1
|
Zhuang T, Zhang S, Liu D, Li Z, Li X, Li J, Yang P, Zhang C, Cui J, Fu M, Shen F, Yuan L, Zhang Z, Su P, Zhu J, Yang H. USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. J Exp Clin Cancer Res 2024; 43:249. [PMID: 39215346 PMCID: PMC11365244 DOI: 10.1186/s13046-024-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in women globally. Over-activated estrogen receptor (ER) α signaling is considered the main factor in luminal breast cancers, which can be effectively managed with selective estrogen receptor modulators (SERMs) like tamoxifen. However, approximately 30-40% of ER + breast cancer cases are recurrent after tamoxifen therapy. This implies that the treatment of breast cancer is still hindered by resistance to tamoxifen. Recent studies have suggested that post-translational modifications of ERα play a significant role in endocrine resistance. The stability of both ERα protein and its transcriptome is regulated by a balance between E3 ubiquitin ligases and deubiquitinases. According to the current knowledge, approximately 100 deubiquitinases are encoded in the human genome, but it remains unclear which deubiquitinases play a critical role in estrogen signaling and endocrine resistance. Thus, decoding the key deubiquitinases that significantly impact estrogen signaling, including the control of ERα expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS We used several ER positive breast cancer cell lines, DUB siRNA library screening, xenograft models, endocrine-resistant (ERα-Y537S) model and performed immunoblotting, real time PCR, RNA sequencing, immunofluorescence, and luciferase activity assay to investigate the function of USP36 in breast cancer progression and tamoxifen resistance. RESULTS In this study, we identify Ubiquitin-specific peptidase 36 (USP36) as a key deubiquitinase involved in ERα signaling and the advancement of breast cancer by deubiquitinases siRNA library screening. In vitro and in vivo studies showed that USP36, but not its catalytically inactive mutant (C131A), could promote breast cancer progression through ERα signaling. Conversely, silencing USP36 inhibited tumorigenesis. In models resistant to endocrine therapy, silencing USP36 destabilized the resistant form of ERα (Y537S) and restored sensitivity to tamoxifen. Molecular studies indicated that USP36 inhibited K48-linked polyubiquitination of ERα and enhanced the ERα transcriptome. It is interesting to note that our results suggest USP36 as a novel biomarker for treatment of breast cancer. CONCLUSION Our study revealed the possibility that inhibiting USP36 combined with tamoxifen could provide a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Dongyi Liu
- Department of Anaesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiaoyan Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiayao Cui
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Fangyu Shen
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Lei Yuan
- School of International Education, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Zhao Zhang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| | - Jian Zhu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China.
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, P.R. China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
| |
Collapse
|
2
|
Yang P, Yang X, Wang D, Yang H, Li Z, Zhang C, Zhang S, Zhu J, Li X, Su P, Zhuang T. PSMD14 stabilizes estrogen signaling and facilitates breast cancer progression via deubiquitinating ERα. Oncogene 2024; 43:248-264. [PMID: 38017133 PMCID: PMC10798890 DOI: 10.1038/s41388-023-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
The over-activation of ERα signaling is regarded as the major driver for luminal breast cancers, which could be effective controlled via selective estrogen receptor modulators (SERM), such as tamoxifen. The endocrine resistance is still a challenge for breast cancer treatment, while recently studies implicate the post-translational modification on ERα play important roles in endocrine resistance. The stability of ERα protein and ERα transcriptome are subject to a balance between E3 ubiquitin ligases and deubiquitinases. Through deubiquitinases siRNA library screening, we discover PSMD14 as a critical deubiquitinase for ERα signaling and breast cancer progression. PSMD14 could facilitate breast cancer progression through ERα signaling in vitro and in vivo, while pharmaceutical inhibition of PSMD14 via Thiolutin could block the tumorigenesis in breast cancer. In endocrine resistant models, PSMD14 inhibition could de-stabilize the resistant form of ERα (Y537S) and restore tamoxifen sensitivity. Molecular studies reveal that PSMD14 could inhibition K48-linked poly-ubiquitination on ERα, facilitate ERα transcriptome. Interestingly, ChIP assay shows that ERα could bind to the promoter region of PSMD14 and facilitate its gene transcription, which indicates PSMD14 is both the upstream modulator and downstream target for ERα signaling in breast cancer. In general, we identified a novel positive feedback loop between PSMD14 and ERα signaling in breast cancer progression, while blockade of PSMD14 could be a plausible strategy for luminal breast cancer.
Collapse
Affiliation(s)
- Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiao Yang
- Department of Laboratory Medicine, Xinxiang Central Hospital, Xinxiang, 453003, Henan Province, PR China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China.
| | - Xin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China.
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
3
|
Riege D, Herschel S, Fenkl T, Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol Transl Sci 2023; 6:1574-1599. [PMID: 37974621 PMCID: PMC10644459 DOI: 10.1021/acsptsci.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.
