1
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
2
|
Wei W, Li H, Tian S, Zhang C, Liu J, Tao W, Cai T, Dong Y, Wang C, Lu D, Ai Y, Zhang W, Wang H, Liu K, Fan Y, Gao Y, Huang Q, Ma X, Wang B, Zhang X, Huang Y. Asparagine drives immune evasion in bladder cancer via RIG-I stability and type I IFN signaling. J Clin Invest 2025; 135:e186648. [PMID: 39964752 DOI: 10.1172/jci186648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Tumor cells often employ many ways to restrain type I IFN signaling to evade immune surveillance. However, whether cellular amino acid metabolism regulates this process remains unclear, and its effects on antitumor immunity are relatively unexplored. Here, we found that asparagine inhibited IFN-I signaling and promoted immune escape in bladder cancer. Depletion of asparagine synthetase (ASNS) strongly limited in vivo tumor growth in a CD8+ T cell-dependent manner and boosted immunotherapy efficacy. Moreover, clinically approved L-asparaginase (ASNase),synergized with anti-PD-1 therapy in suppressing tumor growth. Mechanistically, asparagine can directly bind to RIG-I and facilitate CBL-mediated RIG-I degradation, thereby suppressing IFN signaling and antitumor immune responses. Clinically, tumors with higher ASNS expression show decreased responsiveness to immune checkpoint inhibitor therapy. Together, our findings uncover asparagine as a natural metabolite to modulate RIG-I-mediated IFN-I signaling, providing the basis for developing the combinatorial use of ASNase and anti-PD-1 for bladder cancer.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center and
| | - Shuo Tian
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Chi Zhang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Junxiao Liu
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Wen Tao
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Tianwei Cai
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Yuhao Dong
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Chuang Wang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Dingyi Lu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yakun Ai
- Department of Pathology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wanlin Zhang
- Department of Pathology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Kan Liu
- Department of Urology, The Third Medical Center and
| | - Yang Fan
- Department of Urology, The Third Medical Center and
| | - Yu Gao
- Department of Urology, The Third Medical Center and
| | - Qingbo Huang
- Department of Urology, The Third Medical Center and
| | - Xin Ma
- Department of Urology, The Third Medical Center and
| | - Baojun Wang
- Department of Urology, The Third Medical Center and
| | - Xu Zhang
- Department of Urology, The Third Medical Center and
| | - Yan Huang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Xin X, Wu D, Zhao P, Li Y, Qin H, Dai J, Zhou Y, Lyu Y, Yang Y, Zhu Y, Shi H, Yang L, Yin L. Catch-to-Amplify Nanoparticles with Bacteria Surface for Sequential Mucosal Immune Activation for Acute Myeloid Leukemia Therapy. ACS NANO 2025. [PMID: 40202129 DOI: 10.1021/acsnano.4c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid-polyhistidine (PLA-PHis) copolymer constructed nanosystem (mPOD) into Peyer's patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer's patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5'-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hang Shi
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. ATPase activity profiling of three human DExD/H-box RNA helicases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100229. [PMID: 40194700 DOI: 10.1016/j.slasd.2025.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to characterize the ATPase activity of three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer ds-RNA (blunt-ended double-stranded RNA) or double-stranded RNA with a 25-nt 3' overhang (partial ds-RNA). These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
5
|
Nelson KL, Reil KA, Tsuji S, Parikh AM, Robinson M, House CD, McGuire KL, Giacalone MJ. VAX014 Activates Tumor-Intrinsic STING and RIG-I to Promote the Development of Antitumor Immunity. Mol Cancer Ther 2025; 24:587-604. [PMID: 39868467 PMCID: PMC11962400 DOI: 10.1158/1535-7163.mct-24-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T-cell priming. One class of ISI agents, oncolytic viruses (OV), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I IFN, OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I). Here, using a combination of pharmacologic, genetic, and in vivo approaches, we demonstrate that VAX014, a bacterial minicell-based oncolytic ISI agent, activates both STING and RIG-I and leverages this activity to work best in STING-positive and/or RIG-I-positive tumors. Intratumoral treatment of established syngeneic tumors expressing STING and RIG-I with VAX014 resulted in 100% tumor clearance in two mouse models. Antitumor activity of VAX014 was shown to be dependent on both tumor-intrinsic STING and RIG-I with additive activity stemming from host-intrinsic STING. Analysis of human solid tumor datasets demonstrated STING and RIG-I co-expression is prevalent in solid tumors and associates with clinical benefit in many indications, particularly those most amenable to intratumoral administration. These collective findings differentiate VAX014 from OVs by elucidating the ability of this agent to elicit antitumor activity in STING-positive and/or RIG-I-positive solid tumors and provide evidence that STING/RIG-I agonism is part of VAX014's mechanism of action. Taken together, this work supports the ongoing clinical investigation of VAX014 treatment as an alternative to OV therapy in patients with solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Carrie D. House
- San Diego State University, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | | | | |
Collapse
|
6
|
Yu A, Fu L, Jing L, Wang Y, Ma Z, Zhou X, Yang R, Liu J, Hu J, Feng W, Yang T, Chen Z, Zu X, Chen W, Chen J, Luo J. Methionine-driven YTHDF1 expression facilitates bladder cancer progression by attenuating RIG-I-modulated immune responses and enhancing the eIF5B-PD-L1 axis. Cell Death Differ 2025; 32:776-791. [PMID: 39672819 PMCID: PMC11982326 DOI: 10.1038/s41418-024-01434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024] Open
