1
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W, Wang H. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol 2024; 967:176357. [PMID: 38309677 DOI: 10.1016/j.ejphar.2024.176357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Mengxiao Li
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
5
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Liu J, Liu B, Li Y, Mi Z, Tan H, Rong P. PCMT1 is a potential target related to tumor progression and immune infiltration in liver cancer. Eur J Med Res 2023; 28:289. [PMID: 37596654 PMCID: PMC10436427 DOI: 10.1186/s40001-023-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/08/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Liver cancer is a prevalent and deadly form of cancer with high incidence and mortality rates. The PCMT1 protein has been linked to cell anti-apoptosis and tumor metastasis, but its significance in liver hepatocellular carcinoma (LIHC) remains largely unexplored. METHODS We conducted a pan-cancer analysis to examine the expression differences of PCMT1. Kaplan-Meier curves were employed to assess the prognostic impact of PCMT1 on LIHC patients, and we investigated the association between PCMT1 and clinical features, which we validated using a GEO therapeutic dataset. Gene enrichment analysis helped identify signaling pathways associated with PCMT1 expression. Moreover, we evaluated the relationship between PCMT1 and immune cell infiltration, as well as the differences in gene mutations between high-expression and low-expression groups. In vitro and in vivo experiments were performed to assess the effect of PCMT1 on tumor cell lines and mouse tumor models, and potential pathways were explored through gene sequencing. RESULT PCMT1 is highly expressed in most tumors and exhibits a significant association with prognosis in LIHC patients. Pathway enrichment analysis revealed that PCMT1 is involved in cell cycle regulation, immunity, and other processes. Further immune analysis demonstrated that high expression of PCMT1 could reduce tumor-killing immune cell infiltration. In vitro experiments indicated that PCMT1 knockdown could inhibit cancer cell proliferation and migration while promoting apoptosis. In vivo experiments showed that PCMT1 knockdown significantly reduced tumor growth rate, enhanced CD8+T cell infiltration, and increased caspase-3 expression in the tumor area. Gene sequencing suggested that PCMT1 may function through the PI3K-AKT pathway. CONCLUSION Our findings suggest that PCMT1 acts as a promoter of liver cancer progression and may serve as a novel prognostic indicator and therapeutic target for patients with LIHC.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Baiying Liu
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000 China
| |
Collapse
|
7
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Wei Q, Liu G, Huang Z, Huang Y, Huang L, Huang Z, Wu X, Wei H, Pu J. LncRNA MEG3 Inhibits Tumor Progression by Modulating Macrophage Phenotypic Polarization via miR-145-5p/DAB2 Axis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1019-1035. [PMID: 37435155 PMCID: PMC10329916 DOI: 10.2147/jhc.s408800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the predominant histological type of primary liver cancer, which ranks sixth among the most common human tumors. Tumor-associated macrophages (TAMs) are an important component of tumor microenvironment (TME) and the M2 macrophage polarization substantially contributes to tumor growth and metastasis. Long non-coding RNA (lncRNA) MEG3 was reported to restrain HCC development. However, whether MEG3 regulates macrophage phenotypic polarization in HCC remains unclear. Methods Bone marrow derived macrophages (BMDMs) were treated with LPS/IFNγ and IL4/IL13 to induce the M1 and M2 macrophage polarization, respectively. M2-polarized BMDMs were simultaneously transfected with adenovirus vector overexpressing MEG3 (Adv-MEG3). Subsequently, M2-polarized BMDMs were cultured for 24 h with serum-free medium, the supernatants of which were harvested as conditioned medium (CM). HCC cell line Huh7 was cultured with CM for 24 h. F4/80+CD68+ and F4/80+CD206+ cell percentages in M1-and M2-polarized BMDMs were calculated using flow cytometry. Huh7 cell migration, invasion and angiogenesis were determined via Transwell assay and tube formation experiment. Nude mice were implanted with Huh7 cells and Adv-MEG3-transfected M2-polarizd BMDMs, and tumor growth and M2 macrophage polarization markers were assessed. The binding between miR-145-5p and MEG3 or disabled-2 (DAB2) was verified by luciferase reporter assay. Results MEG3 presented lower expression in HCC tissues than in normal controls, and low expression of MEG3 was correlated to poorer prognosis of HCC patients. MEG3 expression was enhanced during LPS/IFNγ-induced M1 polarization, but was reduced during IL4/IL13-induced M2 polarization. MEG3 overexpression inhibited the expression of M2 polarization markers in both M2-polarized BMDMs and mice. Mechanically, MEG3 bound with miR-145-5p to regulate DAB2 expression. Overexpressing MEG3 suppressed M2 polarization-induced HCC cell metastasis and angiogenesis by upregulating DAB2 and inhibited in vivo tumor growth. Conclusion LncRNA MEG3 curbs HCC development by repressing M2 macrophage polarization via miR-145-5p/DAB2 axis.
