1
|
Liu D, Wang X, Qian F, Ye D, Deng X, Fang L. DLAT promotes triple-negative breast cancer progression via YAP1 activation. Cancer Biol Ther 2024; 25:2421578. [PMID: 39460738 PMCID: PMC11520541 DOI: 10.1080/15384047.2024.2421578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC. The role and mechanisms of dihydrolipoamide S-acetyltransferase (DLAT) as a crucial molecule in glycometabolism and cuproptosis-related biological processes in tumors remain to be explored. METHODS DLAT expression was investigated using bioinformatics methods and quantitative real-time polymerase chain reaction. Subsequently, the MTT assay, colony formation assay, and migration-invasion assay were performed to validate the effect of DLAT on TNBC cell viability, proliferation, and migration. Cytoplasmic-nuclear separation experiments, western blot analysis, and co-immunoprecipitation assays were performed to elucidate the underlying molecular mechanisms. RESULTS This study revealed a robust correlation between elevated DLAT expression in BC and unfavorable prognosis in patients, with higher expression of DLAT compared to other subtypes in TNBC. Functional cytology experiments indicated that DLAT plays a tumor-promoting role in TNBC. Mechanistic studies showed that DLAT directly interacts with YAP1, leading to the dephosphorylation and activation of YAP1 and its increased nuclear translocation, thereby transcriptionally activating and regulating downstream oncogenes, promoting the malignant phenotype of TNBC. Rescue experiments indicated that DLAT promotes the malignant behavior of TNBC through a YAP1-dependent pathway. CONCLUSIONS Our research unveiled the significant involvement of DLAT in TNBC, along with the potential for modulating DLAT/YAP1 activity as a targeted treatment strategy for TNBC.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuehui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengyuan Qian
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danrong Ye
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Sun D, Song Y, Gao W, Lin B, Wang B, Yang X, Li S, Jin Y, Zhang J. DNA-templated nanosheets for enhanced chemodynamic therapy and gene therapy to inhibit tumor recurrence and metastasis. Int J Pharm 2024; 667:124910. [PMID: 39500474 DOI: 10.1016/j.ijpharm.2024.124910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/10/2024]
Abstract
Recurrence and metastasis stand as the primary contributors to mortality among patients with triple-negative breast cancer post-surgery, presenting a formidable clinical obstacle. Chemodynamic therapy (CDT), leveraging metal-ion-mediated Fenton-like reactions within the tumor microenvironment (TME), emerges as a promising avenue for addressing cancer metastasis. Despite recent progress, challenges such as tumor cell antioxidant defenses and epithelial-mesenchymal transition (EMT) impede the efficacy of CDT. Here, we introduce a novel approach using DNA-templated nanosheets (Dz-MnO2) that combine the functions of Mn2+-mediated CDT and DNAzyme-mediated gene therapy to suppress tumor growth and metastasis. The Dz-MnO2 nanosheets respond effectively to the TME, releasing Mn2+ and DNAzyme. The DNAzyme exhibits mRNA cleavage activity, specifically targeting oncogenic transcripts to reduce tumor progression. Mn2+ not only facilitates a Fenton-like reaction, enhancing the chemodynamic treatment effect, but also serves as a cofactor for DNAzyme, improving its catalytic efficiency. Concurrently, the nanosheets robustly silence the Twist1 gene, mitigating the EMT process and reinforcing CDT efficacy by suppressing apoptosis resistance. Results indicate that Dz-MnO2 nanosheets efficiently polarize M2-tumor-associated macrophages (TAMs) into M1-TAMs by locally mitigating tumor hypoxia via catalyzing the decomposition of H2O2 into O2. This collaborative strategy presents a promising approach to enhance CDT, effectively inhibiting tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Danna Sun
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Yuwei Song
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Wenyan Gao
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Boyang Lin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xinjian Yang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Shaochun Li
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Wu S, Ge A, Deng X, Liu L, Wang Y. Evolving immunotherapeutic solutions for triple-negative breast carcinoma. Cancer Treat Rev 2024; 130:102817. [PMID: 39154410 DOI: 10.1016/j.ctrv.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast carcinoma (TNBC) remains a formidable clinical hurdle owing to its high aggressiveness and scant therapeutic options. Nonetheless, the evolving landscape of immunotherapeutic strategies opens up promising avenues for tackling this hurdle. This review discusses the advancing immunotherapy for TNBC, accentuating personalized interventions due to tumor microenvironment (TME) diversity. Immune checkpoint inhibitors (ICIs) hold pivotal significance, both as single-agent therapies and when administered alongside cytotoxic agents. Moreover, the concurrent inhibition of multiple immune checkpoints represents a potent approach to augment the efficacy of cancer immunotherapy. Synergistic effects have been observed when ICIs are combined with targeted treatments like PARP inhibitors, anti-angiogenics, and ADCs (antibody-drug conjugates). Emerging tactics include tumor vaccines, cellular immunotherapy, and oncolytic viruses, leveraging the immune system's ability for selective malignant cell destruction. This review offers an in-depth examination of the diverse landscape of immunotherapy development for TNBC, furnishing meticulous insights into various advancements within this field. In addition, immunotherapeutic interventions offer hope for TNBC, needing further research for optimization.
Collapse
Affiliation(s)
- Shiting Wu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Anqi Ge
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Xianguang Deng
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Lifang Liu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Yue Wang
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
4
|
Liu Z, Mao S, Dai L, Huang R, Hu W, Yu C, Yang Y, Cao G, Huang X. Discovery of dual-targeted molecules based on Olaparib and Rigosertib for triple-negative breast cancer with wild-type BRCA. Bioorg Med Chem 2024; 113:117936. [PMID: 39369565 DOI: 10.1016/j.bmc.2024.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
PARP inhibitors (PARPis) demonstrate significant potential efficacy in the clinical treatment of BRCA-mutated triple-negative breast cancer (TNBC). However, a majority of patients with TNBC do not possess BRCA mutations, and therefore cannot benefit from PARPis. Previous studies on multi-targeted molecules derived from PARPis or disruptors of RAF-RAF pathway have offered an alternative approach to develop novel anti-TNBC agents. Hence, to broaden the application of PARP inhibitors for TNBC patients with wild-type BRCA, a series of dual-targeted molecules were constructed via integrating the key pharmacophores of Olaparib (Ola) and Rigosertib into a single entity. Subsequent studies exhibited that the resulting compounds 13a-14c obtained potential anti-proliferative activity against BRCA-defected or wild-type TNBC cells. Among them, an optimal compound 13b showed good inhibitory activity toward PARP-1, displayed approximately 34-fold higher inhibitory activity than that of Ola in MDA-MB-231 cells, and exerted multi-functional mechanisms to induce apoptosis. Moreover, 13b displayed superior antitumor efficacy (TGI, 61.3 %) than the single administration of Ola (TGI, 38.5 %), 11b (TGI, 51.8 %) or even their combined administration (TGI, 56.7 %), but did not show significant systematic toxicity. These findings suggest that 13b may serve as a potential candidate for BRCA wild-type TNBC.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shining Mao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lumei Dai
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China; School of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rizhen Huang
- Guangxi Key Laboratoryfor Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medicinal University, Guilin 541199, China
| | - Weiwei Hu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yong Yang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoxiu Cao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Xiaochao Huang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
5
|
Sun C, Liu ZP. Discovering explainable biomarkers for breast cancer anti-PD1 response via network Shapley value analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108481. [PMID: 39488042 DOI: 10.1016/j.cmpb.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Immunotherapy holds promise in enhancing pathological complete response rates in breast cancer, albeit confined to a select cohort of patients. Consequently, pinpointing factors predictive of treatment responsiveness is of paramount importance. Gene expression and regulation, inherently operating within intricate networks, constitute fundamental molecular machinery for cellular processes and often serve as robust biomarkers. Nevertheless, contemporary feature selection approaches grapple with two key challenges: opacity in modeling and scarcity in accounting for gene-gene interactions METHODS: To address these limitations, we devise a novel feature selection methodology grounded in cooperative game theory, harmoniously integrating with sophisticated machine learning models. This approach identifies interconnected gene regulatory network biomarker modules with priori genetic linkage architecture. Specifically, we leverage Shapley values on network to quantify feature importance, while strategically constraining their integration based on network expansion principles and nodal adjacency, thereby fostering enhanced interpretability in feature selection. We apply our methods to a publicly available single-cell RNA sequencing dataset of breast cancer immunotherapy responses, using the identified feature gene set as biomarkers. Functional enrichment analysis with independent validations further illustrates their effective predictive performance RESULTS: We demonstrate the sophistication and excellence of the proposed method in data with network structure. It unveiled a cohesive biomarker module encompassing 27 genes for immunotherapy response. Notably, this module proves adept at precisely predicting anti-PD1 therapeutic outcomes in breast cancer patients with classification accuracy of 0.905 and AUC value of 0.971, underscoring its unique capacity to illuminate gene functionalities CONCLUSION: The proposed method is effective for identifying network module biomarkers, and the detected anti-PD1 response biomarkers can enrich our understanding of the underlying physiological mechanisms of immunotherapy, which have a promising application for realizing precision medicine.