Abstract
The impact of amino acids on tumor immunotherapy is gradually being uncovered. In this study, we screened various essential and non-essential amino acids and found that methionine enhances mRNA methylation and reduced the activation of Type I interferon pathway in bladder cancer. Through RNA sequencing, point mutations, MB49 mouse tumor models, and single-cell RNA sequencing, we demonstrated that high methionine levels elevate the expression of m6A reader YTHDF1, promoting the degradation of RIG-I, thereby inhibiting the RIG-I/MAVS-mediated IFN-I pathway and reducing the efficacy of tumor immunotherapy. Additionally, immunoprecipitation and mass spectrometry revealed that YTHDF1 binds to the eukaryotic translation initiation factor eIF5B, which acts on PD-L1 mRNA to enhance its translation and promote immune evasion. By intravesical administration of oncolytic bacteria VNP20009, we effectively depleted methionine locally, significantly prolonging mouse survival and enhancing immune cell infiltration and differentiation within tumors. Multiplex immunofluorescence assays in bladder cancer immunotherapy patients confirmed our findings. Our research elucidates two mechanisms by which methionine inhibits bladder cancer immunotherapy and proposes a targeted methionine depletion strategy that advances research while minimizing nutritional impact on patients.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangmin Fu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lanyu Jing
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinghan Wang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zifang Ma
- Department of Urology, Hengyang Central Hospital, Hengyang, Hunan, China
| | - Xinwei Zhou
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Yang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Feng
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taowei Yang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenhua Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Junxing Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Baral H, Kaundal RK. Novel insights into neuroinflammatory mechanisms in traumatic brain injury: Focus on pattern recognition receptors as therapeutic targets. Cytokine Growth Factor Rev 2025:S1359-6101(25)00041-3. [PMID: 40169306 DOI: 10.1016/j.cytogfr.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025]
Abstract
Traumatic brain injury (TBI) is a major global health concern and a leading cause of morbidity and mortality. Neuroinflammation is a pivotal driver of both the acute and chronic phases of TBI, with pattern recognition receptors (PRRs) playing a central role in detecting damage-associated molecular patterns (DAMPs) and initiating immune responses. Key PRR subclasses, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and cGAS-like receptors (cGLRs), are abundantly expressed in central nervous system (CNS) cells and infiltrating immune cells, where they mediate immune activation, amplify neuroinflammatory cascades, and exacerbate secondary injury mechanisms. This review provides a comprehensive analysis of these PRR subclasses, detailing their distinct structural characteristics, expression patterns, and roles in post-TBI immune responses. We critically examine the molecular mechanisms underlying PRR-mediated signaling and explore their contributions to neuroinflammatory pathways and secondary injury processes. Additionally, preclinical and clinical evidence supporting the therapeutic potential of targeting PRRs to mitigate neuroinflammation and improve neurological outcomes is discussed. By integrating recent advancements, this review offers an in-depth understanding of the role of PRRs in TBI pathobiology and underscores the potential of PRR-targeted therapies in mitigating TBI-associated neurological deficits.
Collapse
Affiliation(s)
- Harapriya Baral
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
8
|
Li J, Yang Y, Zhang X, Yang Y, Wu Z. Fisetin alleviates Salmonella typhimurium-induced colitis through the TLR2/TLR4-NF-κB pathway, regulating microbiota, and repressing intracellular bacterial proliferation by focal adhesion kinase. Eur J Nutr 2025; 64:128. [PMID: 40106033 DOI: 10.1007/s00394-025-03602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/25/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Salmonella typhimurium is a pathogen responsible for millions of cases of gastroenteritis in both humans and animals. This study aimed to evaluate the hypothesis that fisetin administration could mitigate colon damage and regulate the intestinal microbiota in mice treated with Salmonella typhimurium. METHODS Six-week-old male mice were orally administered with or without 100 mg/kg fisetin and infected with Salmonella typhimurium. RESULTS Fisetin administration ameliorated Salmonella typhimurium-induced colitis as shown by the decreased body weight loss, lowered disease activity index score, reduced colon shortening, inflammatory infiltration, and apoptosis. Meanwhile, Salmonella typhimurium exposure upregulated colonic Tnf-α, Il-6, Il-1β, Ifn-β, Ccl2, Ccl8 relative expression and MDA and H2O2 concentrations, whereas lowered Il-10, Nrf2, Nqo1, Coq10b, and Gss abundance, all of which were ameliorated by fisetin treatment. Moreover, fisetin recovered the occludin, zonula occludens-1, and zonula occludens-2 protein abundance in response to Salmonella typhimurium administration. Further investigation demonstrated that the protective role of fisetin was related to the inactivation of the TLR2/TLR4-NF-κB pathway, upregulation of Lactobacillus, and reduction of Salmonella abundance. Additionally, fisetin could limit the intracellular Salmonella typhimurium proliferation, which was likely to be attributed to the inhibition of focal adhesion kinase. CONCLUSION Together, our study elucidated the therapeutic potential of fisetin in ameliorating key aspects of colitis, including intestinal inflammation, oxidative stress, and barrier dysfunction, and these beneficial effects were mediated through the inactivation of the TLR2/TLR4-NF-κB pathway, the regulation of microbiota, and restricting the intracellular proliferation of Salmonella typhimurium by inhibiting focal adhesion kinase.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, P. R. China.
- Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
10
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Alvarado Medina A, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Mendez Valdez MJ, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Alshiekh Nasany R, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models. J Clin Invest 2025; 135:e183745. [PMID: 40091830 PMCID: PMC11910234 DOI: 10.1172/jci183745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
Affiliation(s)
- Deepa Seetharam
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jay Chandar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Christian K. Ramsoomair
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jelisah F. Desgraves
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandra Alvarado Medina
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anna Jane Hudson
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ava Amidei
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jesus R. Castro
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Vaidya Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah Wang
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery and
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mynor J. Mendez Valdez
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Vasundara Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Victor M. Lu
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ritika Tiwari
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Emmanuel Thomas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marcus Alexander
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Macarena I. De La Fuente
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ruham Alshiekh Nasany
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E. Ivan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - John Heiss
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ashish H. Shah
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Huang M, Jin Y, Zhao D, Liu X. Potential role of lactylation in intrinsic immune pathways in lung cancer. Front Pharmacol 2025; 16:1533493. [PMID: 40166469 PMCID: PMC11955616 DOI: 10.3389/fphar.2025.1533493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer, one of the most lethal malignancies, has seen its therapeutic strategies become a focal point of significant scientific attention. Intrinsic immune signaling pathways play crucial roles in anti-tumor immunity but face clinical application challenges despite promising preclinical outcomes. Lactylation, an emerging research focus, may influences lung cancer progression by modulating the functions of histones and non-histone proteins. Recent findings have suggested that lactylation regulates key intrinsic immune molecules, including cGAS-STING, TLR, and RIG-I, thereby impacting interferon expression. However, the precise mechanisms by which lactylation governs intrinsic immune signaling in lung cancer remain unclear. This review presents a comprehensive and systematic analysis of the relationship between lactylation and intrinsic immune signaling pathways in lung cancer and emphasizes the innovative perspective of linking lactylation-mediated epigenetic modifications with immune regulation. By thoroughly examining current research findings, this review uncovers potential regulatory mechanisms and highlights the therapeutic implications of targeting lactylation in lung cancer. Future investigations into the intricate interactions between lactylation and intrinsic immunity are anticipated to unveil novel therapeutic targets and strategies, potentially improving patient survival outcomes.
Collapse
Affiliation(s)
- Mengdie Huang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Jin
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Zhao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Masi M, Poppi L, Previtali V, Nelson SR, Wynne K, Varignani G, Falchi F, Veronesi M, Albanesi E, Tedesco D, De Franco F, Ciamarone A, Myers SH, Ortega JA, Bagnolini G, Ferrandi G, Farabegoli F, Tirelli N, Di Stefano G, Oliviero G, Walsh N, Roberti M, Girotto S, Cavalli A. Investigating synthetic lethality and PARP inhibitor resistance in pancreatic cancer through enantiomer differential activity. Cell Death Discov 2025; 11:106. [PMID: 40091075 PMCID: PMC11911456 DOI: 10.1038/s41420-025-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The RAD51-BRCA2 interaction is central to DNA repair through homologous recombination. Emerging evidence indicates RAD51 overexpression and its correlation with chemoresistance in various cancers, suggesting RAD51-BRCA2 inhibition as a compelling avenue for intervention. We previously showed that combining olaparib (a PARP inhibitor (PARPi)) with RS-35d (a BRCA2-RAD51 inhibitor) was efficient in killing pancreatic ductal adenocarcinoma (PDAC) cells. However, RS-35d impaired cell viability even when administered alone, suggesting potential off-target effects. Here, through multiple, integrated orthogonal biological approaches in different 2D and 3D PDAC cultures, we characterised RS-35d enantiomers, in terms of mode of action and single contributions. By differentially inhibiting both RAD51-BRCA2 interaction and sensor kinases ATM, ATR and DNA-PK, RS-35d enantiomers exhibit a 'within-pathway synthetic lethality' profile. To the best of our knowledge, this is the first reported proof-of-concept single small molecule capable of demonstrating this built-in synergism. In addition, RS-35d effect on BRCA2-mutated, olaparib-resistant PDAC cells suggests that this compound may be effective as an anticancer agent possibly capable of overcoming PARPi resistance. Our results demonstrate the potential of synthetic lethality, with its diversified applications, to propose new and concrete opportunities to effectively kill cancer cells while limiting side effects and potentially overcoming emerging drug resistance.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Giulia Varignani
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), I-40129, Bologna, Italy
| | | | - Andrea Ciamarone
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giovanni Ferrandi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Zhang H, Zhu J, He R, Xu L, Chen Y, Yu H, Sun X, Wan S, Yin X, Liu Y, Gao J, Li Y, Li Z, Lu Y, Xu Q. Deubiquitination enzyme USP35 negatively regulates MAVS signaling to inhibit anti-tumor immunity. Cell Death Dis 2025; 16:138. [PMID: 40016186 PMCID: PMC11868397 DOI: 10.1038/s41419-025-07411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
The RIG-I/MAVS signaling stimulates anti-tumor immunity by triggering the production of inflammatory cytokines. Activation of MAVS induced by viral RNA and RIG-I binding is critical in this pathway. However, the molecular mechanism underlying the regulation of MAVS activity and its function in anti-tumor immunity is not fully understood. Here, we report that the ubiquitin-specific protease 35 (USP35) negatively regulates the MAVS signaling. Mechanistically, USP35 interacts with MAVS and removes its K63-linked polyubiquitin chains, thereby inhibiting viral-induced MAVS-TBK1-IRF3 activation and downstream inflammatory gene expression. Importantly, depletion of USP35 significantly enhances the anti-tumor immunity and synergizes with oncolytic virotherapy to suppress xenograft tumor growth of melanoma cells. Thus, our study identifies USP35 as a negative regulator of MAVS signaling, representing a potential immunosuppressive factor in cutaneous melanoma.
Collapse
Affiliation(s)
- Heping Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Hematologic Malignancies, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiali Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haihong Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuejiao Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengpeng Wan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolan Yin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Li
- Shanghai Pharmaceuticals Holding Co Ltd, Shanghai, China
| | - Zhixiong Li
- Institute for Hematologic Malignancies, East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Hematology, East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yi Lu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qing Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. Kinetic characterization of three human DExD/H-box RNA helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637080. [PMID: 39975009 PMCID: PMC11839018 DOI: 10.1101/2025.02.07.637080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to kinetically characterize three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer RNA (blunt-ended double-stranded RNA) or double-stranded RNA (ds-RNA) with a 25-nt 3' overhang. These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Palmer CR, Pastora LE, Kimmel BR, Pagendarm HM, Kwiatkowski AJ, Stone PT, Arora K, Francini N, Fedorova O, Pyle AM, Wilson JT. Covalent Polymer-RNA Conjugates for Potent Activation of the RIG-I Pathway. Adv Healthc Mater 2025; 14:e2303815. [PMID: 38648653 PMCID: PMC11493851 DOI: 10.1002/adhm.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/13/2024] [Indexed: 04/25/2024]
Abstract
RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.
