshi Z, Siddique R, Altaf F, Jamil R, Wali N. A Meta-analysis on Effects of Chimeric Antigen Receptor T-cell Therapy in Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia. Am J Clin Oncol 2025:00000421-990000000-00258. [PMID: 39956997 DOI: 10.1097/coc.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
OBJECTIVES This review evaluates the long-term outcomes and adverse events associated with chimeric antigen receptor (CAR) T-cell therapy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). METHODS We conducted the search in relevant databases up to June 2024. We included clinical trials on CAR T-cell therapy for patients with r/r B-ALL. Meta-analyses were conducted using Comprehensive Meta-Analysis V3 and Review Manager 5.4. RESULTS Out of 2659 identified studies, 10 were included in this review. The pooled analysis demonstrated a high minimal residual disease-negative complete remission, with an overall event rate (ER) of 70% (95% CI: 61%-78%, I2 =8 8.35%). Anti-CD19 CAR T-cell therapy showed the highest efficacy with an ER of 74.75% (95% CI: 61%-80%, I2 = 89.84%). Combination therapies targeting CD19 and CD22 had an ER of 69% (95% CI: 53%-83%, I2 = 82.56%). Significant adverse effects included cytokine release syndrome with a mean incidence of 81.8% (95% CI: 76.7%-86.9%), neurotoxicity at 33.2% (95% CI: 28.1%-38.3%), and hematologic toxicities at 71.9% (95% CI: 66.4%-77.4%). CONCLUSIONS CAR T-cell therapy is a groundbreaking advancement in treating r/r B-ALL, offering high rates of durable remissions.
Collapse
Affiliation(s)
- Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | - Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | | | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY
| | | | - Neehal Wali
- Vituity Hospitalist Group, HSHS St. John's Hospital Springfield, IL
| |
Collapse
|
4
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
5
|
Zhang C, Liu H. Advancements and Future Directions of Dual-Target Chimeric Antigen Receptor T-Cell Therapy in Preclinical and Clinical Studies. J Immunol Res 2025; 2025:5845167. [PMID: 39844819 PMCID: PMC11753851 DOI: 10.1155/jimr/5845167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer. These advantages highlight the potential future prospects in this field, showing varying degrees of advancement in preclinical and clinical studies. Herein, we aimed to review different dual-target CAR-T studies conducted on a wide range of tumor models, summarizing the selection of target combinations, the efficacy and safety demonstrated in preclinical and clinical settings, the existing limitations, and the potential future directions of this promising therapeutic strategy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Clinical Studies as Topic
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Medicine, University of Tsinghua, Beijing, China
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haizhou Liu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Yang T, Dong Y, Zhang M, Feng J, Fu S, Xiao P, Hong R, Xu H, Cui J, Huang S, Wei G, Kong D, Geng J, Chang AH, Huang H, Hu Y. Prominent efficacy and good safety of sequential CD19 and CD22 CAR-T therapy in relapsed/refractory adult B-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2025; 14:2. [PMID: 39754190 PMCID: PMC11697943 DOI: 10.1186/s40164-024-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited. METHODS This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS). RESULTS Twenty-three patients with a median age of 58.1 years (range 25.9-75.0) were enrolled. High-risk cytogenetic and genomic aberrations were identified in 43.5% of patients, and five patients had baseline extramedullary disease (EMD). The median interval between the two infusions was 3.8 months. Grade ≥ 3 hematological adverse events occurred at comparable rates after both infusions. Cytokine release syndrome was observed in 78.3% and 39.1% of patients after CD19 and CD22 CAR-T therapy, respectively. Two patients experienced grade 2 immune effector cell-associated neurotoxicity syndrome (ICANS) during CD19 CAR-T, and no ICANS was reported during CD22 CAR-T. The median OS was not reached with a median follow-up of 19.4 months (range 8.7-45.6), while the median LFS was 20.8 months. OS and LFS rates were 91.3% and 67.1% at 1 year and 58.6% and 47.0% at 2 years, respectively. Eight patients experienced relapse, with the cumulative incidence of relapse being 28.6% at 1 year and 42.5% at 2 years. Higher baseline leukemia burden (≥ 64% bone marrow blasts) and the presence of EMD were significant risk factors for inferior OS and LFS, respectively. CONCLUSIONS Sequential CAR-T cell therapy demonstrated durable efficacy and a manageable safety profile in R/R B-ALL, providing a viable option to address antigen-loss relapse and improve long-term outcomes in high-risk adult patients.
Collapse
Affiliation(s)
- Tingting Yang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Yetian Dong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Pingnan Xiao
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Huijun Xu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Simao Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Delin Kong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jia Geng
- Department of Radiology of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Alex H Chang
- Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai YaKe Biotechnology Ltd., Shanghai, China.
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Huang Q, Li H, Zhang Y. A bibliometric and knowledge-map study on the treatment of hematological malignancies with CAR-T cells from 2012 to 2023. Hum Vaccin Immunother 2024; 20:2371664. [PMID: 38961667 PMCID: PMC11225924 DOI: 10.1080/21645515.2024.2371664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Recently, CAR-T cell therapy in hematological malignancies has received extensive attention. The objective of this study is to gain a comprehensive understanding of the current research status, development trends, research hotspots, and emerging topics pertaining to CAR-T cells in the treatment of hematological malignancies. Articles pertaining to CAR-T cell therapy for hematological malignancies from the years 2012 to 2023 were obtained and assessed from the Web of Science Core Collection (WoSCC). A bibliometric approach was employed to conduct a scientific, comprehensive, and objective quantitative analysis, as well as a visual analysis, of this particular research domain. A comprehensive analysis was conducted on a corpus of 3643 articles, which were collaboratively authored by 72 countries and various research institutions. CAR-T cell research in treating hematological malignancies shows an increasing trend each year. Notably, the study identified the countries and institutions displaying the highest level of activity, the journals with the most citations and output, as well as the authors who garnered the highest frequency of citations and co-citations. Furthermore, the analysis successfully identified the research hotspots and highlighted six emerging topics within this domain. This study conducted a comprehensive exploration and analysis of the research status, development trends, research hotspots, and emerging topics about CAR-T cells in the treatment of hematological malignancies from 2012 to 2023. The findings of this study will serve as a valuable reference and guide for researchers seeking to delve deeper into this field and determine the future direction of their research.