Collapse
Affiliation(s)
- Chenxi Sun
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
6
|
Sawant S, Naik GG, Sahu AN, Jagtap VA. Understanding the chemistry & pharmacology of antibody-drug conjugates in triple-negative breast cancer with special reference to exatecan derivatives. Med Oncol 2024; 41:301. [PMID: 39460856 DOI: 10.1007/s12032-024-02542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In the spectrum of breast malignancies, triple-negative breast cancer is the most widely spreading subtype of breast cancer due to a low availability of therapeutic remedies. Recently, antibody-drug conjugates dramatically resolved the landscape for the treatment of triple-negative breast cancer. This review mainly focuses on the chemistry, structure, mechanism of action, and role of antibody-drug conjugates in triple-negative breast cancer. Datopotecan Deruxtecan (Dato-DXd) is a new-generation ADC showing encouraging results for TNBC. In this review, we have also emphasized TROP-2-directed Datopotamab deruxtecan ADCs to treat triple-negative breast cancer, its synthesis, mechanism of action, pharmacokinetics, pharmacodynamics, adverse events, and their ongoing clinical trials.
Collapse
Affiliation(s)
- Sanjana Sawant
- Department of Pharmaceutical Chemistry, Yashwantrao Bhonsale College of Pharmacy, Affiliated to Mumbai University, Sawantwadi, 416510, India
| | - Gaurav Gopal Naik
- Department of Pharmaceutical Chemistry, Yashwantrao Bhonsale College of Pharmacy, Affiliated to Mumbai University, Sawantwadi, 416510, India.
| | | | - Vijay A Jagtap
- Department of Pharmaceutical Chemistry, Yashwantrao Bhonsale College of Pharmacy, Affiliated to Mumbai University, Sawantwadi, 416510, India
| |
Collapse
|
7
|
Wang X, Yang Y, Wang P, Li Q, Gao W, Sun Y, Tian G, Zhang G, Xiao J. Oxygen self-supplying nanoradiosensitizer activates cGAS-STING pathway to enhance radioimmunotherapy of triple negative breast cancer. J Control Release 2024; 376:S0168-3659(24)00722-3. [PMID: 39490535 DOI: 10.1016/j.jconrel.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Radiotherapy (RT)-mediated immune activation is insufficient for effective therapy of triple-negative breast cancer (TNBC) due to the immunosuppressive tumor microenvironment. Herein, we developed an oxygen self-supplying nanoradiosensitizer to activate immunogenic cell death (ICD) and the cGAS-STING signaling pathway, elevating the anti-tumor immune response and improving radioimmunotherapy for TNBC. The nanoradiosensitizer was fabricated using astragaloside liposome-encapsulated FePt alloy and MnO nanocrystals (ALFM). The ALFM targeted the glucose transporter-1 (GLUT-1) receptor in TNBC and effectively entered tumor cells. Subsequently, the ALFM responded to the weakly acidic tumor microenvironment and degraded, releasing FePt and Mn2+ ions. The released Mn2+ ions not only elevated cellular ROS levels via a Fenton-like reaction but also activated the cGAS-STING signaling pathway, which stimulated the anti-tumor immune response. In addition, the FePt alloy catalyzed a cascade reaction, producing ROS and O2 in tumor cells, alleviating tumor hypoxia, and enhancing the RT effect. Besides, ROS-mediated cell damage induced the ICD effect in TNBC, promoted dendritic cell maturation and the infiltration of cytotoxic T lymphocytes, ultimately eliciting cancer immunotherapy. In vivo experimental results demonstrated that ALFM effectively activated the antitumor immune response and improved the radioimmunotherapy effect for TNBC. Overall, this work presents an effective strategy for enhanced radioimmunotherapy of TNBC. Subsequently, the ALFM responded to weak acidic tumor microenvironment, and then degraded along with the release of FePt and Mn2+ ions. The released Mn2+ ions not only elevated cellular ROS level via Fenton-like reaction, but also activated cGAS-STING signal pathway, which activated anti-tumor immune response. In addition, FePt alloy catalyzed cascade reaction and then produced ROS and O2 in tumor cells, relieving tumor hypoxia and enhancing RT effect. Besides, ROS-mediated cell damage induced ICD effect of TNBC, promoted dendritic cells maturation and the infiltration of cytotoxic T lymphocytes, eventually elicited antitumor immunotherapy. In vivo experimental results demonstrated that ALFM effectively activated antitumor immune response, improved radioimmunotherapy effect of TNBC. Overall, this work provided a complete new strategy for enhanced radioimmunotherapy of TNBC.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yang Yang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Peng Wang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Qingdong Li
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Wenjuan Gao
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yu Sun
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Geng Tian
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Guilong Zhang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Jianmin Xiao
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
8
|
Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, Kumar B, Agarwal S, Kumar R, Gupta SK, Gautam V. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev 2024. [PMID: 39445844 DOI: 10.1002/med.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Triple negative breast cancer (TNBC) displays a notable challenge in clinical oncology due to its invasive nature which is attributed to the absence of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor (HER-2). The heterogenous tumor microenvironment (TME) of TNBC is composed of diverse constituents that intricately interact to evade immune response and facilitate cancer progression and metastasis. Based on molecular gene expression, TNBC is classified into four molecular subtypes: basal-like (BL1 and BL2), luminal androgen receptor (LAR), immunomodulatory (IM), and mesenchymal. TNBC is an aggressive histological variant with adverse prognosis and poor therapeutic response. The lack of response in most of the TNBC patients could be attributed to the heterogeneity of the disease, highlighting the need for more effective treatments and reliable prognostic biomarkers. Targeting certain signaling pathways and their components has emerged as a promising therapeutic strategy for improving patient outcomes. In this review, we have summarized the interactions among various components of the dynamic TME in TNBC and discussed the classification of its molecular subtypes. Moreover, the purpose of this review is to compile and provide an overview of the most recent data about recently discovered novel TNBC biomarkers and targeted therapeutics that have proven successful in treating metastatic TNBC. The emergence of novel therapeutic strategies such as chemoimmunotherapy, chimeric antigen receptor (CAR)-T cells-based immunotherapy, phytometabolites-mediated natural therapy, photodynamic and photothermal approaches have made a significant positive impact and have paved the way for more effective interventions.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sonal Sharma
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjeev Kumar Gupta
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Liu Y, Liu Z, Chen J, Liang M, Cai C, Zou F, Zhou X. Personal history of irradiation and risk of breast cancer: A Mendelian randomisation study. J Glob Health 2024; 14:04106. [PMID: 39391896 PMCID: PMC11467774 DOI: 10.7189/jogh.14.04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background Studies on the relationship between personal history of irradiation and breast cancer have been reported for a long time. Still, epidemiological studies have not been conclusive, and the causal relationship is unclear. To address this issue, we employed Mendelian randomisation (MR) analysis to examine the association between individual radiation exposure history and breast cancer. Methods We used a series of quality control methods to select single nucleotide polymorphism (SNP) closely related to exposure. Meanwhile, several analysis methods were used to analyse the sample data to make the conclusion more reliable. To evaluate the horizontal pleiotropy, heterogeneity and stability of SNPs for breast cancer, the MR-Egger intercept test, Cochran's Q test and 'leave one' sensitivity analysis were used. Finally, the outlier variation determined by the Mendelian Randomisation Pleiotropy RESidual Sum and Outlier test is gradually eliminated to reduce the influence of heterogeneity and horizontal pleiotropy. Results After implementing rigorous quality control procedures, we carefully chose 102 qualified instrumental variables closely associated with the selected exposure for sensitivity analysis. This was conducted to evaluate the heterogeneity, level multiplicity, and stability of SNPs in the context of personal radiation history and its correlation with breast cancer. The results of the inverse variance weighted method analysis revealed a positive correlation between personal radiation and a heightened risk of breast cancer (odds ratio (OR) = 1.52; 95% confidence interval (CI) = 1.30-1.77). We also validated on another data set; the results were similar (OR = 1.51; 95% CI = 1.27-1.81). Furthermore, the findings from the sensitivity analysis were consistent. At the genetic level, our research demonstrated that personal radiation exposure is associated with an elevated risk of breast cancer. Conclusions Using genetic data provides evidence and strengthens the causal link that personal radiation causes breast cancer.