Collapse
Affiliation(s)
- Christian R. Palmer
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Lucinda E. Pastora
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Blaise R. Kimmel
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Hayden M. Pagendarm
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | | | - Payton T. Stone
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Karan Arora
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Nora Francini
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Olga Fedorova
- Department of MolecularCellular and Developmental BiologyYale UniversityNew HavenCT06511USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | - Anna M. Pyle
- Department of MolecularCellular and Developmental BiologyYale UniversityNew HavenCT06511USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
- Department of ChemistryYale UniversityNew HavenCT06511USA
| | - John T. Wilson
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of PathologyMicrobiologyand ImmunologyVanderbilt University Medical CenterNashvilleTN37232USA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTN37232USA
| |
Collapse
|
16
|
Wang S, Ming H, Wang Z, Zhai X, Zhang X, Wu D, Bo Y, Wang H, Luo Y, Han Z, Hao L, Xiang Y, Han X, Wang Z, Wang Y. NONHSAT141192.2 Facilitates the Stemness and Radioresistance of Glioma Stem Cells via the Regulation of PIK3R3 and SOX2. CNS Neurosci Ther 2025; 31:e70279. [PMID: 39968701 PMCID: PMC11836614 DOI: 10.1111/cns.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) contribute to the initiation, recurrence, metastasis, and drug resistance of glioblastoma multiforme (GBM). Long noncoding RNAs (lncRNAs) are critical modulators in the development and progression of GBM; however, specific lncRNAs related to GSCs remain largely unexplored. This study aims to identify dysregulated lncRNAs in GSCs, unravel their contributions to GBM progression, and propose new targets for diagnosis and treatment. METHODS GeneChip analysis was utilized to identify lncRNAs in GSCs. The expression of RNAs was examined using quantitative real-time PCR. Cell Counting Kit-8, tmorsphere formation assay, limiting dilution assay, apoptosis detection and intracranial xenograft models were performed to assess the stemness and radioresistance of GSCs. Transcriptomics analysis, RNA immunoprecipitation and dual-luciferase experiments were conducted for mechanistic studies. RESULTS NONHSAT141192.2 exhibited elevated expression levels in aggressive GBM tissues compared to lower-grade gliomas. Silencing NONHSAT141192.2 resulted in a considerable decrease in GSC proliferation, tumor sphere formation, self-renewal and the expression of key stem cell markers. Furthermore, depletion of NONHSAT141192.2 enhanced GSC sensitivity to radiation, indicated by diminished viability and tumorsphere formation, increased cell apoptosis, and decreased tumor growth in intracranial xenograft models. Mechanistically, NONHSAT141192.2 upregulates the expression of SOX2 and PIK3R3 by sponging miR-4279, influencing GSC characteristics and their resistance to radiation. CONCLUSION The study highlights a significant relationship between NONHSAT141192.2, GSC stemness, and radioresistance, emphasizing its potential as a therapeutic target for GBM treatment and radiosensitization.
Collapse
Affiliation(s)
- Sihan Wang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Haolang Ming
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Zhen Wang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Xingye Zhai
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Xinyue Zhang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Di Wu
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Yin Bo
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Hang Wang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Yuanbo Luo
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Zhenfeng Han
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Lingyu Hao
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Yijia Xiang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Xu Han
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Zengguang Wang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| | - Yi Wang
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Trauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of InjuriesVariations and Regeneration of Nervous System in TianjinTianjinChina
| |
Collapse
|
17
|
Wang R, Dong X, Zhang X, Liao J, Cui W, Li W. Exploring viral mimicry combined with epigenetics and tumor immunity: new perspectives in cancer therapy. Int J Biol Sci 2025; 21:958-973. [PMID: 39897033 PMCID: PMC11781167 DOI: 10.7150/ijbs.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Viral mimicry refers to an active antiviral response triggered by the activation of endogenous retroviruses (ERVs), usually manifested by the formation of double-stranded RNA (dsRNA) and activation of the cellular interferon response, which activates the immune system and produces anti-tumor effects. Epigenetic studies have shown that epigenetic modifications (e.g. DNA methylation, histone modifications, etc.) play a crucial role in tumorigenesis, progression, and treatment resistance. Particularly, alterations in DNA methylation may be closely associated with the suppression of ERVs expression, and treatment by demethylation may restore ERVs activity and thus strengthen the tumor immune response. Therefore, we propose that viral mimicry can induce immune responses in the tumor microenvironment by activating the expression of ERVs, and that epigenetic alterations may play a key regulatory role in this process. In this paper, we review the intersection of viral mimicry, epigenetics and tumor immunotherapy, and explore the possible interactions and synergistic effects among the three, aiming to provide a new theoretical basis and potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjian Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| |
Collapse
|
18
|
Zheng C, Zhang L. Identifying RNA Sensors in Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:107-115. [PMID: 39192123 DOI: 10.1007/978-1-0716-4108-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The innate immune system plays a pivotal role in pathogen recognition and the initiation of innate immune responses through its Pathogen Recognition Receptors (PRRs), which detect Pathogen-Associated Molecular Patterns (PAMPs). Nucleic acids, including RNA and DNA, are recognized as particularly significant PAMPs, especially in the context of viral pathogens. During RNA virus infections, specific sequences in the viral RNA mark it as non-self, enabling host recognition through interactions with RNA sensors, thereby triggering innate immunity. Given that some of the most lethal viruses are RNA viruses, they pose a severe threat to human and animal health. Therefore, understanding the immunobiology of RNA PRRs is crucial for controlling pathogen infections, particularly RNA virus infections. In this chapter, we will introduce a "pull-down" method for identifying RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensors.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Liting Zhang
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, China.