Collapse
Affiliation(s)
- Qing Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huimin Li
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Zhang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Damiani D, Tiribelli M. Advancing Chimeric Antigen Receptor T-Cell Therapy for Acute Myeloid Leukemia: Current Limitations and Emerging Strategies. Pharmaceuticals (Basel) 2024; 17:1629. [PMID: 39770471 PMCID: PMC11728840 DOI: 10.3390/ph17121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents one of the most impressive advances in anticancer therapy of the last decade. While CAR T-cells are gaining ground in various B cell malignancies, their use in acute myeloid leukemia (AML) remains limited, and no CAR-T product has yet received approval for AML. The main limitation of CAR-T therapy in AML is the lack of specific antigens that are expressed in leukemic cells but not in their healthy counterparts, such as hematopoietic stem cells (HSCs), as their targeting would result in an on-target/off-tumor toxicity. Moreover, the heterogeneity of AML and the tendency of blasts to modify surface antigens' expression in the course of the disease make identification of suitable targets even more challenging. Lastly, AML's immunosuppressive microenvironment dampens CAR-T therapeutic activities. In this review, we focus on the actual pitfalls of CAR T-cell therapy in AML, and we discuss promising approaches to overcome them.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
10
|
Banerjee D, Bhattacharya A, Puri A, Munde S, Mukerjee N, Mohite P, Kazmi SW, Sharma A, Alqahtani T, Shmrany HA. Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology - a comprehensive review. Int J Surg 2024; 110:7528-7545. [PMID: 39377430 PMCID: PMC11634158 DOI: 10.1097/js9.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cell therapy represents a transformative frontier in medical science, offering promising avenues for revolutionizing cancer treatment and advancing our understanding of neurobiology. This review explores innovative approaches in stem cell therapy that have the potential to reshape clinical practices and therapeutic outcomes in cancer and neurodegenerative diseases. In this dynamic and intriguing realm of cancer research, recent years witnessed a surge in attention toward understanding the intricate role of mesenchymal stem cells (MSCs). These cells, capable of either suppressing or promoting tumors across diverse experimental models, have been a focal point in the exploration of exosome-based therapies. Exosomes released by MSCs have played a pivotal role, in unraveling the nuances of paracrine signaling and its profound impact on cancer development. Recent studies have revealed the complex nature of MSC-derived exosomes, showcasing both protumor and antitumor effects. Despite their multifaceted involvement in tumor growth, these exosomes show significant promise in influencing both tumor development and chemosensitivity, acting as a pivotal factor that increases stem cells' potential for medicinal use. Endogenous MSCs, primarily originating from the bone marrow, exhibited a unique migratory response to damaged tissue sites. The genetic modification of stem cells, including MSCs, opened avenues for the precise delivery of therapeutic payloads in the milieu around the tumor (TME). Stem cell therapy offers groundbreaking potential for treating neurodegenerative and autoimmune disorders by regenerating damaged tissues and modulating immune responses. This approach aims to restore lost function and promote healing through targeted cellular interventions. In this review, we explored the molecular complexities of cancer and the potential for breakthroughs in personalized and targeted therapies. This analysis offers hope for transformative advancements in both cancer treatment and neurodegenerative disorders, highlighting the promise of precision medicine in addressing these challenging conditions.
Collapse
Affiliation(s)
- Dhrupad Banerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology (a college of pharmacy), Sugandha, West Bengal, India
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Syeda W. Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
11
|
van der Schans JJ, Katsarou A, Kladis G, Bar C, Ramirez MM, Themeli M, Mutis T. A convenient viral transduction based method for advanced multi-engineering of primary human (CAR) T-cells. J Genet Eng Biotechnol 2024; 22:100446. [PMID: 39674638 PMCID: PMC11629549 DOI: 10.1016/j.jgeb.2024.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
The past decades have illustrated the power of T-cell engineering in the development of new and successful cell therapies, such as chimeric antigen receptor (CAR) T-cells. Despite clinical success in hematological malignancies, it also becomes increasingly clear that additional T-cell engineering will be required to improve efficacy and safety and expand the application to solid tumors. Engineering is most often achieved by viral delivery of transgenes, however, viral vector capacity limitations make efficient and reproducible generation of multi transgene expressing T-cell therapeutics technically challenging. We here describe a convenient and efficient method for the delivery of up to three γ-retroviral CAR vectors in T-cells. We achieved this using virus vector mixtures that are simultaneously produced at high titers by double- or triple- transduced stable virus producer cells. We show that this method is superior in overall efficiency and reproducibility to conventional double or triple CAR transductions, in which separate viral batches are used. Due to its robustness, this method can facilitate the research and the development for advanced T-cell engineering towards more effective and safe therapies.
Collapse
Affiliation(s)
- Jort J van der Schans
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands.
| | - Afroditi Katsarou
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - George Kladis
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Citlali Bar
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Max Medina Ramirez
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Room CCA3.38, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
12
|
Willyanto SE, Alimsjah YA, Tanjaya K, Tuekprakhon A, Pawestri AR. Comprehensive analysis of the efficacy and safety of CAR T-cell therapy in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia: a systematic review and meta-analysis. Ann Med 2024; 56:2349796. [PMID: 38738799 PMCID: PMC11095278 DOI: 10.1080/07853890.2024.2349796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.