Collapse
Affiliation(s)
- Daniel Riege
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sven Herschel
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Teresa Fenkl
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular
Research, 24105 Kiel, Germany
| |
Collapse
|
4
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Dong L, Xu M, Li Y, Xu W, Wu C, Zheng H, Xiao Z, Sun G, Ding L, Li X, Li W, Zhou L, Xia Q. SMURF1 attenuates endoplasmic reticulum stress by promoting the degradation of KEAP1 to activate NRF2 antioxidant pathway. Cell Death Dis 2023; 14:361. [PMID: 37316499 PMCID: PMC10267134 DOI: 10.1038/s41419-023-05873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Cancer cells consistently utilize the unfolded protein response (UPR) to encounter the abnormal endoplasmic reticulum (ER) stress induced by the accumulation of misfolded proteins. Extreme activation of the UPR could also provoke maladaptive cell death. Previous reports have shown that NRF2 antioxidant signaling is activated by UPR and serves as noncanonical pathway to defense and reduce excessive ROS levels during ER stress. However, the mechanisms of regulating NRF2 signaling upon ER stress in glioblastoma have not been fully elucidated. Here we identify that SMURF1 protects against ER stress and facilitates glioblastoma cell survival by rewiring KEAP1-NRF2 pathway. We show that ER stress induces SMURF1 degradation. Knockdown of SMURF1 upregulates IRE1 and PERK signaling in the UPR pathway and prevents ER-associated protein degradation (ERAD) activity, leading to cell apoptosis. Importantly, SMURF1 overexpression activates NRF2 signaling to reduce ROS levels and alleviate UPR-mediated cell death. Mechanistically, SMURF1 interacts with and ubiquitinates KEAP1 for its degradation (NRF2 negative regulator), resulting in NRF2 nuclear import. Moreover, SMURF1 loss reduces glioblastoma cell proliferation and growth in subcutaneously implanted nude mice xenografts. Taken together, SMURF1 rewires KEAP1-NRF2 pathway to confer resistance to ER stress inducers and protect glioblastoma cell survival. ER stress and SMURF1 modulation may provide promising therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengchuan Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Li
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanting Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chengwei Wu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hanfei Zheng
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Xiao
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaobo Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Wenming Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Liying Zhou
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Qin Xia
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
6
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
7
|
The ubiquitin ligase RNF2 stabilizes ERα and modulates breast cancer progression. Hum Cell 2023; 36:353-365. [PMID: 36271315 DOI: 10.1007/s13577-022-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Estrogen receptor α (ERα) is the most common clinical marker used for breast cancer prognosis and the classification of breast cancer subtypes. Clinically, patients with estrogen receptor-positive breast cancer can receive endocrine therapy. However, resistance to endocrine therapy has become an urgent clinical problem. A large number of previous studies have proven that posttranslational modification of the estrogen receptor is significantly related to endocrine therapy resistance. RNF2 is a member of the RING finger protein family that functions as an E3 ubiquitin ligase. Several studies have clarified that RNF2 is a critical regulator of ERα transcriptional regulation. In our current study, we identified RNF2 as an important posttranslational modification regulator of the estrogen receptor. RNF2 depletion inhibited breast cancer cell progression and ERα signaling activity. TCGA data analysis indicated that RNF2 was elevated in breast malignancies, while RNF2 depletion could drastically inhibit estrogen response gene expression on a whole-genome scale. TCGA data analysis revealed that RNF2 was positively correlated with ERα target gene expression. Further mechanistic studies showed that RNF2 was mainly localized in the nucleus and associated with ERα. The association increased ERα stability by inhibiting ERα K48-linked polyubiquitination. In conclusion, our study implicates nongenomic regulation by RNF2 on ERα protein stability and suggests that targeting RNF2 could be a promising strategy for breast cancer treatments.
Collapse
|
8
|
Yang H, Xue M, Su P, Zhou Y, Li X, Li Z, Xia Y, Zhang C, Fu M, Zheng X, Luo G, Wei T, Wang X, Ding Y, Zhu J, Zhuang T. RNF31 represses cell progression and immune evasion via YAP/PD-L1 suppression in triple negative breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:364. [PMID: 36581998 PMCID: PMC9801641 DOI: 10.1186/s13046-022-02576-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently genome-based studies revealed that the abnormality of Hippo signaling is pervasive in TNBC and played important role in cancer progression. RING finger protein 31 (RNF31) comes to RING family E3 ubiquitin ligase. Our previously published studies have revealed RNF31 is elevated in ER positive breast cancer via activating estrogen signaling and suppressing P53 pathway. METHODS We used several TNBC cell lines and xenograft models and performed immuno-blots, QPCR, in vivo studies to investigate the function of RNF31 in TNBC progression. RESULT Here, we demonstrate that RNF31 plays tumor suppressive function in triple negative breast cancer (TNBC). RNF31 depletion increased TNBC cell proliferation and migration in vitro and in vitro. RNF31 depletion in TNBC coupled with global genomic expression profiling indicated Hippo signaling could be the potential target for RNF31 to exert its function. Further data showed that RNF31 depletion could increase the level of YAP protein, and Hippo signaling target genes expression in several TNBC cell lines, while clinical data illustrated that RNF31 expression correlated with longer relapse-free survival in TNBC patients and reversely correlated with YAP protein level. The molecular biology assays implicated that RNF31 could associate with YAP protein, facilitate YAP poly-ubiquitination and degradation at YAP K76 sites. Interestingly, RNF31 could also repress PDL1 expression and sensitive TNBC immunotherapy via inhibiting Hippo/YAP/PDL1 axis. CONCLUSIONS Our study revealed the multi-faced function of RNF31 in different subtypes of breast malignancies, while activation RNF31 could be a plausible strategy for TNBC therapeutics.
Collapse
Affiliation(s)
- Huijie Yang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Min Xue
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province People’s Republic of China
| | - Yan Zhou
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xin Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Zhongbo Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Yan Xia
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Chenmiao Zhang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Mingxi Fu
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Xiuxia Zheng
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Guosheng Luo
- grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Tian Wei
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xinxing Wang
- grid.412633.10000 0004 1799 0733Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052 People’s Republic of China
| | - Yinlu Ding
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Jian Zhu
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Ting Zhuang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China ,grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| |
Collapse
|
9
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
10
|
Dong L, Li Y, Liu L, Meng X, Li S, Han D, Xiao Z, Xia Q. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells 2022; 11:3302. [PMID: 36291166 PMCID: PMC9600526 DOI: 10.3390/cells11203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor suppressor PTEN mainly inhibits the PI3K/Akt pathway in the cytoplasm and maintains DNA stability in the nucleus. The status of PTEN remains therapeutic effectiveness for chemoresistance of the DNA alkylating agent temozolomide (TMZ) in glioblastoma (GB). However, the underlying mechanisms of PTEN's interconnected role in the cytoplasm and nucleus in TMZ resistance are still unclear. In this study, we report that TMZ-induced PTEN nuclear import depends on PTEN ubiquitylation modification by Smurf1. The Smurf1 suppression decreases the TMZ-induced PTEN nuclear translocation and enhances the DNA damage. In addition, Smurf1 degrades cytoplasmic PTEN K289E (the nuclear-import-deficient PTEN mutant) to activate the PI3K/Akt pathway under TMZ treatment. Altogether, Smurf1 interconnectedly promotes PTEN nuclear function (DNA repair) and cytoplasmic function (activation of PI3K/Akt pathway) to resist TMZ. These results provide a proof-of-concept demonstration for a potential strategy to overcome the TMZ resistance in PTEN wild-type GB patients by targeting Smurf1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Macías-Silva M, Sosa-Garrocho M, López-Camarillo C. Novel Breast Cancer Treatment by Targeting Estrogen Receptor-Alpha Stability Using Proteolysis-Targeting Chimeras (PROTACs) Technology. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-protacs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Luo G, Li Q, Yu M, Wang T, Zang Y, Liu Z, Niu Z, Yang H, Lai J. UHRF1 modulates breast cancer cell growth via estrogen signaling. Med Oncol 2022; 39:111. [PMID: 35666346 DOI: 10.1007/s12032-022-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The ubiquitination process, which involves that binding of an ubiquitin protein to certain substrates, regulates several human biological processes and human cancers. Several studies report that the abnormal expression of quite a few E3 ubiquitin ligases could play critical role in carcinogenic process and cancer progression. In our current study, we identify UHRF1 (Ubiquitin Like with PHD And Ring Finger Domain 1) is an important regulator for breast cancer growth. UHRF1 depletion significantly decreases breast cancer growth in vitro and in vivo. Clinical data analysis reveals that UHRF1 is dramatically elevated in breast cancer, compared to normal breast tissue. UHRF1 correlates with poor survival in luminal type of breast cancer patients, but not in ER-negative groups. The molecular biological studies show that UHRF1 localizes in the nuclear and interact with ERα via its SRA domain, which subsequently inhibits K48-linked ubiquitination of ERα and enhances ERα stability. Our study provides a novel function of UHRF1 in regulation estrogen signaling in breast cancer and a promising target for breast cancer therapeutics.