| |
Collapse
|
19
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
He D, Niu C, Bai R, Chen N, Cui J. ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer. Mol Carcinog 2024; 63:2401-2413. [PMID: 39239920 DOI: 10.1002/mc.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Niu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilan Bai
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Baek H, Yang SW, Kim MK, Kim D, Lee C, Kim S, Lee Y, Park M, Hwang HS, Paik HJ, Kang YS. Activation of Immune Responses Through the RIG-I Pathway Using TRITC-Dextran Encapsulated Nanoparticles. Immune Netw 2024; 24:e44. [PMID: 39801741 PMCID: PMC11711124 DOI: 10.4110/in.2024.24.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification. To determine whether dextran-encapsulated NPs can be used to develop antiviral vaccines by mimicking viral PAMPs, we synthesized NPs in a cyclohexane inverse miniemulsion (Basic-NPs) and further encapsulated them with dextran or tetramethylrhodamine isothiocyanate (TRITC)-dextran (Dex-NPs or TDex-NPs). We hypothesized that these dextran encapsulated NPs could activate innate immunity through cell surface or cytosolic PRRs. In vitro and in vivo experiments were performed using RAW 264.7 and C57BL/6 mice to test different concentrations and routes of administration. Only TDex-NPs rapidly increased retinoic acid-inducible gene I (RIG-I) at 8 h and directly bound to it, producing 120-300 pg/ml of IFN-α via the ERK/NF-κB signaling pathway in both in vitro and in vivo models. The effect of TDex-NPs in mice was observed exclusively with footpad injections. Our findings suggest that TRITC-dextran encapsulated NPs exhibit surface properties for RIG-I binding, offering potential development as a novel antiviral and anticancer RIG-I agonist.
Collapse
Affiliation(s)
- Hayeon Baek
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Seung-Woo Yang
- Sanford Consortium for Regenerative Medicine, School of Medicine, University of California, San Diego, CA 92521, USA
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Min-Kyung Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Dongwoo Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Chaeyeon Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seulki Kim
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Yunseok Lee
- Department of Animal Science and Technology, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
Zhang S, Chen H, Xie J, Huang L. RIG012 assists in the treatment of pneumonia by inhibiting the RIG-I-like receptor signaling pathway. Front Med (Lausanne) 2024; 11:1501761. [PMID: 39554500 PMCID: PMC11563779 DOI: 10.3389/fmed.2024.1501761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Objective Pneumonia is a common clinical condition primarily treated with antibiotics and organ support. Exploring the pathogenesis to identify therapeutic targets may aid in the adjunct treatment of pneumonia and improve survival rates. Methods Transcriptomic data from peripheral blood of 183 pneumonia patients were analyzed using Gene Set Variation Analysis (GSVA) and univariate Cox regression analysis to identify signaling pathways associated with pneumonia mortality. A pneumonia mouse model was established via airway injection of Klebsiella pneumoniae, and pathway-specific blockers were administered via tail vein infusion to assess whether the identified signaling pathways impact the mortality in pneumonia. Results The combination of GSVA and Cox analysis revealed 17 signaling pathways significantly associated with 28-day mortality in pneumonia patients (P < 0.05). Notably, the RIG-I-like receptor signaling pathway exhibited the highest hazard ratio of 2.501 with a 95% confidence interval of [1.223-5.114]. Infusion of RIG012 via the tail vein effectively inhibited the RIG-I-like receptor signaling pathway, significantly ameliorated lung injury in pneumonia mice, reduced pulmonary inflammatory responses, and showed a trend toward improved survival rates. Conclusion RIG012 may represent a novel adjunctive therapeutic agent for pneumonia.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hanbing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lili Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Xiao Z, Chen H, Xu N, Chen Y, Wang S, Xu X. MATR3 promotes liver cancer progression by suppressing DHX58-mediated type I interferon response. Cancer Lett 2024; 604:217231. [PMID: 39276912 DOI: 10.1016/j.canlet.2024.217231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
MATR3 is a nuclear matrix protein implicated in various cancers; however, its specific role in tumor progression remains unclear. The study utilized the TCGA database to reveal that MATR3 expression is upregulated in liver cancer and is correlated with poor prognosis. Functionally, MATR3 promoted liver cancer cell proliferation and metastasis. Comprehensive RNA sequencing analysis showed that MATR3 significantly affected the type I IFN signaling pathway and DHX58 is a downstream target of MATR3. Further experiments showed that MATR3 bound to DHX58 mRNA through its RRM structural domain and recruited YTHDF2, an m6A reader, leading to degradation of DHX58 mRNA and suppression of the type I IFN signaling pathway. The knockout of MATR3 in liver cancer cells triggered a natural immune response that stimulated CD8+ T cells to eliminate liver cancer cells. This study demonstrated that MATR3 downregulates type I IFN signaling in liver cancer cells through m6A modification and inhibits immune cell infiltration within tumors. These findings expand our understanding of the role of MATR3 in liver cancer.
Collapse
Affiliation(s)
- Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiyuan Chen
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
24
|
Young AA, Bohlin HE, Pierce JR, Cottrell KA. Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential. Biochem Soc Trans 2024; 52:2035-2045. [PMID: 39221819 PMCID: PMC11555700 DOI: 10.1042/bst20230727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy has emerged as a therapeutic option for many cancers. For some tumors, immune checkpoint inhibitors show great efficacy in promoting anti-tumor immunity. However, not all tumors respond to immunotherapies. These tumors often exhibit reduced inflammation and are resistant to checkpoint inhibitors. Therapies that turn these 'cold' tumors 'hot' could improve the efficacy and applicability of checkpoint inhibitors, and in some cases may be sufficient on their own to promote anti-tumor immunity. One strategy to accomplish this goal is to activate innate immunity pathways within the tumor. Here we describe how this can be accomplished by activating double-stranded RNA (dsRNA) sensors. These sensors evolved to detect and respond to dsRNAs arising from viral infection but can also be activated by endogenous dsRNAs. A set of proteins, referred to as suppressors of dsRNA sensing, are responsible for preventing sensing 'self' dsRNA and activating innate immunity pathways. The mechanism of action of these suppressors falls into three categories: (1) Suppressors that affect mature RNAs through editing, degradation, restructuring, or binding. (2) Suppressors that affect RNA processing. (3) Suppressors that affect RNA expression. In this review we highlight suppressors that function through each mechanism, provide examples of the effects of disrupting those suppressors in cancer cell lines and tumors, and discuss the therapeutic potential of targeting these proteins and pathways.