Collapse
Affiliation(s)
| | - Yohanes Audric Alimsjah
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Krisanto Tanjaya
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aekkachai Tuekprakhon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Aulia Rahmi Pawestri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
13
|
Ding S, Zhang Y, Tang Y, Zhang Y, Liu M. Combining gene expression microarrays and Mendelian randomization: exploring key immune-related genes in multiple sclerosis. Front Neurol 2024; 15:1437778. [PMID: 39664749 PMCID: PMC11631747 DOI: 10.3389/fneur.2024.1437778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Objective Multiple Sclerosis (MS) is an autoimmune disorder characterized by demyelination occurring within the white matter of the central nervous system. While its pathogenesis is intricately linked with the body's immune response, the precise underlying mechanisms remain elusive. This study aims to explore potential immune-related genes associated with MS and assess the causal relationship between these genes and the risk of developing MS. Methods We retrieved expression datasets of peripheral blood mononuclear cells from MS patients from the Gene Expression Omnibus (GEO) database. Immune-related differentially expressed genes (IM-DEGs) were identified using the ImmPort database. GO and KEGG analyses were subsequently performed to elucidate the functions and pathways associated with the IM-DEGs. To visualize protein-protein interactions (PPIs), we used STRING, Cytoscape, and Cytohubba to construct networks of PPIs and hub genes. The diagnostic efficacy of hub genes was assessed using the nomogram model and ROC curve. The correlation of these hub genes was further validated in the mouse EAE model using quantitative PCR (qPCR). Finally, Mendelian randomization (MR) was performed to ascertain the causal impact of hub genes on MS. Results Twenty-eight IM-DEGs were selected from the intersection of DEGs and immune genes. These genes are involved mainly in antigen receptor-mediated signaling pathways, B cell differentiation, B cell proliferation, and B cell receptor signaling pathways. Using Cytoscape software for analysis, the top 10 genes with the highest scores were identified as PTPRC, CD19, CXCL8, CD79A, IL7, CR2, CD22, BLNK, LCN2, and LTF. Five hub genes (PTPRC, CD19, CXCL8, CD79A, and IL7) are considered to have strong diagnostic potential. In the qPCR validation, the relative expression of these five genes showed significant differences between the control and EAE groups, indicating that these genes may play a potential role in the pathogenesis of MS. The MR results indicate that elevated levels of CD79A (OR = 1.106, 95% CI 1.002-1.222, p = 0.046) are causally positively associated with the risk of developing MS. Conclusion This study integrated GEO data mining with MR to pinpoint pivotal immune genes linked to the onset of MS, thereby offering novel strategies for the treatment of MS.
Collapse
Affiliation(s)
- Shuangfeng Ding
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyun Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhe Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyuan Liu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Grady CB, Li Y, Maude SL, Hexner EO, Frey NV, Porter DL, Hwang WT. Inconsistent Reporting and Definitions of Time-to-Event Endpoints in CAR T Clinical Trials: A Review. Transplant Cell Ther 2024:S2666-6367(24)00781-4. [PMID: 39603418 DOI: 10.1016/j.jtct.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Clinical trials evaluating chimeric antigen receptor T-cell therapy (CAR T) commonly report time-to-event (TTE) endpoints. However, definitions are not necessarily comparable across studies and variability can lead to misinterpretation of results or inappropriate comparisons across products and studies. Amid the rapidly increasing number of published CAR T trials-many of which were used for regulatory approval-this study aims to summarize the variation in the use and reporting of TTE endpoints in CAR T trials. We include CAR T trials published January 2008 to January 2023 on PubMed that reported at least one of these TTE endpoints: overall survival (OS), progression-free survival (PFS), duration of response/remission (DOR), disease-free survival, event-free survival (EFS), relapse-free survival (RFS), time to relapse, time to progression, or time to treatment failure. We abstracted and summarized endpoint definitions, including the time origin, events, competing events, and censoring. We assessed the completeness of endpoint reporting, overall and by subgroups such as study phase, publication year, and the journal's impact factor. We included 116 publications in the analysis. The most frequently reported TTEs were OS (83%,), PFS (56%), DOR (55%), and EFS (23%). Complete reporting of endpoints was poor overall: 32%, 24%, 25%, and 56% for OS, PFS, DOR, and EFS respectively. Complete reporting was lower in articles published before 2018, in lower impact factor journals, and in phase I trials. There was also a large variability in TTE definitions among those reported. For example, among 64 studies reporting DOR, 48% used the date of response as the time origin while 20% used the date of infusion, and 31% did not report a time origin. There is substantial heterogeneity and incompleteness of TTE endpoint definitions in CAR T trials that could impact the interpretation of the study results. Improving TTE reporting, by stating the time origin, event(s) of interest, competing event(s) if any, and censoring, is required to ensure valid assessment of clinical benefit and cross-trial comparison.
Collapse
Affiliation(s)
- Connor B Grady
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon L Maude
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth O Hexner
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Porter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
16
|
Li S, Shi L, Zhao L, Guo Q, Li J, Liu ZL, Guo Z, Cao YJ. Split-design approach enhances the therapeutic efficacy of ligand-based CAR-T cells against multiple B-cell malignancies. Nat Commun 2024; 15:9751. [PMID: 39528513 PMCID: PMC11555413 DOI: 10.1038/s41467-024-54150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
To address immune escape, multi-specific CAR-T-cell strategies use natural ligands that specifically bind multiple receptors on malignant cells. In this context, we propose a split CAR design comprising a universal receptor expressed on T cells and ligand-based switch molecules, which preserves the natural trimeric structure of ligands like APRIL and BAFF. Following optimization of the hinges and switch labeling sites, the split-design CAR-T cells ensure the native conformation of ligands, facilitating the optimal formation of immune synapses between target cancer cells and CAR-T cells. Our CAR-T-cell strategy demonstrates antitumor activities against various B-cell malignancy models in female mice, potentially preventing immune escape following conventional CAR-T-cell therapies in the case of antigen loss or switching. This ligand-based split CAR design introduces an idea for optimizing CAR recognition, enhancing efficacy and potentially improving safety in clinical translation, and may be broadly applicable to cellular therapies based on natural receptors or ligands.
Collapse
Affiliation(s)
- Shuhong Li
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Licai Shi
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Lijun Zhao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qiaoru Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Jun Li
- Fundamenta Therapeutics Co., Ltd, Suzhou, Jiangsu, China
| | - Ze-Lin Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
17
|
Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol 2024; 13:102. [PMID: 39427211 PMCID: PMC11490091 DOI: 10.1186/s40164-024-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xiaohang Feng
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengxing Li
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Liu
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuolong Zhou
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
19
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
20
|
Wu S, Luo Q, Li F, Zhang S, Zhang C, Liu J, Shao B, Hong Y, Tan T, Dong X, Chen B. Development of novel humanized CD19/BAFFR bicistronic chimeric antigen receptor T cells with potent antitumor activity against B-cell lineage neoplasms. Br J Haematol 2024; 205:1361-1373. [PMID: 38960449 DOI: 10.1111/bjh.19631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.