Collapse
Affiliation(s)
- Qing Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Guoman Liu
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Zihua Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, 533099, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| |
Collapse
|
9
|
Wang C, Zhang X, Yu J, Bu J, Gu X, Wang Y, Zhu X, Lin J. Spotlights on extracellular vesicles in hepatocellular carcinoma diagnosis and treatment: an update review. Front Bioeng Biotechnol 2023; 11:1215518. [PMID: 37456728 PMCID: PMC10338921 DOI: 10.3389/fbioe.2023.1215518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent cancers, with a high mortality rate worldwide, seriously impairs patient health. The lack of accurate targets impedes the early screening and diagnosis of HCC and is associated with a poor response to routine therapies. Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are lipid bilayer membrane-derived nanometer-sized vesicles. EVs can be secreted from various cancer cells and release diverse biomolecules, such as DNA, RNA, proteins, metabolites, and lipids, making them a potential source of biomarkers and regulators of the tumor microenvironment. Emerging evidence suggests that EVs are involved in intercellular communication by carrying biological information. These EVs elicit physiological functions and are involved in the oncogenesis of HCC, such as proliferation, invasion, metastasis, and chemoresistance of HCC. EVs have also been considered promising biomarkers and nanotherapeutic targets for HCC. Therefore, this review sheds light on the current understanding of the interactions between EVs and HCC to propose potential biomarkers and nanotherapeutic strategies.
Collapse
Affiliation(s)
- Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Bi S, Zhang Y, Zhou J, Yao Y, Wang J, Fang M, Li B, Wu C, Ren C. miR-210 promotes hepatocellular carcinoma progression by modulating macrophage autophagy through PI3K/AKT/mTOR signaling. Biochem Biophys Res Commun 2023; 662:47-57. [PMID: 37099810 DOI: 10.1016/j.bbrc.2023.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play an important role in tumor development. Increasing research suggests that miR-210 may promote the progression of tumor virulence, but whether its pro-carcinogenic effect in primary hepatocellular carcinoma (HCC) is via an action on M2 macrophages has not been examined. METHODS Differentiation of THP-1 monocytes into M2-polarized macrophages was induced with phorbol myristate acetate (PMA) and IL-4, IL-13. M2 macrophages were transfected with miR-210 mimics or miR-210 inhibitors. Flow cytometry was used to identify macrophage-related markers and apoptosis levels. The autophagy level of M2 macrophages, expression of PI3K/AKT/mTOR signaling pathway-related mRNAs and protein were detected by qRT-PCR and Western blot. HepG2 and MHCC-97H HCC cell lines were cultured with M2 macrophages conditioned medium to explore the effects of M2 macrophage-derived miR-210 on the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS qRT-PCR showed increased expression of miR-210 in M2 macrophages. Autophagy-related gene and protein expression was enhanced in M2 macrophages transfected with miR-210 mimics, while apoptosis-related proteins were decreased. MDC staining and transmission electron microscopy observed the accumulation of MDC-labeled vesicles and autophagosomes in M2 macrophages in the miR-210 mimic group. The expression of PI3K/AKT/mTOR signaling pathway in M2 macrophages was reduced in miR-210 mimic group. HCC cells co-cultured with M2 macrophages transfected with miR-210 mimics exhibited enhanced proliferation and invasive ability as compared to the control group, while apoptosis levels were reduced. Moreover, promoting or inhibiting autophagy could enhance or abolish the above observed biological effects, respectively. CONCLUSIONS miR-210 can promote autophagy of M2 macrophages via PI3K/AKT/mTOR signaling pathway. M2 macrophage-derived miR-210 promotes the malignant progression of HCC via autophagy, suggesting that macrophage autophagy may serve as a new therapeutic target for HCC, and targeting miR-210 may reset the effect of M2 macrophages on HCC.