Collapse
Affiliation(s)
- Guosheng Luo
- School of Forensic Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- The Affiliated People's Hospital of Xinxiang Medical University, Henan Province, Xinxiang, 453003, People's Republic of China
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Quanhui Li
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Miao Yu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Tianshi Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yifeng Zang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Ziping Liu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, People's Republic of China.
| | - Jianghua Lai
- School of Forensic Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
13
|
Salifu SP, Doughan A. New Clues to Prognostic Biomarkers of Four Hematological Malignancies. J Cancer 2022; 13:2490-2503. [PMID: 35711821 PMCID: PMC9174851 DOI: 10.7150/jca.69274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/06/2022] [Indexed: 11/24/2022] Open
Abstract
Globally, one out of every two reported cases of hematologic malignancies (HMs) results in death. Each year approximately 1.24 million cases of HMs are recorded, of which 58% become fatal. Early detection remains critical in the management and treatment of HMs. However, this is thwarted by the inadequate number of reliable biomarkers. In this study, we mined public databases for RNA-seq data on four common HMs intending to identify novel biomarkers that could serve as HM management and treatment targets. A standard RNA-seq analysis pipeline was strictly adhered to in identifying differentially expressed genes (DEGs) with DESeq2, limma+voom and edgeR. We further performed gene enrichment analysis, protein-protein interaction (PPI) network analysis, survival analysis and tumor immune infiltration level detection on the genes using G:Profiler, Cytoscape and STRING, GEPIA tool and TIMER, respectively. A total of 2,136 highly-ranked DEGs were identified in HM vs. non-HM samples. Gene ontology and pathway enrichment analyses revealed the DEGs to be mainly enriched in steroid biosynthesis (5.075×10-4), cholesterol biosynthesis (2.525×10-8), protein binding (3.308×10-18), catalytic activity (2.158×10-10) and biogenesis (5.929×10-8). The PPI network resulted in 60 hub genes which were verified with data from TCGA, MET500, CPTAC and GTEx projects. Survival analyses with clinical data from TCGA showed that high expression of SRSF1, SRSF6, UBE2Z and PCF11, and low expression of HECW2 were correlated with poor prognosis in HMs. In summary, our study unraveled essential genes that could serve as potential biomarkers for prognosis and may serve as drug targets for HM management.
Collapse
Affiliation(s)
- Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Albert Doughan
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
14
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
15
|
Zhuang T, Wang B, Tan X, Wu L, Li X, Li Z, Cai Y, Fan R, Yang X, Zhang C, Xia Y, Niu Z, Liu B, Cao Q, Ding Y, Zhou Z, Huang Q, Yang H. TRIM3 facilitates estrogen signaling and modulates breast cancer cell progression. Cell Commun Signal 2022; 20:45. [PMID: 35392925 PMCID: PMC8991925 DOI: 10.1186/s12964-022-00861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. More than 70% of breast cancers are estrogen receptor (ER) alpha positive. Compared with ER alpha-negative breast cancer, which is more aggressive and has a shorter survival time, ER alpha-positive breast cancer could benefit from endocrine therapy. Selective estrogen receptor modulators, such as tamoxifen, are widely used in endocrine therapy. Approximately half of ER alpha-positive breast cancer patients will eventually develop endocrine resistance, making it a major clinical challenge in therapy. Thus, decoding the throughput of estrogen signaling, including the control of ER alpha expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS TRIM3 and ER alpha protein expression levels were measured by western blotting, while the mRNA levels of ER alpha target genes were measured by RT-PCR. A CCK-8 assay was used to measure cell viability. RNA sequencing data were analyzed by Ingenuity Pathway Analysis. Identification of ER alpha signaling activity was accomplished with luciferase assays, RT-PCR and western blotting. Protein stability assays and ubiquitin assays were used to detect ER alpha protein degradation. Ubiquitin-based immunoprecipitation assays were used to detect the specific ubiquitination modification on the ER alpha protein. RESULTS In our current study, we found that TRIM3, an E3 ligase, can promote ER alpha signaling activity and breast cancer progression. TRIM3 depletion inhibits breast cancer cell proliferation and migration, while unbiased RNA sequencing data indicated that TRIM3 is required for the activity of estrogen signaling on the -genome-wide scale. The immunoprecipitation assays indicated that TRIM3 associates with ER alpha and promotes its stability, possibly by inducing K63-linked polyubiquitination of ER alpha. In conclusion, our data implicate a nongenomic mechanism by which TRIM3 stabilizes the ER alpha protein to control ER alpha target gene expression linked to breast cancer progression. CONCLUSION Our study provides a novel posttranslational mechanism in estrogen signaling. Modulation of TRIM3 expression or function could be an interesting approach for breast cancer treatment. Video abstract.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Beibei Wang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Xiaojing Tan
- Department of Oncology, Dong Ying People' S Hospital, Dongying, Shandong Province, People's Republic of China
| | - Le Wu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yuqing Cai
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Rongrong Fan
- Department of Bioscience and Nutrition, Karolinska Institute, 14157, Huddinge, Sweden
| | - Xiao Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yan Xia
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Bingtian Liu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China
| | - Qi Cao
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, People's Republic of China.
| | - Zhipeng Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| | - Qingsong Huang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, People's Republic of China.
| |
Collapse
|
16
|
Mondal P, Tiwary N, Sengupta A, Dhang S, Roy S, Das C. Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer. Subcell Biochem 2022; 100:269-336. [PMID: 36301498 DOI: 10.1007/978-3-031-07634-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.