Collapse
Affiliation(s)
- Sungui Wu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Luo
- Iaso Biotherapeutics Co. Ltd., Nanjing, Jiangsu, China
| | - Feiyu Li
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Suwen Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuiling Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianwei Liu
- Iaso Biotherapeutics Co. Ltd., Nanjing, Jiangsu, China
| | - Bang Shao
- Iaso Biotherapeutics Co. Ltd., Nanjing, Jiangsu, China
| | - Yang Hong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Taochao Tan
- Iaso Biotherapeutics Co. Ltd., Nanjing, Jiangsu, China
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Li T, Cui Q, Liu S, Li Z, Cui W, Li M, Ma Y, Cao X, Zhu X, Kang L, Yu L, Wu D, Tang X. Decitabine consolidation after CD19/CD22 CAR-T therapy as a novel maintenance treatment significantly improves survival outcomes in relapsed/refractory B-ALL patients. Leuk Res 2024; 145:107569. [PMID: 39208598 DOI: 10.1016/j.leukres.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE We aimed to evaluate the efficacy of decitabine consolidation after treatment with CD19/CD22 chimeric antigen receptor T-cell (CAR-T) for patients with relapsed/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL). METHODS We retrospectively analysed 48 patients with r/r B-ALL who received CD19/CD22 CAR-T therapy between September 2017 and May 2021. Sixteen patients received decitabine consolidation (20 mg/m2/day for 5 days at 3-month intervals) after CAR-T therapy (DAC group), while 32 patients did not receive decitabine consolidation (CON group). Overall survival (OS), leukaemia-free survival (LFS), and cumulative incidence of relapse (CIR) were evaluated in both groups. Time-to-event analysis was performed using the Kaplan-Meier method. RESULTS The median follow-up periods in the DAC and CON groups were 41.2 months and 28.6 months, respectively. The 4-year OS and 4-year LFS rates in both groups were 93.3 % and 64.3 % (P=0.029) and 87.5 % and 55.9 % (P=0.059), respectively. The 1-year CIR was 6.25 % and 28.6 %, respectively. Univariate and multivariate Cox regression analyses showed that decitabine consolidation after CAR-T therapy was significantly associated with superior OS (hazard ratio [HR]: 0.121, 95 % confidence interval [CI]: 0.015-0.947, P=0.044), and bridging to haematopoietic stem cell transplantation after CAR-T therapy was significantly associated with superior LFS (HR: 0.279, 95 %CI: 0.093-0.840, P=0.023). CONCLUSIONS Our study recommends decitabine consolidation after CD19/CD22 CAR-T therapy as a novel maintenance strategy to improve the survival outcomes of patients with r/r B-ALL.
Collapse
Affiliation(s)
- Tingting Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Qingya Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Sining Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Wei Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Mengyun Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Yunju Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xuanqi Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaming Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Liqing Kang
- East China Normal University, Shanghai 200062, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai 201203, China
| | - Lei Yu
- East China Normal University, Shanghai 200062, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai 201203, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Porter LH, Harrison SG, Risbridger GP, Lister N, Taylor RA. Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies. J Steroid Biochem Mol Biol 2024; 243:106571. [PMID: 38909866 DOI: 10.1016/j.jsbmb.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.
Collapse
Affiliation(s)
- L H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - S G Harrison
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - G P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia
| | - Natalie Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - R A Taylor
- Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia; Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
23
|
Bartoszewska E, Tota M, Kisielewska M, Skowron I, Sebastianka K, Stefaniak O, Molik K, Rubin J, Kraska K, Choromańska A. Overcoming Antigen Escape and T-Cell Exhaustion in CAR-T Therapy for Leukemia. Cells 2024; 13:1596. [PMID: 39329777 PMCID: PMC11430486 DOI: 10.3390/cells13181596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Leukemia is a prevalent pediatric cancer with significant challenges, particularly in relapsed or refractory cases. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a personalized cancer treatment, modifying patients' T cells to target and destroy resistant cancer cells. This study reviews the current therapeutic options of CAR-T therapy for leukemia, addressing the primary obstacles such as antigen escape and T-cell exhaustion. We explore dual-targeting strategies and their potential to improve treatment outcomes by preventing the loss of target antigens. Additionally, we examine the mechanisms of T-cell exhaustion and strategies to enhance CAR-T persistence and effectiveness. Despite remarkable clinical successes, CAR-T therapy poses risks such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Our findings highlight the need for ongoing research to optimize CAR-T applications, reduce toxicities, and extend this innovative therapy to a broader range of hematologic malignancies. This comprehensive review aims to provide valuable insights for improving leukemia treatment and advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Kamil Sebastianka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Oliwia Stefaniak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
24
|
Sterner RC, Sterner RM. EGFRVIII and EGFR targeted chimeric antigen receptor T cell therapy in glioblastoma. Front Oncol 2024; 14:1434495. [PMID: 39364321 PMCID: PMC11446898 DOI: 10.3389/fonc.2024.1434495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Glioblastoma is the most common primary brain tumor. Although there have been significant advances in surgical techniques, chemo and immunotherapies, and radiation therapy, outcomes continue to be devastating for these patients with minimal improvements in survival. Chimeric antigen receptor T cell therapy is a revolutionary approach that is a new pillar in the treatment of cancer. CAR T cell therapy has produced remarkable results in hematological malignancies; however, multiple limitations currently prevent it from being a first-line therapy, especially for solid tumors. Epidermal growth factor receptor is classically amplified in glioblastoma, and a variant, EGFR variant III, is expressed on glioblastoma, making it an exciting potential target for CAR T cell therapy. Although preclinical has exciting potential, clinical data has been heterogeneous. In this review, we assess the state of field of EGFR-targeted CAR T cells.