Collapse
Affiliation(s)
- Shumin Bi
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yidan Zhang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Zhou
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Yao
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jiadong Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Miaomiao Fang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Chunxia Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
11
|
Song S, Zhao Y, Fu T, Fan Y, Tang J, Wang X, Liu C, Chen X. ELANE Promotes M2 Macrophage Polarization by Down-Regulating PTEN and Participates in the Lung Cancer Progression. Immunol Invest 2023; 52:20-34. [PMID: 36102787 DOI: 10.1080/08820139.2022.2115379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Macrophages are one of the most important immunoinflammatory cell populations in the tumor microenvironment (TME). In this study, we preliminarily investigated the upstream pathway of M2 macrophage polarization affecting lung cancer progression. METHODS Bioinformatics analysis was used to evaluate genes closely associated with lung adenocarcinoma and their relationship with immune cells. THP-1 monocytes were induced into M2 macrophages. The expression of markers in M2 macrophages was detected by quantitative reverse transcription-PCR (qRT-PCR), enzyme linked immunosorbent assay (ELISA), and flow cytometry. The effects of neutrophil elastase (ELANE)-mediated M2 macrophages on lung cancer cell proliferation, migration and invasion and tumor growth were investigated by in vitro and in vivo experiments after co-culture of macrophage conditioned medium (CM) and lung cancer cell lines A549 and H1299. The PTEN protein expression was detected by Western blotting. RESULTS ELANE was significantly positively correlated with M2 macrophages. ELANE up-regulated the expression of the M2 macrophage markers CD206, CCL22, IL-10 and CCL18 and increased the proportion of CD206+ macrophages. Compared with M0-CM, M2-CM promoted cell proliferation, migration, and invasion, and (M2+ELANE)-CM further enhanced this effect. In vivo, ELANE promoted M2 macrophage-induced tumor growth in lung cancer mice model. In vitro experiments showed that ELANE can down-regulate the expression of PTEN and promote the polarization of M2 macrophages. CONCLUSION ELANE promotes the polarization of M2 macrophages by down-regulating PTEN, thus promoting cell proliferation, migration, and invasion in vitro and growth of lung cancer cells in vivo.
Collapse
Affiliation(s)
- Sinuo Song
- Department of Medical management, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, P.R. China
| | - Yunping Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Tianyu Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yunfei Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Xiaoxing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Chao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Xiaobo Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
12
|
Chen QY, Gao B, Tong D, Huang C. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552:215979. [PMID: 36306939 DOI: 10.1016/j.canlet.2022.215979] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
In concert with hijacking key genes to drive tumor progression, cancer cells also have the unique ability to dynamically interact with host microenvironment and discreetly manipulate the surrounding stroma, also known as the tumor microenvironment (TME), to provide optimal conditions for tumor cells to thrive and evade host immunity. Complex cellular crosstalk and molecular signaling between cancer cells, surrounding non-malignant cells, and non-cellular components are involved in this process. While intercellular communication traditionally centers around chemokines, cytokines, inflammatory mediators, and growth factors, emerging pathways involving extracellular vesicles (EVs) are gaining increasing attention. The immunosuppressive TME is created and maintained in part by the large abundance of tumor-associated macrophages (TMAs), which are associated with drug resistance, poor prognosis, and have emerged as potential targets for cancer immunotherapy. TMAs are highly dynamic, and can be polarized into either M1 or M2-like macrophages. EVs are efficient cell-cell communication molecules that have been catapulted to the center of TMA polarization. In this article, we provide detailed examination of the determinative role of EVs in sustaining the TME through mediating crosstalk between tumor cells and tumor-associated macrophages.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Environmenta and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