Collapse
Affiliation(s)
- Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Niharika Tiwary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sinjini Dhang
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
17
|
Han D, Li S, Xia Q, Meng X, Dong L. Overexpressed Smurf1 is degraded in glioblastoma cells through autophagy in a p62-dependent manner. FEBS Open Bio 2022; 12:118-129. [PMID: 34614303 PMCID: PMC8727935 DOI: 10.1002/2211-5463.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT)-type E3 ubiquitin ligase SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1) was originally identified to ubiquitinate Smad protein in the TGF-β/BMP signaling pathway. Recently, Smurf1 has been reported to promote tumorigenesis by regulating multiple biological processes. High expression of Smurf1 plays a vital role in brain tumor progression by mediating aberrant cell signaling pathways. Previous reports have shown that Smurf1 is degraded mainly through the ubiquitin-proteasome system, but it remains unclear whether Smurf1 is degraded by autophagy in tumor cells. In this study, we show that autophagy activators promote Smurf1 degradation in glioblastoma (GB) cells. The autophagy receptor p62 colocalizes with ubiquitinated substrates to promote sequestration of cytoplasm cargo into the autophagosome. We report that autophagic degradation of Smurf1 is dependent on p62. Moreover, the autophagic degradation of Smurf1 is prevented in the absence of the HECT domain or E3 ubiquitin ligase activity. We further proved that activation of autophagy leads to a decrease of Smurf1 and the inhibition of the phosphoinositide 3-kinase/protein kinase B signaling pathway in GB cells. Our results suggest that enhancement of autophagic degradation of Smurf1 may be a potential approach to treating GB.
Collapse
Affiliation(s)
- Da Han
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Shengzhen Li
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Qin Xia
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Xinyi Meng
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Lei Dong
- School of Life ScienceBeijing Institute of TechnologyChina
| |
Collapse
|
18
|
Liu Y, Su P, Zhao W, Li X, Yang X, Fan J, Yang H, Yan C, Mao L, Ding Y, Zhu J, Niu Z, Zhuang T. ZNF213 negatively controls triple negative breast cancer progression via Hippo/YAP signaling. Cancer Sci 2021; 112:2714-2727. [PMID: 33939216 PMCID: PMC8253295 DOI: 10.1111/cas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed malignancies worldwide, while the triple negative breast cancer (TNBC) is the most aggressive and virulent subtype in breast cancers. Compared with luminal type breast cancers, which could be well controlled by endocrine treatment, TNBC is worse in prognosis and lack of effective targeted therapy. Thus, it would be interesting and meaningful to identify novel therapeutic targets for TNBC treatments. Recent genomic data showed the activation of Hippo/YAP signaling in TNBC, indicating its critical roles in TNBC carcinogenesis and cancer progression. Hippo/YAP signaling could subject to several kinds of protein modifications, including ubiquitination and phosphorylation. Quite a few studies have demonstrated these modifications, which controlled YAP protein stability and turnover, played critical role in Hippo signaling activation In our current study, we identified ZNF213 as a negative modifier for Hippo/YAP axis. ZNF213 depletion promoted TNBC cell migration and invasion, which could be rescued by further YAP silencing. ZNF213 knocking down facilitated YAP protein stability and Hippo target gene expression, including CTGF and CYR61. Further mechanism studies demonstrated that ZNF213 associated with YAP and facilitated YAP K48-linked poly-ubiquitination at several YAP lysine sites (K252, K254, K321 and K497). Besides, the clinical data showed that ZNF213 negatively correlated with YAP protein level and Hippo target gene expression in TNBC samples. ZNF213 expression correlated with good prognosis in TNBC patients. Our data provided novel insights in YAP proteolytic regulation and TNBC progression.
Collapse
Affiliation(s)
- Yun Liu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Peng Su
- Department of PathologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wuchen Zhao
- School of International EducationXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Xiao Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Jianing Fan
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Huijie Yang
- Department of PharmacologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Cheng Yan
- School of MedicineXinxiang UniversityXinxiangChina
| | - Lanzhi Mao
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Yinlu Ding
- Department of General SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityShandong ProvinceChina
| | - Jian Zhu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Department of General SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityShandong ProvinceChina
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
- Henan Key Laboratory of immunology and targeted therapySchool of Laboratory MedicineHenan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineSchool of Laboratory MedicineXinxiang Medical UniversityXinxiang, Henan ProvinceChina
| |
Collapse
|
19
|
Ding J, Kuang P. Regulation of ERα Stability and Estrogen Signaling in Breast Cancer by HOIL-1. Front Oncol 2021; 11:664689. [PMID: 34094957 PMCID: PMC8173209 DOI: 10.3389/fonc.2021.664689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Estrogen receptor α (ERα) is the major driver for breast tumor carcinogenesis and progression, while ERα positive breast cancer is the major subtype in breast malignancies, which account for 70% breast cancers in patients. The success of endocrine therapy such as tamoxifen is one of the biggest breakthroughs in breast cancer treatments. However, the endocrine therapy resistance is a headache problem in breast cancer. Further mechanisms need to be identified to the effect of ERα signaling in controlling breast cancer progression and drug resistance. HOIL-1 was firstly identified as the ERα transcriptional co-activator in modulating estrogen signaling in breast cancer. In our current study, we showed that HOIL-1, which was elevated in breast cancer, related to good prognosis in ERα positive breast cancer, but correlated with poor outcome in endocrine-treated patients. HOIL-1 was required for ERα positive breast cancer proliferation and clone formation, which effect could be rescued by further ERα overexpression. Further mechanism studies showed that HOIL-1 is required for ERα signaling activity in breast cancer cells. HOIL-1 could interact with ERα in the cytosol and modulate ERα stability via inhibiting ERα K48-linked poly-ubiquitination. Thus, our study demonstrated a novel post-translational modification in ERα signaling, which could provide novel strategy for ERα-driven breast cancer therapy.