Collapse
Affiliation(s)
- Robert C Sterner
- Department of Neurosurgery, Inova Fairfax Medical Campus, Fairfax, VA, United States
| | - Rosalie M Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Wu W, Li H, Chen W, Hu Y, Wang Z, She W, Huang L, Liu Y, Jiang P. CAR T Cell Membrane Camouflaged Nanocatalyst Augments CAR T Cell Therapy Efficacy Against Solid Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401299. [PMID: 38746996 DOI: 10.1002/smll.202401299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 10/01/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) reduces the chimeric antigen receptor (CAR) T-cell therapy against solid tumors. Here, a CAR T cell membrane-camouflaged nanocatalyst (ACSP@TCM) is prepared to augment CAR T cell therapy efficacy against solid tumors. ACSP@TCM is prepared by encapsulating core/shell Au/Cu2- xSe and 3-bromopyruvate with a CAR T cell membrane. It is demonstrated that the CAR T cell membrane camouflaging has much better-targeting effect than the homologous tumors cell membrane camouflaging. ACSP@TCM has an appealing synergistic chemodynamic/photothermal therapy (CDT/PTT) effect that can induce the immunogenic cell death (ICD) of NALM 6 cells. Moreover, 3-bromopyruvate can inhibit the efflux of lactic acid by inhibiting the glycolysis process, regulating the acidity of TME, and providing a more favorable environment for the survival of CAR T cells. In addition, the photoacoustic (PA) imaging and computed tomography (CT) imaging performance can guide the ACSP@TCM-mediated tumor therapy. The results demonstrated that the ACSP@TCM significantly enhanced the CAR T cell therapy efficacy against NALM 6 solid tumor mass, and completely eliminated tumors. This work provides an effective tumor strategy for CAR T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Wenqi Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Zichen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wenyan She
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Liang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
26
|
Shi T, Sun M, Tuerhong S, Li M, Wang J, Wang Y, Zheng Q, Zou L, Lu C, Sun Z, Zou Z, Shao J, Du J, Li R, Liu B, Meng F. Acidity-targeting transition-aided universal chimeric antigen receptor T-cell (ATT-CAR-T) therapy for the treatment of solid tumors. Biomaterials 2024; 309:122607. [PMID: 38759487 DOI: 10.1016/j.biomaterials.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengna Sun
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Subiyinuer Tuerhong
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengru Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yingxin Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qinghua Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lu Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Changchang Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhichen Sun
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Fanyan Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
27
|
Wang L, Fang C, Kang Q, Huang W, Chen Z, Zhao W, Wang L, Wang Y, Tan K, Guo X, Xu Y, Wang S, Wang L, Qiao J, Tang Z, Yu C, Xu Y, Li Y, Yu L. Bispecific CAR-T cells targeting CD19/20 in patients with relapsed or refractory B cell non-Hodgkin lymphoma: a phase I/II trial. Blood Cancer J 2024; 14:130. [PMID: 39112452 PMCID: PMC11306243 DOI: 10.1038/s41408-024-01105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a common malignancy in the hematologic system, and traditional therapy has limited efficacy for people with recurrent/refractory NHL (R/R NHL), especially for patients with diffuse large B cell lymphoma (DLBCL). Chimeric antigen receptor (CAR) T-cell therapy is a novel and effective immunotherapy strategy for R/R hematopoietic malignancies, but relapses can occur due to the loss of CAR-T cells in vivo or the loss of antigen. One strategy to avoid antigen loss after CAR-T cell therapy is to target one more antigen simultaneously. Tandem CAR targeting CD19 and CD22 has demonstrated the reliability of tandem CAR-T cell therapy for R/R B-ALL. This study explores the therapeutic potential of tandem CD19/20 CAR-T in the treatment of R/R B cell NHL. The efficacy and safety of autologous CD19/20 CAR-T cells in eleven R/R B cell NHL adult patients were evaluated in an open-label, single-arm trial. Most patients achieved complete response, exhibiting the efficacy and safety of tandem CD19/20 CAR-T cells. The TCR repertoire diversity of CAR-T cells decreased after infusion. The expanded TCR clones in vivo were mainly derived from TCR clones that had increased expression of genes associated with immune-related signaling pathways from the infusion product (IP). The kinetics of CAR-T cells in vivo were linked to an increase in the expression of genes related to immune response and cytolysis/cytotoxicity.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
- Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China
| | - Chuling Fang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Wenfa Huang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Ziren Chen
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Weiqiang Zhao
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Lei Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Yiran Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Kun Tan
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Xiao Guo
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Yuanyuan Xu
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Shuhong Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Lijun Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Jingqiao Qiao
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Zhixiong Tang
- Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China
- Shenzhen Haoshi Biotechnology Co, Ltd, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China
| | - Chuan Yu
- Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China
- Shenzhen Haoshi Biotechnology Co, Ltd, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yisheng Li
- Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China.
- Shenzhen Haoshi Biotechnology Co, Ltd, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen Clinical Research Center for Hematologic Disease, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China.
- Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Road, Bao An District, Shenzhen, 518125, China.