Collapse
|
10
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
11
|
Zhao Z, Zhang Y, Fan Y, Cui C, Guo Y, Zhu J, Lv Z, Li M, Chen Y, Shi H. Mitochondrial Sulfenated-Protein-Targeted Covalent Immobilization Boosting Efficient Copper(II) Depletion for Enhanced Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51783-51797. [PMID: 39291812 DOI: 10.1021/acsami.4c11112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Copper plays a vital role in cellular metabolism and oxidative stress regulation. Visualizing and controlling the copper level in mitochondrion have been proven to be promising and efficient strategies for the diagnosis and treatment of triple-negative breast cancer (TNBC). However, developing an advanced probe for simultaneous visualization and depletion of mitochondrial copper remains a huge challenge. Herein, we for the first time report a mitochondria-anchorable, copper-responsive, and depleting probe d-IR-DPA and evaluate its potential for quantitative visualization of intratumoral copper(II) and anti-TNBC in vivo. Taking advantage of the mitochondrion-targeting and sulfenated-protein-mediated covalent immobilization characteristics, this probe not only enables the quantitative detection of Cu2+ levels in various types of tumors through ratiometric photoacoustic (PA680 nm/PA800 nm) imaging but also scavenges the mitochondrial Cu2+, simultaneously igniting increased oxidative stress and mitochondrial membrane damage and eventually leading to severe TNBC cell apoptosis. More notably, the depletion of Cu2+ by d-IR-DPA can alter the cellular metabolic pathway from oxidative phosphorylation to glycolysis, inducing energy deprivation and significant suppression of TNBC tumor in living mice. Our probe may provide a valuable and powerful means for the effective treatment of TNBC as well as other copper-associated diseases.
Collapse
Affiliation(s)
- Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yurong Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chaoxiang Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome 00133, Italy
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Xie D, Jiang Y, Wang H, Zhu L, Huang S, Liu S, Zhang W, Li T. Formononetin triggers ferroptosis in triple-negative breast cancer cells by regulating the mTORC1/SREBP1/SCD1 pathway. Front Pharmacol 2024; 15:1441105. [PMID: 39399463 PMCID: PMC11470441 DOI: 10.3389/fphar.2024.1441105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer, and its prognosis is still the worst. It is necessary to constantly explore the pathogenesis and effective therapeutic targets of TNBC. Formononetin is an active ingredient with anti-tumor effects that we screened earlier. The main purpose of this study is to elucidate mechanism of the inhibitory effect of Formononetin on TNBC. Methods We conducted experiments through both in vivo and in vitro methodologies. The in vivo experiments utilized a nude mice xenotransplantation model, while the in vitro investigations employed two breast cancer cell lines, MDA-MB-231 and MDA-MB-468. Concurrently, ferroptosis associated proteins, lipid peroxide levels, and proteins related to the rapamycin complex 1 were analyzed in both experimental settings. Results In our study, Formononetin exhibits significant inhibitory effects on the proliferation of triple TNBC, both in vivo and in vitro. Moreover, it elicits an increase in lipid peroxide levels, downregulates the expression of ferroptosis-associated proteins GPX4 and xCT, and induces ferroptosis in breast cancer cells. Concurrently, Formononetin impedes the formation of the mammalian target of rapamycin complex 1 (mTORC1) and suppresses the expression of downstream Sterol regulatory element-binding protein 1(SREBP1). The utilization of breast cancer cells with SREBP1 overexpression or knockout demonstrates that Formononetin induces ferroptosis by modulating the mTORC1-SREBP1 signaling axis. Discussion In conclusion, this study provides evidence that Formononetin exerts an anti-proliferative effect on triple-negative breast cancer by inducing ferroptosis. Moreover, the mTORC1-SREBP1 signal axis is identified as the primary mechanism through which formononetin exerts its therapeutic effects. These findings suggest that formononetin holds promise as a potential targeted drug for clinical treatment of TNBC.
Collapse
Affiliation(s)
- Dong Xie
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulang Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyi Zhu
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shuangqin Huang
- General department, Songnan Town Community Health Service Center, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Tian Li
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Xie X, Yang M, Wei X, Chu H, Zhao W, Shen N. Dual immunostimulatory CD73 antibody-polymeric cytotoxic drug complex for triple negative breast cancer therapy. Acta Biomater 2024:S1742-7061(24)00549-X. [PMID: 39341438 DOI: 10.1016/j.actbio.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Treatment of triple-negative breast cancer (TNBC) poses significant challenges due to its propensity for metastasis. A key impediment lies in the suppressive immune microenvironment, which fosters tumor progression. This study introduces an approach employing a dual immune-stimulatory CD73 antibody-polymeric cytotoxic drug complex (αCD73-PLG-MMAE). This complex is designed for targeted eradication of TNBC while modulating tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. By enhancing antitumor immune responses, this strategy offers a highly effective means of treating TNBC and mitigating metastasis. The complex is synthesized by combining αCD73 with poly(L-glutamic acid) (PLG) grafted Fc binding peptides (Fc-III-4C) and Val-Cit-PAB-monomethyl auristatin E (MMAE), exploiting the affinity between αCD73 and Fc-III-4C. αCD73 selectively targets CD73 molecules on both tumor and immune suppressive cells, thereby inhibiting the adenosine pathway. Meanwhile, Val-Cit-PAB-MMAE, activated by cathepsin B, triggers selective release of MMAE, inducing ICD in tumor cells. In a 4T1 tumor model, αCD73-PLG-MMAE significantly enhances drug accumulation in tumors by 4.13-fold compared to IgG-PLG-MMAE, leading to suppression of tumor growth and metastasis. Furthermore, it synergistically augments the antitumor effects of αPD-1, resulting in a tumor inhibition rate of 92 % as compared to 21 % with αPD-1 alone. This study thus presents a pioneering therapeutic strategy for TNBC, emphasizing the potential of targeted immunomodulation in cancer treatment. STATEMENT OF SIGNIFICANCE: Antibody-drug conjugate (ADC) therapy holds promise for treating triple-negative breast cancer (TNBC). However, the current ADC, sacituzumab govitecan, fails to overcome the crucial role of adenosine in the suppressive immune microenvironment characteristic of this "cold tumor". Here, we present a dual immune-stimulatory complex, αCD73-PLG-MMAE, which targets TNBC specifically and modulates tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. Thus, it kills tumor cells with cytotoxic drugs, comprehensively regulates immunosuppression, and restores a durable immune response. This study proposes an antibody-polymeric drug complex with immunomodulatory and immunoagonist roles, offering new insights into TNBC treatment.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
14
|
Wang X, Huang H, Xu W, Gong Y, Shi S, Wan X, Li P. TGF-β1 and FOXM1 siRNA co-loaded nanoparticles by disulfide crosslinked PEG-PDMAEMA for the treatment of triple-negative breast cancer and its bone metastases in vitro. Drug Dev Ind Pharm 2024:1-12. [PMID: 39286903 DOI: 10.1080/03639045.2024.2404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is characterized by higher malignancy and mortality and is prone to distant metastasis, among which bone is the most common site. It's urgent to explore new strategies for the treatment of TNBC and its bone metastases. METHODS A tumor environment responsive vector, poly-(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly-(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA), was constructed to co-delivery transforming growth factor-β1 (TGF-β1) siRNA and forkhead box M1 (FOXM1) siRNA in MDA-MB-231 cells. The preparation, characterization, in vitro release, stability, and transfection efficiency of nanoparticles were measured. Cell viability, migration, and invasion of MDA-MB-231 cells were determined. Cell chemotactic migration and cell heterogeneity adhesion of MDA-MB-231 cells to the human osteoblast-like cell line MG-63 were determined. RESULTS PDMAEMA-SS-PEG-SS-PDMAEMA self-assembled with siRNA at N/P of 15:1 into nanoparticles with a particle size of 122 nm. In vitro release exhibited redox and pH sensitivity, and the nanoparticles protected siRNA from degradation by RNase and serum protein, remaining stable at 4 °C with similar transfection efficiency with lipo2000. Nanoparticles co-loaded with TGF-β1 siRNA and FOXM1 siRNA inhibited the cell viability, migration and invasion of MDA-MB-231 cells, as well as chemotactic migration and heterogeneous adhesion of MDA-MB-231 cells to MG-63 cells, showing a synergetic effect. After gene silencing on TGF-β1 and FOXM1, the epithelial to mesenchymal transition (EMT) related molecules vimentin mRNA expression decreased while E-cadherin increased. CONCLUSIONS PDMAEMA-SS-PEG-SS-PDMAEMA was suitable for TGF-β1 siRNA and FOXM1 siRNA delivery, exhibiting a synergetic inhibition effect on TNBC and its bone metastases, which might be related to its synergetic inhibition on EMT.