Collapse
Affiliation(s)
- Jianing Ding
- Department of Medicine, Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Peng Kuang
- Department of Medicine, Queen Mary School, Medical College of Nanchang University, Nanchang, China.,The Oncology Center, The First Affiliated Hospital of Nanchang University, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Yang H, Lv X, Li X, Mao L, Niu Z, Wang T, Zhuang T, Huang Q. ZNF213 Facilitates ER Alpha Signaling in Breast Cancer Cells. Front Oncol 2021; 11:638751. [PMID: 33777799 PMCID: PMC7987952 DOI: 10.3389/fonc.2021.638751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is the most common women malignancy worldwide, while estrogen receptor alpha positive type accounts for two third of all breast cancers. Although ER alpha positive breast cancer could be effectively controlled by endocrine therapy, more than half of the cases could develop endocrine resistance, making it an important clinical issue in breast cancer treatment. Thus, decoding the detailed mechanism, which controls ER alpha signaling activation and ER alpha protein stability, is of great importance for the improvement of breast cancer therapy. Several zinc finger proteins were shown to mediate the ubiquitination process and modulate protein stability. Thus, we further explore the function of Zinc finger protein 213 on ER alpha protein stability and tamoxifen resistance. Methods CCK8 and Edu assay was used to measure cell proliferation. RNA sequence was performed by Ingenuity pathway analysis. The ER alpha signaling activities were measured with luciferase assay, real-time quantitative PCR, and western blotting. Protein stability assay and ubiquitin assay were used to determine ER alpha protein degradation and ubiquitination. The immuno-precipitation was utilized to determine ER alpha and ZNF213 interaction. The ubiquitin-based immuno-precipitation assay was sued to detect specific ubiquitination manner on ER alpha. Results We identified ZNF213 as a novel zinc finger protein, which modulated ER alpha protein. ZNF213 expression correlated with poor outcome in endocrine treated patients. ZNF213 depletion inhibited ER alpha signaling and proliferation in breast cancer cells. Further mechanistic studies showed ZNF213 located in cytosol and nuclear, which modulated ER alpha stability via inhibiting ER alpha K48-linked ubiquitination. Conclusions Our study reveals an interesting post-translational mechanism between ER alpha and ZNF213 in breast cancer. Targeting ZNF213 could be an appealing strategy for ER alpha positive breast cancer.
Collapse
Affiliation(s)
- Huijie Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xulei Lv
- Department of Anesthesiology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lanzhi Mao
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zhiguo Niu
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ting Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qingsong Huang
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Abstract
BACKGROUND Beast cancer is the most common women cancer worldwide, while two third of them are ER alpha positive breast cancer. Among the ER alpha positive breast cancer, about 80% are P53 wild type, indicating the potential tumor suppression role in ER alpha positive breast cancer. Since P53 is an important safeguard to inhibit cell malignant transformation, reactivating P53 signaling could a plausible approach to treat breast cancer. METHODS TRIM3 protein levels were measured by western blot, while the P53 classical target genes were measured by real-time PCR. WST1 assay were used to measure cell proliferation, while cleaved caspase-3 was used to detect cell apoptosis. Protein stability and ubiquitin assay were used to detect the P53 protein ubiquitin and stability. The immuno-precipitation assays were used to detect the protein interactions. Immuno-staining was used to detect the protein localization of P53 and TRIM3, while the ubiquitin-based immuno-precipitation assays were used to detect the specific ubiquitination manner of P53. RESULTS In our study, we identified TRIM3 as an endogenous inhibitor for P53 signaling. TRIM3 depletion inhibited breast cancer cell proliferation and promoted apoptosis. In addition, TRIM3 depletion increased P53 protein level in breast cancer cell. Further investigation showed that TRIM3 could associate with P53 and promote P53 K48-linked ubiquitination and degradation. CONCLUSION Our study identified a novel post-translational modification mechanism between TRIM3 and P53. TRIM3 depletion or blockage could be a promising strategy to rescue P53 signaling and inhibit breast cancer progression.
Collapse
|
22
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
23
|
Niu Z, Li X, Feng S, Huang Q, Zhuang T, Yan C, Qian H, Ding Y, Zhu J, Xu W. The deubiquitinating enzyme USP1 modulates ERα and modulates breast cancer progression. J Cancer 2020; 11:6992-7000. [PMID: 33123289 PMCID: PMC7591989 DOI: 10.7150/jca.50477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide, while the luminal types (ERα positive) accounts for two third of all breast cancer cases. Although ERα positive breast cancer could be effective controlled by endocrine therapy, most of the patients will develop endocrine resistance, which becomes a headache clinical issue for breast cancer field. Endocrine resistance could be caused by multiple pathway disorders, the dys-regulation of ERα signaling might be a critical factor, which makes it urgent and important to reveal the potential molecular mechanism of ERα signaling. In our current study, we identified a new deubiquitination enzyme USP1 through screening the whole DUB (Deubiquitinases) siRNA library. The expression of USP1 is elevated in human breast cancer compared with normal mammary tissues. Importantly, USP1 expression levels are specially correlated with poor survival in ERα positive patients. USP1 depletion inhibited breast cancer cell progression and ERα signaling activity. Immuno-precipitation assays indicate that USP1 associates with ERα and promotes its stability possibly via inhibiting ERα K48-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by USP1 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Suyin Feng
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Cheng Yan
- School of Medicine, Xinxiang University, Xinxiang, 453003 Henan P.R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 250033
| | - Jian Zhu
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 250033.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
24
|
The ubiquitin ligase RNF181 stabilizes ERα and modulates breast cancer progression. Oncogene 2020; 39:6776-6788. [PMID: 32973333 PMCID: PMC7605433 DOI: 10.1038/s41388-020-01464-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
ERα positive breast cancer accounts for 70% of breast malignancies. Compared with ERα negative types, ERα positive breast cancer could be effective controlled by endocrine therapy. However, more than half of the patients will develop endocrine resistance, making it an important clinical issue for breast cancer therapy. Endocrine resistance might be caused by multiple alternations, including the components of ERα signaling, during tumor progression. Thus, it is urgent and necessary to uncover the molecular mechanisms that controls ERα expression and stability to improve breast cancer therapeutics. In our current study, we identifies that the ubiquitin ligase RNF181 stabilizes ERα and facilitates breast cancer progression. The expression of RNF181 is correlated with ERα level in human breast tumors and relates to poor survival in endocrine-treated patients. RNF181 depletion inhibits breast cancer progression in vivo and in vitro, reduces ERα protein level and its target gene expression, such as PS2 and GREB1. Unbiased RNA sequencing analysis indicates RNF181 is necessary for ERα signature gene expression in whole genomic level. Immuno-precipitation assays indicate that RNF181 associates with ERα and promotes its stability possibly via inducing ERα K63-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by RNF181 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.