| |
Collapse
|
28
|
Schoenfeld K, Harwardt J, Kolmar H. Better safe than sorry: dual targeting antibodies for cancer immunotherapy. Biol Chem 2024; 405:443-459. [PMID: 38297991 DOI: 10.1515/hsz-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Antibody-based therapies are revolutionizing cancer treatment and experience a steady increase from preclinical and clinical pipelines to market share. While the clinical success of monoclonal antibodies is frequently limited by low response rates, treatment resistance and various other factors, multispecific antibodies open up new prospects by addressing tumor complexity as well as immune response actuation potently improving safety and efficacy. Novel antibody approaches involve simultaneous binding of two antigens on one cell implying increased specificity and reduced tumor escape for dual tumor-associated antigen targeting and enhanced and durable cytotoxic effects for dual immune cell-related antigen targeting. This article reviews antibody and cell-based therapeutics for oncology with intrinsic dual targeting of either tumor cells or immune cells. As revealed in various preclinical studies and clinical trials, dual targeting molecules are promising candidates constituting the next generation of antibody drugs for fighting cancer.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
29
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
30
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
31
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
32
|
Zhang M, Luo C, Wang J, Zhu H, Luo C, Qin X, Huang X, Lin Y, Chen J. TCRαβ-depleted hematopoietic stem cell transplant and third-party CD45RA + depleted adoptive cell therapy for treatment of post-transplant parvovirus B19 aplastic crisis. Int J Infect Dis 2024; 144:107043. [PMID: 38583826 DOI: 10.1016/j.ijid.2024.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
This is a case report of a 6-year-old girl with relapsed B cell acute lymphoblastic leukemia in which adoptive cell therapy was applied successfully to treat refractory human parvovirus (HPV) B19 infection. Allogenic chimeric antigen receptor (CAR) T-cell therapy (bispecific CD19/CD22) was bridged to hematopoietic stem cell transplantation (HSCT) using a haploidentical paternal donor. However, HPV B19 DNAemia progressed and transfusion-related graft versus host disease occurred. After finding a third-party related donor with a better HLA match, haploidentical HPV B19-seropositive CD45RA+ depleted cells (16.5 × 106/kg) were administered and paternal TCRαβ+ depleted stem cell were retransplanted. The HPV B19 DNAemia became negative within 1 week and the reticulocyte, neutrophil, hemoglobin, and platelet counts gradually normalized. The patient remained stable during the 1-year outpatient follow-up period. Thus, our case report highlights that persistent B19 infection can lead to pancytopenia, aplastic crisis, and graft rejection and TCRαβ+ depleted haplo-HSCT is an effective means of hematopoiesis recovery. CD45RO memory T-cell therapy is the key to treating and preventing the development of refractory severe HPV B19 infection.
Collapse
Affiliation(s)
- Manpin Zhang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Zhu
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changying Luo
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Qin
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohang Huang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Lin
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Yang R, Yang Y, Liu R, Wang Y, Yang R, He A. Advances in CAR-NK cell therapy for hematological malignancies. Front Immunol 2024; 15:1414264. [PMID: 39007146 PMCID: PMC11239349 DOI: 10.3389/fimmu.2024.1414264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematological malignancies, demonstrably improving patient outcomes and prognosis. However, its application has introduced new challenges, such as safety concerns, off-target toxicities, and significant costs. Natural killer (NK) cells are crucial components of the innate immune system, capable of eliminating tumor cells without prior exposure to specific antigens or pre-activation. This inherent advantage complements the limitations of T cells, making CAR-NK cell therapy a promising avenue for hematological tumor immunotherapy. In recent years, preclinical and clinical studies have yielded preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in hematological malignancies, paving the way for future advancements in immunotherapy. This review aims to succinctly discuss the characteristics, significant therapeutic progress, and potential challenges associated with CAR-NK cell therapy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Luo J, Zhang X. Challenges and innovations in CAR-T cell therapy: a comprehensive analysis. Front Oncol 2024; 14:1399544. [PMID: 38919533 PMCID: PMC11196618 DOI: 10.3389/fonc.2024.1399544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.
Collapse
Affiliation(s)
| | - Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
35
|
Brillembourg H, Martínez-Cibrián N, Bachiller M, Alserawan L, Ortiz-Maldonado V, Guedan S, Delgado J. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; 204:1649-1659. [PMID: 38362778 DOI: 10.1111/bjh.19348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.
Collapse
Affiliation(s)
| | - Núria Martínez-Cibrián
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Mireia Bachiller
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clínic, Barcelona, Spain
| | | | - Valentín Ortiz-Maldonado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
36
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
38
|
Shi M, Wang J, Huang H, Liu D, Cheng H, Wang X, Chen W, Yan Z, Sang W, Qi K, Li D, Zhu F, Li Z, Qiao J, Wu Q, Zeng L, Fei X, Gu W, Miao Y, Xu K, Zheng J, Cao J. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial. Nat Commun 2024; 15:3371. [PMID: 38643278 PMCID: PMC11032309 DOI: 10.1038/s41467-024-47801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Despite the high therapeutic response achieved with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapy in relapsed and refractory multiple myeloma (R/R MM), primary resistance and relapse exist with single-target immunotherapy. Here, we design bispecific BC19 CAR T cells targeting BCMA/CD19 and evaluate antimyeloma activity in vitro and in vivo. Preclinical results indicate that BC19 CAR specifically recognize target antigens, and BC19 CAR T cells mediate selective killing of BCMA or CD19-positive cancer cells. BC19 CAR T cells also exhibit potent antigen-specific anti-tumor activity in xenograft mouse models. We conduct an open-label, single-arm, phase I/II study of BC19 CAR T cells in 50 patients with R/R MM (ChiCTR2000033567). The primary endpoint was safety. BC19 CAR T cells are well tolerated with grade 3 or higher cytokine release syndrome in 8% of patients and grade 1 neurotoxic events in 4% of patients, which meet the pre-specified primary endpoint. Secondary endpoints include overall response rate (92%), median progression-free survival (19.7 months), median overall survival (19.7 months) and median duration of response (not reached). Our study demonstrates that bispecific BC19 CAR T cells are feasible, safe and effective in treating patients with R/R MM.