Collapse
Affiliation(s)
- Addison A. Young
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Holly E. Bohlin
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Jackson R. Pierce
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Kyle A. Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| |
Collapse
|
25
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Medina AA, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Valdez MJM, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Nasany RA, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Targeting ZNF638 activates antiviral immune responses and potentiates immune checkpoint inhibition in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618076. [PMID: 39464150 PMCID: PMC11507686 DOI: 10.1101/2024.10.13.618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
|
26
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Fei Y, Cao D, Dong R, Li Y, Wang Z, Gao P, Zhu M, Wang X, Zuo X, Cai J. The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer. Clin Transl Oncol 2024; 26:2718-2737. [PMID: 38703335 DOI: 10.1007/s12094-024-03495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown. METHODS Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis. RESULTS The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers. CONCLUSIONS We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
28
|
Hesham D, Mosaab A, Amer N, Al-Shehaby N, Magdeldin S, Hassan A, Georgiev H, Elshoky H, Rady M, Aisha KA, Sabet O, El-Naggar S. Epigenetic silencing of ZIC4 unveils a potential tumor suppressor role in pediatric choroid plexus carcinoma. Sci Rep 2024; 14:21293. [PMID: 39266576 PMCID: PMC11393135 DOI: 10.1038/s41598-024-71188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Zic family member ZIC4 is a transcription factor that has been shown to be silenced in several cancers. However, understanding the regulation and function of ZIC4 in pediatric choroid plexus tumors (CPTs) remained limited. This study employed data mining and bioinformatics analysis to investigate the DNA methylation status of ZIC4 in CPTs and its correlation with patient survival. Our results unveiled ZIC4 methylation as a segregating factor, dividing CPT cohorts into two clusters, with hyper-methylation linked to adverse prognosis. Hyper-methylation of ZIC4 was confirmed in a choroid plexus carcinoma-derived cell line (CCHE-45) by bisulfite sequencing. Furthermore, our study demonstrated that demethylating agent and a histone methyltransferase inhibitor could reverse ZIC4 silencing. RNA sequencing and proteomic analysis showed that ZIC4 over-expression influenced genes and proteins involved in immune response, antigen processing and presentation, endoplasmic reticulum stress, and metabolism. Functionally, re-expressing ZIC4 negatively impacted cell proliferation and migration. Ultimately, these findings underscore ZIC4 hyper-methylation as a prognostic marker in CPTs and shed light on potential mechanisms underlying its tumor suppressor role in CPC. This insight paves the way for novel therapeutic targets in treating aggressive CPTs.
Collapse
Affiliation(s)
- Dina Hesham
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Amal Mosaab
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Nada Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hisham Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Khaled Abou Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Ola Sabet
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt.
| |
Collapse
|
29
|
He Y, Shen M, Wang X, Yin A, Liu B, Zhu J, Zhang Z. Suppression of Interferon Response and Antiviral Strategies of Bunyaviruses. Trop Med Infect Dis 2024; 9:205. [PMID: 39330894 PMCID: PMC11435552 DOI: 10.3390/tropicalmed9090205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.
Collapse
Affiliation(s)
- Yingying He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Min Shen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaohe Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Anqi Yin
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
30
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Reed SG, Carter D. Make it a combo. Sci Transl Med 2024; 16:eadq5644. [PMID: 39083583 DOI: 10.1126/scitranslmed.adq5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Adjuvants that combine TLR agonists and inflammatory agonists promote robust and durable vaccine responses (Bechtold et al. and Arunachalam et al.).
Collapse
Affiliation(s)
| | - Darrick Carter
- HDT Bio Corp., Seattle, WA, USA
- PAI Life Sciences Inc., Seattle, WA, USA
| |
Collapse
|
32
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
33
|
Purbey PK, Seo J, Paul MK, Iwamoto KS, Daly AE, Feng AC, Champhekar AS, Langerman J, Campbell KM, Schaue D, McBride WH, Dubinett SM, Ribas A, Smale ST, Scumpia PO. Opposing tumor-cell-intrinsic and -extrinsic roles of the IRF1 transcription factor in antitumor immunity. Cell Rep 2024; 43:114289. [PMID: 38833371 PMCID: PMC11315447 DOI: 10.1016/j.celrep.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Joowon Seo
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ameya S Champhekar
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven M Dubinett
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
34
|
Giacalone MJ. The promise, progress, and challenges of in situ immunization agents in cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:127-164. [PMID: 39461750 DOI: 10.1016/bs.pmbts.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In situ immunization (ISI) agents are an emerging and diverse class of locally acting cancer immunotherapeutic agents designed to promote innate immune activation in the early steps of the cancer immunity cycle to ultimately support development of a systemic tumor-specific immune response and protective immunologic memory. The aims of this review are to: (i) provide an introduction to ISI; (ii) summarize the history of ISI agents; (iii) expound upon the mechanism(s) and therapeutic objective(s) of ISI; (iv) compare the various approaches and therapeutic modalities developed and investigated to date; and (v) summarize clinical experiences in an effort to highlight the utility as well as the lessons and challenges of this promising approach. A prospective roadmap for future clinical development is provided that focuses on early and late-stage trial design considerations, the rationale and importance of investigating combination treatment, and the prospective use of ISI agents in the neoadjuvant setting.