Collapse
|
25
|
Zhou R, Ding Y, Xue M, Xiong B, Zhuang T. RNF181 modulates Hippo signaling and triple negative breast cancer progression. Cancer Cell Int 2020; 20:291. [PMID: 32655323 PMCID: PMC7339498 DOI: 10.1186/s12935-020-01397-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
Background Breast cancer ranks No. 1 in women cancer incidence, while triple negative breast cancer (TNBC) is the most aggressive and the worst prognostic subtype in all breast cancer subtypes. Compared with estrogen receptor alpha positive breast cancer, which could be well controlled by endocrine therapy, TNBC is lack of mature molecular targets for medical therapy. Thus, it is urgent and necessary to discovery the carcinogenic mechanism and potential therapeutic targets for TNBC. Recent studies reveal that Hippo/YAP signaling is an important mediator for TNBC progression. Our current study investigates the role of RING finger protein RNF181 in modulation Hippo/YAP signaling. Methods YAP and RN181 protein level were measured by western blot, while the Hippo classical target genes were measured by real-time PCR. WST1 assay were used to measure cell proliferation, the trans-well and wound healing were used to measure the cell migration and invasion capacity. Protein stability and ubiquitin assay were used to detect the YAP protein ubiquitin and stability. The immuno-precipitation assays were used to detect the protein interactions. Immuno-staining was used to detect the protein localization of YAP and RNF181, while the ubiquitin-based immuno-precipitation assays were used to detect the specific ubiquitination manner of YAP. Results Our current study identified a novel modulator-RNF181 as a positive mediator for Hippo/YAP signaling activation in TNBC. RNF181 depletion significantly inhibited TNBC cell migration, invasion and proliferation, which effect could be rescued by YAP overexpression. RNF181 depletion decreased YAP protein level and Hippo signaling target genes, such as CTGF and CYR61, in TNBC cell lines. Immuno-precipitation assay showed that RNF181 interact with YAP and promoted YAP stability by inhibition K48-linked poly-ubiquitination of YAP in TNBC cells. Besides, public available data showed that RNF181 is elevated in breast cancer and related to poor prognosis in TNBC patients. Conclusion Our study provides evidence to establish a non-proteolytic mechanism in modulating Hippo signaling in breast cancer. RNF181 could be an interesting marker for triple negative breast cancer prognostics and therapeutics.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei 430071 People's Republic of China
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong People's Republic of China
| | - Min Xue
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan People's Republic of China
| | - Bin Xiong
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei 430071 People's Republic of China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan People's Republic of China
| |
Collapse
|
26
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
27
|
TRIM11 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Neoplasia 2020; 22:343-351. [PMID: 32599554 PMCID: PMC7326724 DOI: 10.1016/j.neo.2020.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in female worldwide, over 70% of which are estrogen receptor α (ERα) positive. ERα has a crucial role in the initiation and progression of breast cancer and is an indicator of endocrine therapy, while endocrine resistance is an urgent problem in ER-positive breast cancer patients. In the present study, we identify a novel E3 ubiquitin ligase TRIM11 function to facilitate ERα signaling. TRIM11 is overexpressed in human breast cancer, and associates with poor prognosis. The protein level of TRIM11 is highly correlated with ERα. RNA-seq results suggest that ERα signaling may be an underlying target of TRIM11. Depletion of TRIM11 in breast cancer cells significantly decreases cell proliferation and migration. And the suppression effects can be reversed by overexpressing ERα. In addition, ERα protein level, ERα target genes expression and estrogen response element activity are also dramatically decreased by TRIM11 depletion. Further mechanistic analysis indicates that the RING domain of TRIM11 interacted with the N terminal of ERα in the cytoplasm and promotes its mono-ubiquitination, thus enhances ERα protein stability. Our study describes TRIM11 as a modulating factor of ERα and increases ERα stability via mono-ubiquitination. TRIM11 could be a promising therapeutic target for breast cancer treatment.
Collapse
|
28
|
Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci 2020; 133:133/7/jcs228072. [PMID: 32265230 DOI: 10.1242/jcs.228072] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases play a critical role in various cellular pathways, including but not limited to protein trafficking, subcellular localization, innate immune response, viral infections, DNA damage responses and apoptosis. To date, 28 HECT E3 ubiquitin ligases have been identified in humans, and recent studies have begun to reveal how these enzymes control various cellular pathways by catalyzing the post-translational attachment of ubiquitin to their respective substrates. New studies have identified substrates and/or interactors with different members of the HECT E3 ubiquitin ligase family, particularly for E6AP and members of the neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) family. However, there still remains many unanswered questions about the specific roles that each of the HECT E3 ubiquitin ligases have in maintaining cellular homeostasis. The present Review discusses our current understanding on the biological roles of the HECT E3 ubiquitin ligases in the cell and how they contribute to disease development. Expanded investigations on the molecular basis for how and why the HECT E3 ubiquitin ligases recognize and regulate their intracellular substrates will help to clarify the biochemical mechanisms employed by these important enzymes in ubiquitin biology.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054.,Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Diana Argiles-Castillo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| |
Collapse
|
29
|
Regulation of Hippo signaling and triple negative breast cancer progression by an ubiquitin ligase RNF187. Oncogenesis 2020; 9:36. [PMID: 32198343 PMCID: PMC7083878 DOI: 10.1038/s41389-020-0220-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most common malignancy for women worldwide, while Triple Negative Breast Cancer (TNBC) accounts for 20% in all patients. Compared with estrogen receptor positive breast cancer, which could be effectively controlled via endocrine therapy, TNBC is more aggressive and worse in prognosis. It is therefore urgent and necessary to develop a novel therapeutic strategy for TNBC treatment. Recent studies identified Hippo signaling is highly activated in TNBC, which could be a driving pathway for TNBC progression. In our study, we determine RNF187 as a negative regulator for Hippo signaling activation. RNF187 depletion significantly decreases cell migration and invasion capacity in TNBC. These effects could be rescued by further YAP depletion. Depletion of RNF187 increases the YAP protein level and Hippo signaling target genes, such as CTGF and CYR61 in TNBC. Immuno-precipitation assay shows that RNF187 associates with YAP, promoting its degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Interestingly, Our clinical data reveals that RNF187 reversely correlates with YAP protein level and Hippo target genes. RNF187 tends to correlate with good prognosis in TNBC patients. Our study provides evidence to establish a proteolytic mechanism in regulation Hippo signaling activation in TNBC.