Collapse
Affiliation(s)
- Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiaojiao Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Xiaoming Fei
- Department of Hematology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yuqing Miao
- Department of Hematology, Yancheng No. People's Hospital, Yancheng, 224006, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
39
|
Zhao J, Yang H, Ge J, Li L, Yao Q, He S, Zhu Q, Ren R, Li C, Ma L, Tian W, Wei J. Pomalidomide improves the effectiveness of CAR-T treatment in the relapsed and refractory multiple myeloma or B-cell leukemia/lymphoma with extramedullary disease. BLOOD SCIENCE 2024; 6:e00184. [PMID: 38433987 PMCID: PMC10906647 DOI: 10.1097/bs9.0000000000000184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024] Open
Abstract
Relapsed and refractory multiple myeloma (RRMM) and B-cell leukemia/lymphoma with extramedullary disease (EMD) have poor prognosis and high mortality, lack of effective therapeutic approaches. We reported for the first time that 6 patients with malignant hematological diseases with EMD received chimeric antigen receptor (CAR)-T treatment combined with pomalidomide, and CAR-T cells were treated with pomalidomide in vitro to determine its killing activity and cytokine secretion. Three patients with RRMM were given B cell maturation antigen (BCMA)-CAR-T therapy. All 3 patients with B-cell leukemia/lymphoma received CD19/22-CAR-T sequential infusion. There were no treatment-related deaths. The maximum overall response rate (ORR) was 100%. Median follow-up was 211.5 days (75-407 days). Three patients (50%) experienced cytokine release syndrome, all of which were grade 1, and no neurotoxicity was observed. In vitro experiments showed that the killing activity did not differ significantly between BCMA-CAR-T cells with and without pomalidomide (10, 25, or 50 μg/mL) in 8226/U266 cell cocultures (P > .05). Tumor necrosis factor (TNF)-α and interferon (IFN)-γ secretion was significantly higher from 8226 and Raji cells cocultured with BCMA-CAR-T and cluster of differentiation (CD)19-CAR-T cells (P < .05). Based on the cocultures, adding pomalidomide significantly promoted IFN-γ and TNF-α secretion (P < .05). Based on the above clinical and in vitro studies demonstrating the co-administration of pomalidomide with CAR-T cell treatment demonstrated favorable tolerability and therapeutic effectiveness in RRMM or B-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Jie Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Junnan Ge
- Hebei Taihe Chunyu Biotechnology Co. Ltd., Shijiazhuang, Hebei 050000, China
| | - Linyu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qiong Yao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shaolong He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiujuan Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiui Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chunrui Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liangming Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Weiwei Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| | - Jia Wei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430000, China
| |
Collapse
|
40
|
Jin Y, Wu H, Liu J, Cho WC, Song G. Application and progress of CRISPR/Cas9 gene editing in B-cell lymphoma: a narrative review. Transl Cancer Res 2024; 13:1584-1595. [PMID: 38617522 PMCID: PMC11009809 DOI: 10.21037/tcr-23-1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background and Objective Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) gene editing and CRISPR/Cas9 screening libraries are hot topics, and have high application values in the diagnosis and treatment of genetic diseases, and the improvement of prognosis. The major treatment of B-cell lymphoma is chemotherapy combined with biological therapy. Due to the individual specificity and the emergence of drug resistance, the therapeutic efficacy varies. The objective of this article is to explore potential targets to enhance therapeutic effects, optimize treatment plans, and improve the prognosis of patients with B-cell lymphoma. Methods We undertook a comprehensive, narrative review of the latest literature to define the current application and progress of CRISPR/Cas9 in B-cell lymphoma. Key Content and Findings The concepts of CRISPR/Cas9, the mechanism of gene editing, and the procedures of CRISPR/Cas9 screening libraries are investigated for candidate genes. We mainly focus on application and progress of CRISPR/Cas9 in B-cell lymphoma and screen out some genes, signaling pathways, and cytokines, which may become potential targets for clinical treatment. Conclusions CRISPR/Cas9 gene editing has great promise in the treatment of B-cell lymphoma. This article reviews some genes, signaling pathways, and cytokines related to the progression and prognosis of B-cell lymphoma to provide a strong theoretical basis.
Collapse
Affiliation(s)
- Ying Jin
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haiyi Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianzhao Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Dalian Medical University, Dalian, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
41
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
42
|
Kashyap D, Salman H. Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2024; 25:3780. [PMID: 38612592 PMCID: PMC11011362 DOI: 10.3390/ijms25073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.
Collapse
Affiliation(s)
| | - Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
43
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
44
|
Jiang P, Yang P, Wang W, Cao J, Chen W, Fu J, Lu L, Lu Y, Zhu X. Management of neurotoxicity syndrome complicated by autologous hematopoietic stem cell transplantation bridge to chimeric antigen receptor T-Cell therapy: A case report. Asia Pac J Oncol Nurs 2024; 11:100368. [PMID: 38426045 PMCID: PMC10904158 DOI: 10.1016/j.apjon.2023.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Effectively addressing the challenges posed by relapsed and refractory diffuse large B-cell lymphoma, particularly when employing autologous hematopoietic stem cell transplantation and CAR-T therapy, requires a comprehensive approach to treatment and nursing. This case report emphasizes a nursing strategy focused on managing neurotoxicity post-CAR-T therapy. Nursing interventions include the identification of neurotoxicity symptoms, neuropsychiatric management, careful support during lumbar puncture and intrathecal administration, psychological assistance, and adaptive nutritional guidance. The diligent application of treatment and nursing care resulted in a remarkable recovery for the patient, as evidenced by the alleviation of central facial paralysis, improvement in swallowing function (from Grade 4 to Grade 2), and enhanced vocalization. Consistent and specialized nursing care is paramount for effectively managing complications, especially neurotoxicity, in patients undergoing CAR-T therapy. A thorough monitoring of symptoms and personalized care contribute to optimizing treatment outcomes and ensuring patient safety.
Collapse
Affiliation(s)
- Pingfang Jiang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Pan Yang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Nursing College of Soochow University, Suzhou, China
| | - Weijuan Wang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jialei Cao
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Wei Chen
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhong Fu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lin Lu
- Nursing College of Soochow University, Suzhou, China
| | - Yin Lu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaming Zhu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Dey S, Devender M, Rani S, Pandey RK. Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:91-156. [PMID: 38762281 DOI: 10.1016/bs.apcsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
This book chapter highlights a comprehensive exploration of the transformative innovations in the field of cancer immunotherapy. CAR (Chimeric Antigen Receptor) T-cell therapy represents a groundbreaking approach to treat cancer by reprogramming a patient immune cells to recognize and destroy cancer cells. This chapter underscores the critical role of synthetic biology in enhancing the safety and effectiveness of CAR T-cell therapies. It begins by emphasizing the growing importance of personalized medicine in cancer treatment, emphasizing the shift from one-size-fits-all approaches to patient-specific solutions. Synthetic biology, a multidisciplinary field, has been instrumental in customizing CAR T-cell therapies, allowing for fine-tuned precision and minimizing unwanted side effects. The chapter highlights recent advances in gene editing, synthetic gene circuits, and molecular engineering, showcasing how these technologies are optimizing CAR T-cell function. In summary, this book chapter sheds light on the remarkable progress made in the development of CAR T-cell therapies using synthetic biology, providing hope for cancer patients and hinting at a future where highly personalized and effective cancer treatments are the norm.