Collapse
Affiliation(s)
- Xingbo Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Hong Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenxiu Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Songbo Shi
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Xu Wan
- Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China Shanghai
| | - Pengbiao Li
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
15
|
Yi M, Li T, Niu M, Wu Y, Zhao B, Shen Z, Hu S, Zhang C, Zhang X, Zhang J, Yan Y, Zhou P, Chu Q, Dai Z, Wu K. Blockade of CCR5 + T Cell Accumulation in the Tumor Microenvironment Optimizes Anti-TGF-β/PD-L1 Bispecific Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408598. [PMID: 39303165 DOI: 10.1002/advs.202408598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In the previous studies, anti-TGF-β/PD-L1 bispecific antibody YM101 is demonstrated, with superior efficacy to anti-PD-L1 monotherapy in multiple tumor models. However, YM101 therapy can not achieve complete regression in most tumor-bearing mice, suggesting the presence of other immunosuppressive elements in the tumor microenvironment (TME) beyond TGF-β and PD-L1. Thoroughly exploring the TME is imperative to pave the way for the successful translation of anti-TGF-β/PD-L1 BsAb into clinical practice. In this work, scRNA-seq is employed to comprehensively profile the TME changes induced by YM101. The scRNA-seq analysis reveals an increase in immune cell populations associated with antitumor immunity and enhances cell-killing pathways. However, the analysis also uncovers the presence of immunosuppressive CCR5+ T cells in the TME after YM101 treatment. To overcome this hurdle, YM101 is combined with Maraviroc, a widely used CCR5 antagonist for treating HIV infection, suppressing CCR5+ T cell accumulation, and optimizing the immune response. Mechanistically, YM101-induced neutrophil activation recruits immunosuppressive CCR5+ T cells via CCR5 ligand secretion, creating a feedback loop that diminishes the antitumor response. Maraviroc then cleared these infiltrating cells and offset YM101-mediated immunosuppressive effects, further unleashing the antitumor immunity. These findings suggest selectively targeting CCR5 signaling with Maraviroc represents a promising and strategic approach to enhance YM101 efficacy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, P. R. China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Mengke Niu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Bin Zhao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Zhuoyang Shen
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Shengtao Hu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Chaomei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Xiaojun Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, P. R. China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, P. R. China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, P. R. China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, P. R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, P. R. China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| |
Collapse
|
16
|
Zhang C, Wang S, Lu X, Zhong W, Tang Y, Huang W, Wu F, Wang X, Wei W, Tang H. POP1 Facilitates Proliferation in Triple-Negative Breast Cancer via m6A-Dependent Degradation of CDKN1A mRNA. RESEARCH (WASHINGTON, D.C.) 2024; 7:0472. [PMID: 39268503 PMCID: PMC11391272 DOI: 10.34133/research.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is currently the worst prognostic subtype of breast cancer, and there is no effective treatment other than chemotherapy. Processing of precursors 1 (POP1) is the most substantially up-regulated RNA-binding protein (RBP) in TNBC. However, the role of POP1 in TNBC remains clarified. A series of molecular biological experiments in vitro and in vivo and clinical correlation analyses were conducted to clarify the biological function and regulatory mechanism of POP1 in TNBC. Here, we identified that POP1 is significantly up-regulated in TNBC and associated with poor prognosis. We further demonstrate that POP1 promotes the cell cycle and proliferation of TNBC in vitro and vivo. Mechanistically, POP1 directly binds to the coding sequence (CDS) region of CDKN1A mRNA and degrades it. The degradation process depends on the N6-methyladenosine (m6A) modification at the 497th site of CDKN1A and the recognition of this modification by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Moreover, the m6A inhibitor STM2457 potently impaired the proliferation of POP1-overexpressed TNBC cells and improved the sensitivity to paclitaxel. In summary, our findings reveal the pivotal role of POP1 in promoting TNBC proliferation by degrading the mRNA of CDKN1A and that inhibition of m6A with STM2457 is a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuqing Lu
- Department of Breast Surgery, Zhongshan City People's Hospital, ZhongShan, China
| | - Wenjing Zhong
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Yunyun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Kangda Vocational Technical College, Guangzhou 510700, China
| | - Weiling Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengjia Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Weidong Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Chen BY, Xu JH, Chen QQ, Wu HX, Ou BF, Zhou Z, Xu F, Wu SY, Xie SL, Wen DS. Pharmacokinetics and Bioavailability Study of a Novel Smoothened Inhibitor TPB15 for Treatment of Triple-Negative Breast Cancer in Rats by High Performance Liquid Chromatography-Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2024; 49:645-655. [PMID: 39158678 DOI: 10.1007/s13318-024-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.
Collapse
Affiliation(s)
- Bo-Yu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Huan Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian-Qing Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huan-Xian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Fang Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Fei Xu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 511436, China
| | - Shao-Yu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shui-Lin Xie
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 511436, China.
| | - Ding-Sheng Wen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Bashari N, Naghizadeh M, Chegini MK, Sadeghi ES, Zamani A, Mahdevar M. Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs. Biochem Genet 2024:10.1007/s10528-024-10907-1. [PMID: 39214909 DOI: 10.1007/s10528-024-10907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The treatment of triple-negative breast cancer (TNBC) has been associated with challenges due to the lack of expression of ER, PR, and HER2 receptors in tumor cells. This study aimed to identify genes with potential therapeutic targets in TNBC. Data from the cancer genome atlas regarding breast cancer (BC) were downloaded. After initial preprocessing, cancer samples were categorized into four groups: TNBC, HER2-positive, luminal A, and luminal B. Gene expression differences between these groups were calculated, focusing on genes that showed differential expression in TNBC. A protein-protein interaction network was conducted to identify hub genes among the candidate genes related to TNBC. The protein expression of candidate genes was assessed using immunohistochemistry data from the human protein atlas. Drug resistance and sensitivity associated with hub genes were identified using data from PharmacoDB. TNBC samples and the RT-qPCR method were used to confirm the results. Our findings revealed that eight genes, namely PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1, had significant upregulation at the RNA level in TNBC subgroup compared to other subgroups and could be considered hub genes in TNBC. Compared to other subgroups, their expression level in TNBC samples had high sensitivity and specificity. RT-qPCR results also demonstrated a significant increase in levels of SKA3 and PTTG1 in the TNBC compared to healthy tissue and other subgroups. The protein expression of these genes was notably high in some BC samples. PharmacoDB data showed that some candidate genes were closely linked to drug sensitivity of GSK 461364 and IKK 16. The results of this study showed a significant increase in the expression level of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 in TNBC compared to other BC subgroups. These genes show considerable promise as therapeutic targets for the TNBC subgroup.