Collapse
|
30
|
Liu Y, Ma H, Yao J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther 2020; 13:2183-2191. [PMID: 32210584 PMCID: PMC7073439 DOI: 10.2147/ott.s236532] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor α (ERα) is closely associated with both hormone-dependent and hormone-independent tumors, and it is also essential for the development of these cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those cancers that are closely associated with its expression. Here, we will elaborate on ERα based on its structure, localization, activation, modification, and mutation. Also, we will look at co-activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers related to its activation. A comprehensive understanding of ERα could help us to find new ways to treat cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
31
|
Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, Lin Z, Yang Y, Liu P, Huang H. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Br J Pharmacol 2020; 177:145-160. [PMID: 31465542 PMCID: PMC6976783 DOI: 10.1111/bph.14853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Nox4 is the major isoform of NADPH oxidase found in the kidney and contributes to the pathogenesis of diabetic nephropathy. However, the molecular mechanisms of increased Nox4 expression induced by hyperglycaemia remain to be elucidated. Here, the role of the connexin32-Nox4 signalling axis in diabetic nephropathy and its related mechanisms were investigated. EXPERIMENTAL APPROACH Diabetes was induced in mice by low-dose streptozotocin (STZ) combined with a high-fat diet. Effects of connexin32 on Nox4 expression and on renal function and fibrosis in STZ-induced diabetic mice were investigated using adenovirus-overexpressing connexin32 and connexin32-deficient mice. Interactions between connexin32 and Nox4 were analysed by co-immunoprecipitation and immunofluorescence assays. KEY RESULTS Connexin32 was down-regulated in the kidneys of STZ-induced diabetic mice. Overexpression of connexin32 reduced expression of Nox4 and improved renal function and fibrosis in diabetic mice, whereas connexin32 deficiency had opposite effects. Down-regulation of fibronectin expression by connexin32 was not dependent on gap junctional intercellular communication involving connexin32. Connexin32 interacted with Nox4 and reduced the generation of hydrogen peroxide, leading to the down-regulation of fibronectin expression. Mechanistically, connexin32 decreased Nox4 expression by promoting its K48-linked polyubiquitination. Interestingly, Smurf1 overexpression inhibited K48-linked polyubiquitination of Nox4. Furthermore, connexin32 interacted with Smurf1 and inhibited its expression. CONCLUSION AND IMPLICATIONS Connexin32 ameliorated renal fibrosis in diabetic mice by promoting K48-linked Nox4 polyubiquitination and degradation via inhibition of Smurf1 expression. Targeting the connexin32-Nox4 signalling axis may contribute to the development of novel treatments for diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Department of Pharmacology, School of PharmacyGuangxi Medical UniversityNanningChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohong Sun
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Qiuhong Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Lan
- Department of Pharmacology, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Kaipeng Huang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
33
|
Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, Hou J, Wang S, Gao C, Lv B, Yan Z, Chen Z, Zhu J, Wang L, Zhuang T, Li X. SHARPIN Inhibits Esophageal Squamous Cell Carcinoma Progression by Modulating Hippo Signaling. Neoplasia 2019; 22:76-85. [PMID: 31884247 PMCID: PMC6939053 DOI: 10.1016/j.neo.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer is one of the leading malignancies worldwide, while around sixty percent of newly diagnosed cases are in China. In recent years, genome-wide sequencing studies and cancer biology studies show that Hippo signaling functions a critical role in esophageal squamous cell carcinoma (ESCC) progression, which could be a promising therapeutic targets in ESCC treatment. However, the detailed mechanisms of Hippo signaling dys-regulation in ESCC remain not clear. Here we identify SHARPIN protein as an endogenous inhibitor for YAP protein. SHARPIN depletion significantly decreases cell migration and invasion capacity in ESCC, which effects could be rescued by further YAP depletion. Depletion SHARPIN increases YAP protein level and YAP/TEAD target genes, such as CTGF and CYR61 in ESCC. Immuno-precipitation assay shows that SHARPIN associates with YAP, promoting YAP degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Our study reveals a novel post-translational mechanism in modulating Hippo signaling in ESCC. Overexpression or activation of SHARPIN could be a promising strategy to target Hippo signaling for ESCC patients.
Collapse
Affiliation(s)
- Aijia Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhijun Chen
- Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Dan Pang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Xiaofeng Zhou
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Kui Lu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Sujie Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Benjie Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Ziyi Yan
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhen Chen
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research and State Key Laboratory for Esophageal Cancer Prevention & Treatment of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
34
|
Groppe JC. Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin Drug Discov 2019; 14:1237-1253. [DOI: 10.1080/17460441.2019.1660641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
35
|
Xue M, Zhang K, Mu K, Xu J, Yang H, Liu Y, Wang B, Wang Z, Li Z, Kong Q, Li X, Wang H, Zhu J, Zhuang T. Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56. Oncogenesis 2019; 8:30. [PMID: 31000690 PMCID: PMC6473003 DOI: 10.1038/s41389-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Breast cancer ranks no. 1 in women cancer worldwide, while 60–70% are estrogen receptor alpha positive. The estrogen selective modulators, such as tamoxifen, become the effective drugs for controlling ER alpha breast cancer progression. However, tamoxifen resistance will develop during long-time treatment and cancer progression. Thus, further understanding of ER alpha signaling becomes necessary for the improvement of breast cancer therapy. Here, we identify TRIM56 as a novel regulatory factor in ER alpha signaling. TRIM56 expression is positively correlated with ER alpha and PR in breast cancer samples and is related to poor prognosis in endocrine therapy patients. TRIM56 depletion significantly decreases ER alpha signaling activity and ER-alpha-positive breast cancer proliferation in vitro and in vivo. TRIM56 associates with AF1 domain of ER alpha via its WD40 domain in the cytoplasm. TRIM56 prolongs ER alpha protein stability, possibly through targeting ER alpha K63-linked ubiquitination. In conclusion, our study reveals an interesting posttranslational mechanism between TRIM56 and ER alpha in breast cancer progression. Targeting TRIM56 could be a promising approach for ER-alpha-positive breast cancer.
Collapse
Affiliation(s)
- Min Xue
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Kai Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, Jinan, Shandong, P.R. China
| | - Kun Mu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, P.R. China
| | - Juntao Xu
- Rhil Rivers Technology (Beijing) Ltd, Beijing, P.R. China.,Department of Cancer Genomics, LemonData Biotech (Shenzhen), Shenzhen, P.R. China
| | - Huijie Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, P.R. China
| | - Yun Liu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Beibei Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Zhonghao Wang
- School of Stomatology, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Zhongbo Li
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Qiong Kong
- School of International Education, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China.
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China. .,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China.