Collapse
Affiliation(s)
- Sangita Dey
- CSO Department, Cellworks Research India Pvt Ltd, Bengaluru, Karnataka, India
| | - Moodu Devender
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swati Rani
- ICAR, National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
46
|
Zoine JT, Immadisetty K, Ibanez-Vega J, Moore SE, Nevitt C, Thanekar U, Tian L, Karouni A, Chockley PJ, Arthur B, Sheppard H, Klco JM, Langfitt DM, Krenciute G, Gottschalk S, Babu MM, Velasquez MP. Peptide-scFv antigen recognition domains effectively confer CAR T cell multiantigen specificity. Cell Rep Med 2024; 5:101422. [PMID: 38350450 PMCID: PMC10897625 DOI: 10.1016/j.xcrm.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123). To achieve this, we test linkers with varying length and flexibility and perform immunophenotypic and functional characterization. We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed. Protein structure prediction suggests that linker length and compactness influence the functionality of the generated bispecific CARs. Thus, we present a bispecific CAR design strategy to prevent immune escape in AML that can be extended to other peptide-scFv combinations.
Collapse
Affiliation(s)
- Jaquelyn T Zoine
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kalyan Immadisetty
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jorge Ibanez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sarah E Moore
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Karouni
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bright Arthur
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deanna M Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Madan Babu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol 2024; 112:211-222. [PMID: 37705357 DOI: 10.1111/ejh.14101] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a groundbreaking immunotherapeutic approach for treating various hematological malignancies. CAR-T cells are engineered to express synthetic receptors that target specific antigens on cancer cells, leading to their eradication. While the therapy has shown remarkable efficacy, a significant challenge that has been observed in 30%-70% of patients showing recurrent disease is antigen loss or downregulation. We searched PubMed/MEDLINE, EMBASE, and Google scholar for articles on antigen loss/escape following Chimeric antigen receptor T-cell therapy in malignancies. Antigen loss refers to the loss or reduction in the expression of the target antigen on cancer cells, rendering CAR-T cells ineffective. This phenomenon poses a significant clinical concern, as it can lead to disease relapse and limited treatment options. This review explores the mechanisms underlying antigen loss following CAR-T cell therapy, its implications on treatment outcomes, and potential strategies to overcome the problem.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prafull Mohan
- Clinical Pharmacologist, Armed Forces Medical Services, Guwahati, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
48
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, Luan Y, Calderwood DA, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 + T cells. Nat Commun 2024; 15:603. [PMID: 38242867 PMCID: PMC10798966 DOI: 10.1038/s41467-024-44885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
CD8+ T cells play an important role in anti-tumor immunity. Better understanding of their regulation could advance cancer immunotherapies. Here we identify, via stepwise CRISPR-based screening, that CUL5 is a negative regulator of the core signaling pathways of CD8+ T cells. Knocking out CUL5 in mouse CD8+ T cells significantly improves their tumor growth inhibiting ability, with significant proteomic alterations that broadly enhance TCR and cytokine signaling and their effector functions. Chemical inhibition of neddylation required by CUL5 activation, also enhances CD8 effector activities with CUL5 validated as a major target. Mechanistically, CUL5, which is upregulated by TCR stimulation, interacts with the SOCS-box-containing protein PCMTD2 and inhibits TCR and IL2 signaling. Additionally, CTLA4 is markedly upregulated by CUL5 knockout, and its inactivation further enhances the anti-tumor effect of CUL5 KO. These results together reveal a negative regulatory mechanism for CD8+ T cells and have strong translational implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hongyue Zhou
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Barani Kumar Rajendran
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ao Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jingjing Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
50
|
Ghorashian S, Lucchini G, Richardson R, Nguyen K, Terris C, Guvenel A, Oporto-Espuelas M, Yeung J, Pinner D, Chu J, Williams L, Ko KY, Walding C, Watts K, Inglott S, Thomas R, Connor C, Adams S, Gravett E, Gilmour K, Lal A, Kunaseelan S, Popova B, Lopes A, Ngai Y, Hackshaw A, Kokalaki E, Carulla MB, Mullanfiroze K, Lazareva A, Pavasovic V, Rao A, Bartram J, Vora A, Chiesa R, Silva J, Rao K, Bonney D, Wynn R, Pule M, Hough R, Amrolia PJ. CD19/CD22 targeting with cotransduced CAR T cells to prevent antigen-negative relapse after CAR T-cell therapy for B-cell ALL. Blood 2024; 143:118-123. [PMID: 37647647 DOI: 10.1182/blood.2023020621] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.
Collapse
Affiliation(s)
- Sara Ghorashian
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
- Department of Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Giovanna Lucchini
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Rachel Richardson
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kyvi Nguyen
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Craig Terris
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Aleks Guvenel
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Macarena Oporto-Espuelas
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jenny Yeung
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Danielle Pinner
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Jan Chu
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Lindsey Williams
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Ka-Yuk Ko
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Chloe Walding
- Department of Haematology, University College London Hospital Trust, London, United Kingdom
| | - Kelly Watts
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sarah Inglott
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Rebecca Thomas
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Christopher Connor
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Stuart Adams
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Emma Gravett
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Kimberly Gilmour
- Cell Therapy and Immunology Laboratory, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Alka Lal
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | | | - Bilyana Popova
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | - Andre Lopes
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | - Yenting Ngai
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom
| | | | - Milena Balasch Carulla
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Khushnuma Mullanfiroze
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Arina Lazareva
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Vesna Pavasovic
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Anupama Rao
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Robert Chiesa
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Juliana Silva
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
| | - Kanchan Rao
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Denise Bonney
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Robert Wynn
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | - Rachael Hough
- Department of Haematology, University College London Hospital Trust, London, United Kingdom
| | - Persis J Amrolia
- Department of Bone Marrow Transplantation, Great Ormond Street Children's Hospital, London, United Kingdom
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|