Collapse
|
35
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
36
|
Meng S, Jiangtao B, Haisong W, Mei L, Long Z, Shanfeng L. RNA m 5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma. Front Immunol 2024; 15:1362159. [PMID: 38807595 PMCID: PMC11131105 DOI: 10.3389/fimmu.2024.1362159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Shanfeng
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
37
|
Sun W, Ge J, Zhang L, Zhou F, Liu J. Exploring the role of innate immunity in Cholangiocarcinoma: implications for prognosis, immune infiltration, and tumor metastasis. J Cancer 2024; 15:3547-3565. [PMID: 38817870 PMCID: PMC11134439 DOI: 10.7150/jca.94194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 06/01/2024] Open
Abstract
The innate immune system serves as the body's primary physiological defense against the intrusion of pathogenic microorganisms, playing a pivotal role in restricting viral infections. However, current research on the interplay between innate immune pathways and cancer is limited, with reported effects often inconsistent. Therefore, we aimed to elucidate the relationship between innate immune pathways and tumors through an amalgamation of bioinformatics and extensive data analysis. Conducting a pan-cancer analysis encompassing expression, genomic alterations, and clinical prognosis, we identified a close association between the innate immune pathway and cholangiocarcinoma. Subsequently, our focus shifted to unraveling the role of innate immune pathway proteins in cholangiocarcinoma. TIMER database analysis showed that the innate immune pathway predominantly influences the infiltration of macrophages and B cells in cholangiocarcinoma. Additionally, gene ontology (GO) and pathway analyses were performed for significantly differentially expressed genes correlated with the innate immune pathway in cholangiocarcinoma. Single-cell transcriptome analysis in cholangiocarcinoma demonstrated that genes in the innate immune pathway are primarily expressed in malignant cells, endothelial cells, monocytes and macrophages. To further validate the expression of proteins in the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma, tumor tissue slices from patients with liver intrahepatic cholangiocarcinoma and normal tissue slices from the HPA database were analyzed. These results indicated pronounced activation of the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma. Finally, proteomic data from patients with or without intrahepatic cholangiocarcinoma metastasis were analyzed. The results revealed a significant correlation between the expression and phosphorylation of IKKε and the occurrence of intrahepatic cholangiocarcinoma metastasis. These findings not only demonstrate the significance of the innate immune pathway in cholangiocarcinoma but also its potential as a prospective prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Wenhuan Sun
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianrong Ge
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China Cancer Center, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jisheng Liu
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Chen J, Liu Z, Fang H, Su Q, Fan Y, Song L, He S. Therapeutic efficacy of a novel self-assembled immunostimulatory siRNA combining apoptosis promotion with RIG-I activation in gliomas. J Transl Med 2024; 22:395. [PMID: 38685028 PMCID: PMC11057130 DOI: 10.1186/s12967-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Current cancer therapies often fall short in addressing the complexities of malignancies, underscoring the urgent need for innovative treatment strategies. RNA interference technology, which specifically suppresses gene expression, offers a promising new approach in the fight against tumors. Recent studies have identified a novel immunostimulatory small-interfering RNA (siRNA) with a unique sequence (sense strand, 5'-C; antisense strand, 3'-GGG) capable of activating the RIG-I/IRF3 signaling pathway. This activation induces the release of type I and III interferons, leading to an effective antiviral immune response. However, this class of immunostimulatory siRNA has not yet been explored in cancer therapy. METHODS IsiBCL-2, an innovative immunostimulatory siRNA designed to suppress the levels of B-cell lymphoma 2 (BCL-2), contains a distinctive motif (sense strand, 5'-C; antisense strand, 3'-GGG). Glioblastoma cells were subjected to 100 nM isiBCL-2 treatment in vitro for 48 h. Morphological changes, cell viability (CCK-8 assay), proliferation (colony formation assay), migration/invasion (scratch test and Transwell assay), apoptosis rate, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated. Western blotting and immunofluorescence analyses were performed to assess RIG-I and MHC-I molecule levels, and ELISA was utilized to measure the levels of cytokines (IFN-β and CXCL10). In vivo heterogeneous tumor models were established, and the anti-tumor effect of isiBCL-2 was confirmed through intratumoral injection. RESULTS IsiBCL-2 exhibited significant inhibitory effects on glioblastoma cell growth and induced apoptosis. BCL-2 mRNA levels were significantly decreased by 67.52%. IsiBCL-2 treatment resulted in an apoptotic rate of approximately 51.96%, accompanied by a 71.76% reduction in MMP and a 41.87% increase in ROS accumulation. Western blotting and immunofluorescence analyses demonstrated increased levels of RIG-I, MAVS, and MHC-I following isiBCL-2 treatment. ELISA tests indicated a significant increase in IFN-β and CXCL10 levels. In vivo studies using nude mice confirmed that isiBCL-2 effectively impeded the growth and progression of glioblastoma tumors. CONCLUSIONS This study introduces an innovative method to induce innate signaling by incorporating an immunostimulatory sequence (sense strand, 5'-C; antisense strand, 3'-GGG) into siRNA, resulting in the formation of RNA dimers through Hoogsteen base-pairing. This activation triggers the RIG-I signaling pathway in tumor cells, causing further damage and inducing a potent immune response. This inventive design and application of immunostimulatory siRNA offer a novel perspective on tumor immunotherapy, holding significant implications for the field.
Collapse
Affiliation(s)
- Junxiao Chen
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Haiting Fang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qing Su
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Luyao Song
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
39
|
Wang L, Liang Z, Guo Y, Habimana JDD, Ren Y, Amissah OB, Mukama O, Peng S, Ding X, Lv L, Li J, Chen M, Liu Z, Huang R, Zhang Y, Li Y, Li Z, Sun Y. STING agonist diABZI enhances the cytotoxicity of T cell towards cancer cells. Cell Death Dis 2024; 15:265. [PMID: 38615022 PMCID: PMC11016101 DOI: 10.1038/s41419-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoduan Liang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, 510005, China
| | - Yunzhuo Guo
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuefei Ren
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, 3900, Rwanda
| | - Siqi Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xuanyan Ding
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linshuang Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Junyi Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Min Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yinchao Zhang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, 130022, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
40
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
41
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
43
|
Su R, Li X, Xiao J, Xu J, Tian J, Liu T, Hu Y. UiO-66 nanoparticles combat influenza A virus in mice by activating the RIG-I-like receptor signaling pathway. J Nanobiotechnology 2024; 22:99. [PMID: 38461229 PMCID: PMC10925002 DOI: 10.1186/s12951-024-02358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 μg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.