Collapse
Affiliation(s)
- Najmeh Bashari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Mohammadamin Naghizadeh
- Dalian Medical University, Liaoning, China
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Mehrnaz Kalhor Chegini
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | | | - Atefeh Zamani
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
20
|
Deng X, Zhu Y, Dai Z, Liu Q, Song Z, Liu T, Huang Y, Chen H. A Bimetallic Nanomodulator to Reverse Immunosuppression via Sonodynamic-Ferroptosis and Lactate Metabolism Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404580. [PMID: 39149915 DOI: 10.1002/smll.202404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Triple-negative breast cancer (TNBC) responds poorly to immunotherapy due to insufficient immunogenicity and highly immunosuppressive tumor microenvironment (TME). Herein, an intelligent calcium/cobalt-based nanomodulator (Ca,Co)CO3-LND-TCPP@F127-TA (abbreviated as CCLT@FT) is developed to act as a sonodynamic-ferroptosis inducer and metabolic immunoadjuvant to enhance anti-tumor immunotherapy. More details, simultaneous reactive oxygen species (ROS) generation and glutathione (GSH) depletion can be achieved due to the existence of Co2+/Co3+ redox couple in CCLT@FT. Meanwhile, mitochondrial Ca2+ overload and tetrakis(4-carboxyphenyl) porphyrin (TCPP)-mediated sonodynamic therapy (SDT) further amplify the oxidative stress and promote ferroptosis in tumor cells. More impressively, CCLT@FT can modulate lactate metabolism by doping with cobalt and loading with lonidamine (LND, an inhibitor of MCT4), thereby reversing the high-lactate immunosuppressive TME. Furthermore, the combination with immune checkpoint blockade (ICB) therapy is found to achieve superior anti-tumor immunity, which in turn promotes ferroptosis of tumor cells by downregulating SLC7A11 protein, ultimately creating a "cycle" therapy. Overall, this work demonstrates a novel strategy for enhancing anti-tumor immunotherapy based on a closed-loop enhancement therapeutic route between CCLT@FT inducing ferroptosis/lactate metabolism modulation and ICB therapy, providing an alternative and important reference for effective immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yutong Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zideng Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Qing Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuefeng Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| |
Collapse
|
21
|
Yang S, Wang Q. Prognostic risk model under the immune-associated long chain non-coding ribonucleic acid and its application in survival prognosis assessment of patients with breast cancer. Sci Rep 2024; 14:18928. [PMID: 39147766 PMCID: PMC11327333 DOI: 10.1038/s41598-024-65614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/21/2024] [Indexed: 08/17/2024] Open
Abstract
This study aimed to develop a prognostic risk model based on immune-related long non-coding RNAs (lncRNAs). By analyzing the expression profiles of specific long non-coding RNAs, the objective was to construct a predictive model to accurately assess the survival prognosis of breast cancer (BC) patients. This effort seeks to provide personalized treatment strategies for patients and improve clinical outcomes. Based on the median risk value, 300 samples of triple-negative BC (TNBC) patients were rolled into a high-risk group (HR group, n = 140) and a low-risk group (LR group, n = 160). Multivariate Cox (MVC) analysis was performed by combining the patient risk score and clinical information to evaluate the prognostic value of the prognostic risk (PR) model. A total of 371 immune-related lncRNAs associated with the prognosis of TNBC were obtained from 300 TNBC samples. Nine associated with prognosis were obtained by univariate Cox (UVC) analysis, and 3 (AC090181.2, LINC01235, and LINC01943) were selected by MVC analysis for the construction of TNBC PR model. Survival analysis showed a great difference in TNBC patients in different groups (P < 0.001). The receiver operator characteristic (ROC) curve showed the model possessed a good area under ROC curve (AUC), which was 0.928. The patient RS jointing with clinical information as well as the MVC analysis revealed that RS was an independent risk factor (IRF) for prognosis of TNBC (P < 0.05, HR = 1.033286). Therefore, the lncRNAs associated with TNBC immunity can be screened by bioinformatics analysis, and the established PR model of TNBC could better predict the prognosis of patients with TNBC, exhibiting a high application value in clinic.
Collapse
Affiliation(s)
- Shuo Yang
- Shaoxing People's Hospital, Shaoxing City, 312000, China
| | - Qing Wang
- Shaoxing People's Hospital, Shaoxing City, 312000, China.
| |
Collapse
|
22
|
Subhan MA, Torchilin VP. Advances in siRNA Drug Delivery Strategies for Targeted TNBC Therapy. Bioengineering (Basel) 2024; 11:830. [PMID: 39199788 PMCID: PMC11351222 DOI: 10.3390/bioengineering11080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Among breast cancers, triple-negative breast cancer (TNBC) has been recognized as the most aggressive type with a poor prognosis and low survival rate. Targeted therapy for TNBC is challenging because it lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Chemotherapy, radiation therapy, and surgery are the common therapies for TNBC. Although TNBC is prone to chemotherapy, drug resistance and recurrence are commonly associated with treatment failure. Combination therapy approaches using chemotherapy, mAbs, ADC, and antibody-siRNA conjugates may be effective in TNBC. Recent advances with siRNA-based therapy approaches are promising for TNBC therapy with better prognosis and reduced mortality. This review discusses advances in nanomaterial- and nanobiomaterial-based siRNA delivery platforms for TNBC therapy exploring targeted therapy approaches for major genes, proteins, and TFs upregulated in TNBC tumors, which engage in molecular pathways associated with low TNBC prognosis. Bioengineered siRNA drugs targeting one or several genes simultaneously can downregulate desired genes, significantly reducing disease progression.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Division of Nephrology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Liu J, Liu H, Huang S, Peng H, Li J, Tu K, Tan S, Xie R, Lei L, Yue Q, Gao H, Cai L. Multiple Treatment of Triple-Negative Breast Cancer Through Gambogic Acid-Loaded Mesoporous Polydopamine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309583. [PMID: 38446095 DOI: 10.1002/smll.202309583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shan Huang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hong Peng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiamei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Kerong Tu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Wenjiang District People's Hospital of Chengdu, Chengdu, 611130, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lei Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
25
|
Xu J, Dong K, Bai X, Zhang M, Du Q, Chen L, Yang J. GluOC promotes proliferation and metastasis of TNBC through the ROCK1 signaling pathway. Cancer Cell Int 2024; 24:263. [PMID: 39054484 PMCID: PMC11270849 DOI: 10.1186/s12935-024-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a type of breast cancer that is negative for oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, is highly malignant and aggressive, lacks of corresponding targeted therapy, and has a relatively poor prognosis. Therefore, understanding the mechanism of TNBC development and formulating effective treatment strategies for inducing cell death are still urgent tasks in the treatment of TNBC. Research has shown that uncarboxylated osteocalcin can promote the proliferation of prostate cancer, lung adenocarcinoma and TNBC cells, but the mechanism by which GluOC affects TNBC growth and metastasis needs further study. METHODS MDA-MB-231 breast cancer cells were used for in vitro cell analysis. Key target molecules or pathways were identified by RNA sequencing, and migration ability was detected by scratch assays, Transwell assays, cell adhesion assays and western blot analysis. Fluorescence staining, colony detection, qRT‒PCR and flow cytometry were used to detect apoptosis, oxidative stress, the cell cycle and the stemness of cancer cells, and a xenotransplantation model in BALB/C nude mice was used for in vivo analysis. RESULTS This study demonstrated that GluOC facilitates the migration of MDA-MB-231 breast cancer cells through the ROCK1/MYPT1/MLC2 signalling pathway and promotes the proliferation of TNBC cells via the ROCK1/JAK2/PIK3CA/AKT signalling pathway. Experiments in nude mice demonstrated that GluOC promoted tumour cell proliferation and metastasis in tumour-bearing mice, which further clarified the molecular mechanism of TNBC growth and invasion. CONCLUSION Our findings highlight the importance of GluOC in driving TNBC progression and its association with poor patient outcomes. This study clarifies the functional effects of GluOC on TNBC growth, providing insight into the molecular basis of TNBC and potentially providing new ideas for developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Keting Dong
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xue Bai