| |
Collapse
|
36
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells. Curr Drug Targets 2019; 20:690-704. [DOI: 10.2174/1389450119666181015114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiologia Celular. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| |
Collapse
|
37
|
Fan X, Wang Y, Fan J, Chen R. Deletion of SMURF 1 represses ovarian cancer invasion and EMT by modulating the DAB2IP/AKT/Skp2 feedback loop. J Cell Biochem 2019; 120:10643-10651. [PMID: 30672020 DOI: 10.1002/jcb.28354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
SMAD ubiquitination regulatory factor 1 (SMURF1) has been described as a tumor suppressor in multiple aggressive cancers. Nevertheless, the potential role of SMURF1 in ovarian cancer invasion and epithelial-to-mesenchymal transition (EMT) remains unclear. The aim of this study was to evaluate the efficacy of SMURF1 on tumor migration and EMT and elucidate the underlying molecular mechanism in ovarian carcinoma. We found elevated SMURF1 in several ovarian cancer cells in both messenger RNA and protein. Additionally, silencing SMURF1 apparently repressed cell proliferation and invasion capacity of SKOV3 and A2780 cells and markedly attenuated expression of linked proteins such as proliferating cellnuclear antigen, matrix metalloproteinase (MMP)-2, and MMP-9. Furthermore, depletion of SMURF1 dramatically impeded EMT progress by modulating EMT biomarkers, with a notable increase in E-cadherin expression accompanied by the decrease in N-cadherin and vimentin in both SKOV3 and A2780 cells. Interestingly, elimination of SMURF1 led to disabled homolog 2 DOC-2/DAB2 interacting protein (DAB2IP) activation and dampened AKT/Skp2 signaling. Most important, depleted of DAB2IP or treatment with the AKT agonist 740Y-P effectively abolished the suppressive effects of SMURF1 knockout on cell invasiveness and EMT process. Taken all data together, these findings demonstrated that the absence of SMURF1 repressed cell proliferation, invasive capability, and EMT process in ovarian cancer through DAB2IP/AKT/Skp2 signaling loops, suggesting that SMURF1 may serve as a new potential therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Xiuhua Fan
- Department of Gynecology, No. 731 Hospital of China Aerospace Science & Industry Corporation, Beijing, People's Republic of China
| | - Yan Wang
- Department of Obstetrics, The Eight People's Hospital of Qingdao, Qingdao, Shandong, People's Republic of China
| | - Jiajia Fan
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Rui Chen
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
39
|
Yu N, Xue M, Wang W, Xia D, Li Y, Zhou X, Pang D, Lu K, Hou J, Zhang A, Zhuang T, Wang L, Chang T, Li X. RNF168 facilitates proliferation and invasion of esophageal carcinoma, possibly via stabilizing STAT1. J Cell Mol Med 2018; 23:1553-1561. [PMID: 30506884 PMCID: PMC6349343 DOI: 10.1111/jcmm.14063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Oesophageal cancer ranks as one of the most common malignancy in China and worldwide. Although genome‐wide association studies and molecular biology studies aim to elucidate the driver molecules in oesophageal cancer progression, the detailed mechanisms remain to be identified. Interestingly, RNF168 (RING finger protein 168) shows a high frequency of gene amplification in oesophageal cancer from TCGA database. Here, we report an important function for RNF168 protein in supporting oesophageal cancer growth and invasion by stabilizing STAT1 protein. RNF168 gene is amplified in oesophageal cancer samples, which tends to correlate with poor prognosis. Depletion RNF168 causes decreased cell proliferation and invasion in oesophageal cancer cells. Through unbiased RNA sequencing in RNF168 depleted oesophageal cancer cell, we identifies JAK‐STAT pathway is dramatically decreased. Depletion RNF168 reduced JAK‐STAT target genes, such as IRF1, IRF9 and IFITM1. Immuno‐precipitation reveals that RNF168 associates with STAT1 in the nucleus, stabilizing STAT1 protein and inhibiting its poly‐ubiquitination and degradation. Our study provides a novel mechanism that RNF168 promoting JAK‐STAT signalling in supporting oesophageal cancer progression. It could be a promising strategy to target RNF168 for oesophageal cancer treatment.
Collapse
Affiliation(s)
- Na Yu
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Min Xue
- Laboratory of Molecular Oncology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Weilong Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Dongxue Xia
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Yajie Li
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Xiaofeng Zhou
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Dan Pang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Kui Lu
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Jinghan Hou
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Aijia Zhang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Ting Zhuang
- Laboratory of Molecular Oncology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Tingmin Chang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, P.R. China
| | - Xiumin Li
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang, Henan, P.R. China.,Institute of Lung and Molecular Therapy (ILMT), Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| |
Collapse
|
40
|
Tan Y, Chen Y, Du M, Peng Z, Xie P. USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. Cell Signal 2018; 53:49-58. [PMID: 30244169 DOI: 10.1016/j.cellsig.2018.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Smurf1 (Smad ubiquitylation regulatory factor 1) and Smurf2 are negative regulators of the TGF-β (transforming growth factor-β) pathway. The protein stability and ubiquitin E3 activity regulation of Smurfs have been well studied. However, the mechanism of Smurfs expression at the transcriptional level remains uncharacterized. Here, we reported that USF2 (upstream stimulatory factor 2), a basic helix-loop-helix-leucine-zip transcription factor, is necessary for the transcriptional activity of Smurf1 and Smurf2. The 5'-flanking sequences of the Smurfs gene have more than one E-box motifs, and USF2 bounds the Smurfs promoter in vitro and in vivo. Over-expression USF2 inhibited the transcriptional activity of the Smurfs, and Smurfs mRNA was markedly decreased. Therefore, the activity of TGF-β was distinctly enhanced. Furthermore, in human breast cancers, USF2 was abnormally high expressed and correlated with cancer progression. USF2 was specifically inversely correlated with Smurfs in Luminal A subtype breast cancer patients. These findings suggest the mechanism regulation of Smurfs transcriptional activity, and shed new light on the cancer-promoting role of USF2.
Collapse
Affiliation(s)
- Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Guangdong 518035, China
| | - Yujiao Chen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Mengge Du
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
41
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
42
|
Koganti P, Levy-Cohen G, Blank M. Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol 2018; 8:295. [PMID: 30116722 PMCID: PMC6082930 DOI: 10.3389/fonc.2018.00295] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an evolutionary conserved highly-orchestrated enzymatic cascade essential for normal cellular functions and homeostasis maintenance. This pathway relies on a defined set of cellular enzymes, among them, substrate-specific E3 ubiquitin ligases (E3s). These ligases are the most critical players, as they define the spatiotemporal nature of ubiquitination and confer specificity to this cascade. Smurf1 and Smurf2 (Smurfs) are the C2-WW-HECT-domain E3 ubiquitin ligases, which recently emerged as important determinants of pivotal cellular processes. These processes include cell proliferation and differentiation, chromatin organization and dynamics, DNA damage response and genomic integrity maintenance, gene expression, cell stemness, migration, and invasion. All these processes are intimately connected and profoundly altered in cancer. Initially, Smurf proteins were identified as negative regulators of the bone morphogenetic protein (BMP) and the transforming growth factor beta (TGF-β) signaling pathways. However, recent studies have extended the scope of Smurfs' biological functions beyond the BMP/TGF-β signaling regulation. Here, we provide a critical literature overview and updates on the regulatory roles of Smurfs in molecular and cell biology, with an emphasis on cancer. We also highlight the studies demonstrating the impact of Smurf proteins on tumor cell sensitivity to anticancer therapies. Further in-depth analyses of Smurfs' biological functions and influences on molecular pathways could provide novel therapeutic targets and paradigms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|