Collapse
Affiliation(s)
- Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Jiawei Xu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
44
|
Polo-Generelo S, Rodríguez-Mateo C, Torres B, Pintor-Tortolero J, Guerrero-Martínez JA, König J, Vázquez J, Bonzón-Kulichenco E, Padillo-Ruiz J, de la Portilla F, Reyes JC, Pintor-Toro JA. Serpine1 mRNA confers mesenchymal characteristics to the cell and promotes CD8+ T cells exclusion from colon adenocarcinomas. Cell Death Discov 2024; 10:116. [PMID: 38448406 PMCID: PMC10917750 DOI: 10.1038/s41420-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Serine protease inhibitor clade E member 1 (SERPINE1) inhibits extracellular matrix proteolysis and cell detachment. However, SERPINE1 expression also promotes tumor progression and plays a crucial role in metastasis. Here, we solve this apparent paradox and report that Serpine1 mRNA per se, independent of its protein-coding function, confers mesenchymal properties to the cell, promoting migration, invasiveness, and resistance to anoikis and increasing glycolytic activity by sequestering miRNAs. Expression of Serpine1 mRNA upregulates the expression of the TRA2B splicing factor without affecting its mRNA levels. Through transcriptional profiling, we found that Serpine1 mRNA expression downregulates through TRA2B the expression of genes involved in the immune response. Analysis of human colon tumor samples showed an inverse correlation between SERPINE1 mRNA expression and CD8+ T cell infiltration, unveiling the potential value of SERPINE1 mRNA as a promising therapeutic target for colon tumors.
Collapse
Affiliation(s)
- Salvador Polo-Generelo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Cristina Rodríguez-Mateo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Belén Torres
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - José Pintor-Tortolero
- Colorectal Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - José A Guerrero-Martínez
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Jesús Vázquez
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Elena Bonzón-Kulichenco
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Padillo-Ruiz
- Hepatobiliary Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - Fernando de la Portilla
- Colorectal Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - José C Reyes
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - José A Pintor-Toro
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain.
| |
Collapse
|
45
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
46
|
DePeaux K, Delgoffe GM. Integrating innate and adaptive immunity in oncolytic virus therapy. Trends Cancer 2024; 10:135-146. [PMID: 37880008 PMCID: PMC10922271 DOI: 10.1016/j.trecan.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Oncolytic viruses (OVs), viruses engineered to lyse tumor cells, work hand in hand with the immune response. While for decades the field isolated lytic capability and viral spread to increase response to virotherapy, there is now a wealth of research that demonstrates the importance of immunity in the OV mechanism of action. In this review, we will cover how OVs interact with the innate immune system to fully activate the adaptive immune system and yield exceptional tumor clearances as well as look forward at combination therapies which can improve clinical responses.
Collapse
Affiliation(s)
- Kristin DePeaux
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
49
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
50
|
Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, Jiang Y. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155156. [PMID: 37897861 DOI: 10.1016/j.phymed.2023.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Liver cancer is one of common types of cancer with poor prognosis and limited therapies. Heat shock proteins (HSP) are molecular chaperones that have important roles in tumorigenesis, and emerging as therapeutic targets. Artemisinin and rhein are natural agents from Artemisia annua L. and Rheum undulatum L., respectively. Both rhein and artemisinin have anticancer effects; however, the molecular targets of rhein remain to be identified. It is also unclear whether rhein can synergize with artemisinin derivatives to inhibit liver cancer. PURPOSE We aim to identify the targets of rhein in the treatment of hepatocarcinoma and determine the effects of combining rhein and artemisinin derivatives on liver cancer cells. METHODS The targets of rhein were detected by mass spectrometry and validated by rhein-proteins interaction assays. The effects of rhein on the chaperone activity of HSP72/HSC70/GRP78 were determined by luciferase refolding assays. Cell viability and apoptosis were determined by CCK8 and flow cytometry assays. For in vivo study, xenograft tumor models were established and treated with rhein and artesunate. Tumor growth was monitored regularly. RESULTS Mass spectrometry analysis of rhein-binding proteins in HepG2 cells revealed that HSP72, HSC70 and GRP78 were more profoundly pulled down by rhein-crosslinked sepharose 4B beads compared to the control beads. Further experiments demonstrated that rhein directly interacted with HSP72/HSC70/GRP78 proteins, and inhibit their activity of refolding denatured luciferase. Meanwhile, rhein induced proteasomal degradation of HIF1α and β-catenin. Artesunate or dihydroartemisinin in combination with knockdown of both HSP72 and HSC70 significantly inhibited cell viability. The HSP70/HSC70/GRP78 inhibitors VER-155,008 and rhein phenocopied HSP72/HSC70 knockdown, synergizing with artesunate or dihydroartemisinin to inhibit hepatocarcinoma cell viability. Combinatorial treatment with rhein and artemisinin derivatives significantly induced hepatocarcinoma cell apoptosis, and inhibited tumor growth in vivo. CONCLUSIONS The current study demonstrates that rhein is a novel HSP72/HSC70/GRP78 inhibitor that suppresses the chaperone activity of HSP70s. Dual inhibition of HSP72 and HSC70 can enhance the sensitivity of hepatocarcinoma cells to artemisinin derivatives. Combined treatment with artemisinin derivative and rhein significantly inhibits hepatocarcinoma. Artemisinin derivatives in combination with dual inhibition of HSP72 and HSC70 represents a new approach to improve cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Jin Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Zeyu Guo
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, China
| | - Hongying Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yongliang Liu
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yangfu Jiang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China.
| |
Collapse
|