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Miao Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Qian Du
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Lei Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
26
|
Li Y, Luo B, Lin X, Bai D, Li L, Gao D, Li X, Zhong X, Wei Y, Yang L, Zhu X, Han L, Tian H, Zhang R, Wang P. 20(R)-Panaxatriol enhances METTL3-mediated m 6A modification of STUB1 to inhibit autophagy and exert antitumor effects in Triple-Negative Breast Cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155537. [PMID: 38823344 DOI: 10.1016/j.phymed.2024.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Aberrant activation of autophagy in triple-negative breast cancer (TNBC) has led researchers to investigate potential therapeutic strategies targeting this process. The regulation of autophagy is significantly influenced by METTL3. Our previous research has shown that the Panax ginseng-derived compound, 20(R)-panaxatriol (PT), has potential as an anti-tumor agent. However, it remains unclear whether PT can modulate autophagy through METTL3 to exert its anti-tumor effects. OBJECTIVE Our objective is to investigate whether PT can regulate autophagy in TNBC cells and elucidate the molecular mechanisms. STUDY DESIGN For in vitro experiments, we employed SUM-159-PT and MDA-MB-231 cells. While in vivo experiments involved BALB/c nude mice and NOD/SCID mice. METHODS In vitro, TNBC cells were treated with PT, and cell lines with varying expression levels of METTL3 were established. We assessed the impact on tumor cell activity and autophagy by analyzing autophagic flux, Western Blot (WB), and methylation levels. In vivo, subcutaneous transplantation models were established in BALB/c nude and NOD/SCID mice to observe the effect of PT on TNBC growth. HE staining and immunofluorescence were employed to analyze histopathological changes in tumor tissues. MeRIP-seq and dual-luciferase reporter gene assays were used to identify key downstream targets. Additionally, the silencing of STIP1 Homology And U-Box Containing Protein 1 (STUB1) explored PT's effects. The mechanism of PT's action on STUB1 via METTL3 was elucidated through mRNA stability assays, mRNA alternative splicing analysis, and nuclear-cytoplasmic mRNA separation. RESULTS In both in vivo and in vitro experiments, it was discovered that PT significantly upregulates the expression of METTL3, leading to autophagy inhibition and therapeutic effects in TNBC. Simultaneously, through MeRIP-seq analysis and dual-luciferase reporter gene assays, we have demonstrated that PT modulates STUB1 via METTL3, influencing autophagy in TNBC cells. Furthermore, intriguingly, PT extends the half-life of STUB1 mRNA by enhancing its methylation modification, thereby enhancing its stability. CONCLUSION In summary, our research reveals that PT increases STUB1 m6A modification through a METTL3-mediated mechanism in TNBC cells, inhibiting autophagy and further accentuating its anti-tumor properties. Our study provides novel mechanistic insights into TNBC pathogenesis and potential drug targets for TNBC.
Collapse
Affiliation(s)
- Yan Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xuan Lin
- The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan 528000, PR China
| | - Donghui Bai
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Lingyu Li
- Cancer Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong,510630, PR China; College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Duan Gao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xianxun Zhong
- The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan 528000, PR China
| | - Yaru Wei
- The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan 528000, PR China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong,510630, PR China; College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong,510630, PR China
| | - Li Han
- First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, PR China.
| | - Ronghua Zhang
- Cancer Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong,510630, PR China; College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China.
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong,510630, PR China; First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
27
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Towner RA, Dissanayake R, Ahmed M. Clinical Advances in Triple Negative Breast Cancer Treatment: Focus on Poly (L-lactide-coglycolide) Nanoparticles. J Pharmacol Exp Ther 2024; 390:53-64. [PMID: 38580448 DOI: 10.1124/jpet.123.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer and is associated with high probability of metastasis and poor prognosis. Chemotherapeutics and surgery remain the most common options for TNBC patients; however, chemotherapeutic resistance and relapse of tumors limit the progression free survival and patient life span. This review provides an overview of recent chemotherapeutics that are in clinical trial, and the combination of drugs that are being investigated to overcome the drug resistance and to improve patient survival in different molecular subtypes of TNBCs. Nanotherapeutics have emerged as a promising platform for TNBC treatment and aim to improve the selectivity and solubility of drugs, reduce systemic side effects, and overcome multi-drug resistance. The study explores the role of nanoparticles for TNBC treatment and summarizes the types of nanoparticles that are in clinical trials. Poly(L-lactide-co-glycolide) (PLGA) is the most studied polymeric carrier for drug delivery and for TNBC treatment in research and in clinics. This review is about providing recent advancements in PLGA nanotherapeutic formulations and their application to help treat TNBC. Some background on current chemotherapies and pathway inhibitors is provided so that the readers are aware of what is currently considered for TNBC. Some of the pathway inhibitors may also be of importance for nanotherapeutics development. SIGNIFICANCE STATEMENT: This minireview summarizes the progress on chemotherapeutics and nanoparticle delivery for treatment of TNBC and specifically highlights the lead compounds that are in clinical trials.
Collapse
Affiliation(s)
- Rheal A Towner
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Ranga Dissanayake
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
29
|
Huang S, Xu Z, Zhi W, Li Y, Hu Y, Zhao F, Zhu X, Miao M, Jia Y. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer. J Nanobiotechnology 2024; 22:324. [PMID: 38858692 PMCID: PMC11163783 DOI: 10.1186/s12951-024-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China.
| | - Zhiling Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Weiwei Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yijing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| |
Collapse
|
30
|
Wang H, Zhang N, Sun Q, Zhao Z, Pang H, Huang X, Zhang R, Kang W, Shan M. Comparison of the efficacy of taxanes with carboplatin and anthracyclines with taxanes in neoadjuvant chemotherapy for stage II-III triple negative breast cancer: a retrospective analysis. J Cancer Res Clin Oncol 2024; 150:291. [PMID: 38836955 PMCID: PMC11153300 DOI: 10.1007/s00432-024-05738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE The neoadjuvant chemotherapy (NACT) regimen for triple negative breast cancer (TNBC) primarily consists of anthracyclines and taxanes, and the addition of platinum-based drugs can further enhance the efficacy. However, it is also accompanied by more adverse events, and considering the potential severe and irreversible toxicity of anthracyclines, an increasing number of studies are exploring nonanthracycline regimens that combine taxanes and platinum-based drugs. METHODS The retrospective study included 273 stage II-III TNBC patients who received NACT. The AT group, consisting of 195 (71.4%) patients, received a combination of anthracyclines and taxanes, while the TCb group, consisting of 78 (28.6%) patients, received a combination of taxanes and carboplatin. Logistic regression analysis was performed to evaluate the factors influencing pathological complete response (pCR) and residual cancer burden (RCB). The log-rank test was used to assess the differences in event-free survival (EFS) and overall survival (OS) among the different treatment groups. Cox regression analysis was conducted to evaluate the factors influencing EFS and OS. RESULTS After NACT and surgery, the TCb group had a higher rate of pCR at 44.9%, as compared to the AT group at 31.3%. The difference between the two groups was 13.6% (OR = 0.559, 95% CI 0.326-0.959, P = 0.035). The TCb group had a 57.7% rate of RCB 0-1, which was higher than the AT group's rate of 42.6%. The difference between the two groups was 15.1% (OR = 0.543, 95% CI 0.319-0.925, P = 0.024), With a median follow-up time of 40 months, the TCb group had better EFS (log-rank, P = 0.014) and OS (log-rank, P = 0.040) as compared to the AT group. Clinical TNM stage and RCB grade were identified as independent factors influencing EFS and OS, while treatment group was identified as an independent factor influencing EFS, with a close-to-significant impact on OS. CONCLUSION In stage II-III triple TNBC patients, the NACT regimen combining taxanes and carboplatin yields higher rates of pCR and significant improvements in EFS and OS as compared to the regimen combining anthracyclines and taxanes.
Collapse
Affiliation(s)
- Huibo Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Nana Zhang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Qi Sun
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ziqi Zhao
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Hui Pang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xiatian Huang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ruifeng Zhang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wenli Kang
- Beidahuang Group General Hospital, 235 Hashuang Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Ming Shan
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
31
|
Battogtokh G, Obidiro O, Akala EO. Recent Developments in Combination Immunotherapy with Other Therapies and Nanoparticle-Based Therapy for Triple-Negative Breast Cancer (TNBC). Cancers (Basel) 2024; 16:2012. [PMID: 38893132 PMCID: PMC11171312 DOI: 10.3390/cancers16112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC), lacking specific receptors found in other breast cancer subtypes, poses significant treatment challenges due to limited therapeutic options. Therefore, it is necessary to develop novel treatment approaches for TNBC. In the last few decades, many attempts have been reported for alternative tools for TNBC treatment: immunotherapy, radiotherapy, targeted therapy, combination therapy, and nanotechnology-based therapy. Among them, combination therapy and nanotechnology-based therapy show the most promise for TNBC treatment. This review outlines recent advancements in these areas, highlighting the efficacy of combination therapy (immunotherapy paired with chemotherapy, targeted therapy, or radiotherapy) in both preclinical and clinical stages and nanotechnology-based therapies utilizing various nanoparticles loaded with anticancer agents, nucleic acids, immunotherapeutics, or CRISPRs in preclinical stages for TNBC treatment.
Collapse
Affiliation(s)
| | | | - Emmanuel O. Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA; (G.B.); (O.O.)
| |
Collapse
|
32
|
Lin S, Zhou M, Cheng L, Shuai Z, Zhao M, Jie R, Wan Q, Peng F, Ding S. Exploring the association of POSTN + cancer-associated fibroblasts with triple-negative breast cancer. Int J Biol Macromol 2024; 268:131560. [PMID: 38631570 DOI: 10.1016/j.ijbiomac.2024.131560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis. Cancer-associated fibroblasts (CAFs) play a critical role in regulating TNBC tumor development. This study aimed to identify and characterize a specific subtype of CAFs associated with TNBC. Initially, using high-throughput bulk transcriptomic data in two cohorts, we identified three CAF-related subtypes (CS1, CS2, CS3) in TNBC samples. These three CAFs subtypes were closely linked to the tumor microenvironment. The CS1 subtype exhibited a relatively immune-rich microenvironment and a favourable prognosis, whereas the CS3 subtype displayed an immune-deprived tumor microenvironment and an unfavourable prognosis. Through WGCNA analysis, POSTN was identified as a key biomarker for CAFs associated with TNBC. Then, POSTN+CAFs was identified and characterized. Both POSTN and POSTN+CAFs showed significant positive correlations with stromal molecules HGF and MET at both the transcriptional and protein levels. Specifically co-localized with CAFs in the tumor stromal area, POSTN, produced by POSTN+CAFs, could modulate the HGF-MET axis, serving as a bypass activation pathway to regulate tumor cell proliferation in response to EGFR inhibitor and MET inhibitor. This study underscores the significance of POSTN and POSTN+CAFs as crucial targets for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Shuangyan Lin
- Department of Cell Biology and Department of Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhugan Lane, Hangzhou 310000, Zhejiang, China; Department of Pathology, Zhejiang Hospital, Zhejiang University School of Medicine, 12 Lingyin Rd, Hangzhou 310013, Zhejiang, China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, 38 Xihu Rd, Hangzhou 310009, Zhejiang, China
| | - Liying Cheng
- Jiaxing University Medical College, 899 Shiguang Rd, Jiaxing 314001, Zhejiang, China
| | - Zhifeng Shuai
- Department of Pathology, Zhejiang Hospital, 12 Lingyin Rd, Hangzhou 310013, Zhejiang, China
| | - Mingyuan Zhao
- Department of Pathology, Zhejiang Hospital, 12 Lingyin Rd, Hangzhou 310013, Zhejiang, China
| | - Ruixia Jie
- Department of Pathology, Zhejiang Hospital, 12 Lingyin Rd, Hangzhou 310013, Zhejiang, China
| | - Qun Wan
- Department of Urinary Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, 12 Lingyin Rd, Hangzhou 310013, Zhejiang, China.
| | - Shiping Ding
- Department of Cell Biology and Department of Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 57 Zhugan Lane, Hangzhou 310000, Zhejiang, China; Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
33
|
Huang P, Wen F, Li Y, Li Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sci 2024; 344:122576. [PMID: 38492918 DOI: 10.1016/j.lfs.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YiShan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, Sichuan 610041, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
34
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
36
|
Gerosa R, De Sanctis R, Jacobs F, Benvenuti C, Gaudio M, Saltalamacchia G, Torrisi R, Masci G, Miggiano C, Agustoni F, Pedrazzoli P, Santoro A, Zambelli A. Cyclin-dependent kinase 2 (CDK2) inhibitors and others novel CDK inhibitors (CDKi) in breast cancer: clinical trials, current impact, and future directions. Crit Rev Oncol Hematol 2024; 196:104324. [PMID: 38462150 DOI: 10.1016/j.critrevonc.2024.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Aberrant cyclin-dependent kinase 2 (CDK2) activation has been identified as a main resistance mechanism to CDK4/6 inhibition in hormone-receptor positive (HR+) breast cancer. Additionally, consistent preclinical evidence states its crucial role in MYC and CCNE1 overexpressed cancer survival, such as triple-negative breast cancers (TNBC), thus representing an appealing and relatively unexplored target treatment opportunity. Despite emerging initial results of novel CDK2 inhibitors (CDK2i) activity, a comprehensive outcomes collection is currently absent from the scientific literature. We aim to provide an overview of ongoing clinical trials involving CDK2i in the context of metastatic breast cancer (mBC), either as monotherapy or in combination with other agents. The review extends beyond CDK2i to encompass novel emerging CDK4 inhibitors, combined CDK2/4/6 inhibitors, and the well-known pan-CDK inhibitors including those specifically directed at CDK2. Delving into the results, we critically appraise the observed clinical efficacy and offer valuable insights into their potential impact and future applications.
Collapse
Affiliation(s)
- Riccardo Gerosa
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Rita De Sanctis
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy.
| | - Flavia Jacobs
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Chiara Benvenuti
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Mariangela Gaudio
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Giuseppe Saltalamacchia
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy
| | - Rosalba Torrisi
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy
| | - Giovanna Masci
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy
| | - Chiara Miggiano
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Armando Santoro
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| | - Alberto Zambelli
- Humanitas University, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele 20090, Italy; Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Via Manzoni 56, Milan, Rozzano 20089, Italy
| |
Collapse
|
37
|
Zheng C, Yao H, Lu L, Li H, Zhou L, He X, Xu X, Xia H, Ding S, Yang Y, Wang X, Wu M, Xue L, Chen S, Peng X, Cheng Z, Wang Y, He G, Fu S, Keller ET, Liu S, Jiang YZ, Deng X. Dysregulated Ribosome Biogenesis Is a Targetable Vulnerability in Triple-Negative Breast Cancer: MRPS27 as a Key Mediator of the Stemness-inhibitory Effect of Lovastatin. Int J Biol Sci 2024; 20:2130-2148. [PMID: 38617541 PMCID: PMC11008279 DOI: 10.7150/ijbs.94058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongqi Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojun Peng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
38
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
39
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
40
|
Zhang C, Tang S, Wang M, Li L, Li J, Wang D, Mi X, Zhang Y, Tan X, Yue S. "Triple-Punch" Strategy Exosome-Mimetic Nanovesicles for Triple Negative Breast Cancer Therapy. ACS NANO 2024. [PMID: 38335265 DOI: 10.1021/acsnano.3c10568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant breast cancer, with high rates of relapse and metastasis. Because of the nonspecific targeting of chemotherapy and insurmountable aggressiveness, TNBC therapy lacks an effective strategy. Exosomes have been reported as an efficient drug delivery system (DDS). CD82 is a tumor metastasis inhibitory molecule that is enriched in exosomes. Aptamer AS1411 specifically targets TNBC cells due to its high expression of nucleolin. We generated a "triple-punch" cell membrane-derived exosome-mimetic nanovesicle system that integrated with CD82 overexpression, AS1411 conjugation, and doxorubicin (DOX) delivery. CD82 enrichment effectively inhibits the migration of TNBC cells. AS1411 conjugation specifically targets TNBC cells. DOX loading effectively inhibits proliferation and induces apoptosis of TNBC cells. Our results demonstrate a system of exosome-mimetic nanovesicles with "triple-punch" that may facilitate TNBC therapeutics.
Collapse
Affiliation(s)
- Chenhong Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuangshuang Tang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Meilin Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Luhan Li
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Li
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
41
|
Tan X, Kong D, Tao Z, Cheng F, Zhang B, Wang Z, Mei Q, Chen C, Wu K. Simultaneous inhibition of FAK and ROS1 synergistically repressed triple-negative breast cancer by upregulating p53 signalling. Biomark Res 2024; 12:13. [PMID: 38273343 PMCID: PMC10809663 DOI: 10.1186/s40364-024-00558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking effective targeted therapies, necessitating innovative treatment approaches. While targeting ROS proto-oncogene 1 (ROS1) with crizotinib has shown promise, resistance remains a limitation. Recent evidence links focal adhesion kinase (FAK) to drug resistance, prompting our study to assess the combined impact of FAK inhibitor IN10018 and crizotinib in TNBC and elucidate the underlying mechanisms. METHODS We employed the Timer database to analyze FAK and ROS1 mRNA levels in TNBC and adjacent normal tissues. Furthermore, we investigated the correlation between FAK, ROS1, and TNBC clinical prognosis using the GSE database. We conducted various in vitro assays, including cell viability, colony formation, flow cytometry, EdU assays, and western blotting. Additionally, TNBC xenograft and human TNBC organoid models were established to assess the combined therapy's efficacy. To comprehensively understand the synergistic anti-tumor mechanisms, we utilized multiple techniques, such as RNA sequencing, immunofluorescence, cell flow cytometry, C11-BODIPY staining, MDA assay, and GSH assay. RESULTS The Timer database revealed higher levels of FAK and ROS1 in TNBC tissues compared to normal tissues. Analysis of GEO databases indicated that patients with high FAK and ROS1 expression had the poorest prognosis. Western blotting confirmed increased p-FAK expression in crizotinib-resistant TNBC cells. In vitro experiments showed that the combination therapy down-regulated cyclin B1, p-Cdc2, and Bcl2 while up-regulating BAX, cleaved-Caspase-3, cleaved-Caspase-9, and cleaved PARP. In TNBC xenograft models, the tumor volume in the combination therapy group was 73% smaller compared to the control group (p < 0.0001). Additionally, the combination therapy resulted in a 70% reduction in cell viability in human TNBC organoid models (p < 0.0001). RNA sequencing analysis of TNBC cells and xenograft tumor tissues highlighted enrichment in oxidative stress, glutathione metabolism, and p53 pathways. The combined group displayed a fivefold rise in the reactive oxygen species level, a 69% decrease in the GSH/GSSG ratio, and a sixfold increase in the lipid peroxidation in comparison to the control group. Western blotting demonstrated p53 upregulation and SCL7A11 and GPX4 downregulation in the combination group. The addition of a p53 inhibitor reversed these effects. CONCLUSION Our study demonstrates that the combination of IN10018 and crizotinib shows synergistic antitumor effects in TNBC. Mechanistically, this combination inhibits cell proliferation, enhances apoptosis, and induces ferroptosis, which is associated with increased p53 levels.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, China
| | - Zhuoli Tao
- Department of Breast and Thyroid Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangling Cheng
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
42
|
Huang M, Yu X, Wang Q, Jiang Z, Li X, Chen W, Song C. The immune checkpoint TIGIT/CD155 promotes the exhaustion of CD8 + T cells in TNBC through glucose metabolic reprogramming mediated by PI3K/AKT/mTOR signaling. Cell Commun Signal 2024; 22:35. [PMID: 38216949 PMCID: PMC10785424 DOI: 10.1186/s12964-023-01455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The CD155/TIGIT axis has attracted considerable interest as an emerging immune checkpoint with potential applications in cancer immunotherapy. Our research focused on investigating the role of CD155/TIGIT checkpoints in the progression of triple-negative breast cancer (TNBC). METHODS We evaluated CD155 and TIGIT expression in TNBC tissues using both immunohistochemistry (IHC) and gene expression profiling. Our experiments, both in vivo and in vitro, provided evidence that inhibiting the CD155/TIGIT pathway reinstates the ability of CD8 + T cells to generate cytokines. To assess the impact of CD155/TIGIT signaling blockade, we utilized Glucose Assay Kits and Lactate Assay Kits to measure alterations in glucose and lactate levels within CD8 + T cells. We employed western blotting (WB) to investigate alterations in glycolytic-related proteins within the PI3K/AKT/mTOR pathways following the inhibition of CD155/TIGIT signaling. RESULTS CD155 exhibits heightened expression within TNBC tissues and exhibits a negative correlation with the extent of infiltrating CD8 + T cells. Furthermore, patients with TNBC demonstrate elevated levels of TIGIT expression. Our findings indicate that the interaction between CD155 and TIGIT disrupts the glucose metabolism of CD8 + T cells by suppressing the activation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the reduced production of cytokines by CD8 + T cells. Both in vivo and in vitro experiments have conclusively demonstrated that the inhibition of CD155/TIGIT interaction reinstates the capacity of CD8 + T cells to generate cytokines. Moreover, in vivo administration of the blocking antibody against TIGIT not only inhibits tumor growth but also augments the functionality of CD8 + T lymphocytes. CONCLUSIONS Our research findings strongly suggest that CD155/TIGIT represents a promising therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Xiaoqin Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qing Wang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Zirong Jiang
- Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Xiaofen Li
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China
| | - Wei Chen
- Department of Oncology Surgery, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350011, China.
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
43
|
Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang Z, Wang L, Tian X, Chen J, Hu C, Xue J, Ma L, Shimura T, Fang J, Ying J, Guo P, Cheng X. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J Hematol Oncol 2024; 17:1. [PMID: 38178200 PMCID: PMC10768262 DOI: 10.1186/s13045-023-01509-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treatment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously conducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the current status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medicines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide prominent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination therapy in clinical practice.
Collapse
Affiliation(s)
- Qing Wei
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Peijing Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiayu Zhu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Sun
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziwen Zhang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Lu Wang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefei Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
- College of Molecular Medicine, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiahui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Letao Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Peng Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Xiangdong Cheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
44
|
Quan C, Wu Z, Xiong J, Li M, Fu Y, Su J, Wang Y, Ning L, Zhang D, Xie N. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation. Exp Hematol Oncol 2023; 12:100. [PMID: 38037159 PMCID: PMC10687910 DOI: 10.1186/s40164-023-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.
Collapse
Affiliation(s)
- Chuntao Quan
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology, Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Zhijie Wu
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Juan Xiong
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Manqing Li
- Public Health School of Sun Yat-Sen University, Guangzhou, 510182, People's Republic of China
| | - Yu Fu
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, 518035, People's Republic of China
| | - Jiaying Su
- Laboratory Department, Shenzhen Baoan People's Hospital, Second Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Yue Wang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Deju Zhang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
45
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Tarekegn K, Keskinkilic M, Kristoff TJ, Evans ST, Kalinsky K. The role of immune checkpoint inhibition in triple negative breast cancer. Expert Rev Anticancer Ther 2023; 23:1095-1106. [PMID: 37771270 DOI: 10.1080/14737140.2023.2265059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Immunotherapy has revolutionized cancer treatment, including TNBC, which has limited options of treatment and poor prognosis. ICIs studied in TNBC include pembrolizumab, nivolumab, atezolizumab, and durvalumab. Initial studies exploring ICI monotherapy demonstrated promising yet limited responses. Subsequent studies, KEYNOTE 522 and KEYNOTE 355, which combined ICI with chemotherapy, have resulted in the FDA approval of pembrolizumab in the early-stage and metastatic setting, respectively. AREAS COVERED This article provides a comprehensive review of the role of ICI in the treatment of TNBC. We reviewed the trials that have evaluated ICI monotherapy, dual therapy, ICI in combination with chemotherapy, targeted therapy, vaccines and radiation. Additionally, we reviewed potential biomarkers of response and immune-related adverse events (irAEs). A literature search was conducted via PubMed and ClinicalTrials.gov as of 5 June 2023. EXPERT OPINION Various approaches combining immunotherapy with chemotherapy, targeted therapy, vaccines and radiation have been assessed. Pembrolizumab remains the only ICI approved in both the early stage and mTNBC. The role of adjuvant pembrolizumab in those who achieved pCR after neoadjuvant therapy is being investigated. Combining ICI with PARP inhibitors and radiation shows promise. More research is needed in identifying predictors of response. Monitoring of irAEs remains crucial.
Collapse
Affiliation(s)
- Kidist Tarekegn
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Merve Keskinkilic
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | | | - Sean T Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|