14
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| |
Collapse
|
15
|
Pantazi P, Clements T, Venø M, Abrahams VM, Holder B. Distinct non-coding RNA cargo of extracellular vesicles from M1 and M2 human primary macrophages. J Extracell Vesicles 2022; 11:e12293. [PMID: 36544271 PMCID: PMC9772496 DOI: 10.1002/jev2.12293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages are important antigen presenting cells which can release extracellular vesicles (EVs) carrying functional cargo including non-coding RNAs. Macrophages can be broadly classified into M1 'classical' and M2 'alternatively-activated' macrophages. M1 macrophages have been linked with inflammation-associated pathologies, whereas a switch towards an M2 phenotype indicates resolution of inflammation and tissue regeneration. Here, we provide the first comprehensive analysis of the small RNA cargo of EVs from human M1 and M2 primary macrophages. Using small RNA sequencing, we identified several types of small non-coding RNAs in M1 and M2 macrophage EVs including miRNAs, isomiRs, tRNA fragments, piRNA, snRNA, snoRNA and Y-RNA fragments. Distinct differences were observed between M1 and M2 EVs, with higher relative abundance of miRNAs, and lower abundance of tRNA fragments in M1 compared to M2 EVs. MicroRNA-target enrichment analysis identified several gene targets involved in gene expression and inflammatory signalling pathways. EVs were also enriched in tRNA fragments, primarily originating from the 5' end or the internal region of the full length tRNAs, many of which were differentially abundant in M1 and M2 EVs. Similarly, several other small non-coding RNAs, namely snRNAs, snoRNAs and Y-RNA fragments, were differentially enriched in M1 and M2 EVs; we discuss their putative roles in macrophage EVs. In conclusion, we show that M1 and M2 macrophages release EVs with distinct RNA cargo, which has the potential to contribute to the unique effect of these cell subsets on their microenvironment.
Collapse
Affiliation(s)
- Paschalia Pantazi
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| | - Toby Clements
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| | | | - Vikki M. Abrahams
- Department of ObstetricsGynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Beth Holder
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| |
Collapse
|
16
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
17
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
18
|
Shen T, Miao S, Zhou Y, Yi X, Xue S, Du B, Tang C, Qu L, Fu D, Jia R, He H. Exosomal AP000439.2 from clear cell renal cell carcinoma induces M2 macrophage polarization to promote tumor progression through activation of STAT3. Cell Commun Signal 2022; 20:152. [PMID: 36153596 PMCID: PMC9509597 DOI: 10.1186/s12964-022-00957-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Tumorigenic phenotype of M2 tumor-associated macrophages promote tumor progression in response to exosomes cues imposed by tumor cells. However, the effect and underlying mechanisms of clear cell renal cell carcinoma (ccRCC)-derived exosomes (ccRCC-exo) on instructing macrophages phenotype remains unclear. Methods Macrophages were cocultured with ccRCC-exo and then evaluate the polarization of macrophages and migration of ccRCC cells. The effect and mechanism of lncRNA AP000439.2 overexpressed or deleted exosomes on macrophages M2 polarization were examined. Xenograft tumor mice model was used for in vivo validation. Results The ccRCC-exo significantly activated macrophages to M2 phenotype presented by increased expression of transforming growth factor-beta (TGF-β) and interleukin 10 (IL-10) at mRNA and protein levels, and these M2 macrophages in turn facilitating the migration of ccRCC cells. LncRNA AP000439.2 was highly enriched in the ccRCC-exo. Overexpression of exosomal AP000439.2 promoted M2 macrophage polarization whereas AP000439.2-deficient exosome had the opposite effects. Nuclear-localized AP000439.2 directly interacted with signal transducer and activator of transcription 3 (STAT3) proteins and phosphorylated STAT3 in macrophages. RNA-Seq results showed overexpression of AP000439.2 activated NF-κB signaling pathway. Silencing of STAT3 suppressed overexpression of AP000439.2-induced up-regulation of TGF-β and IL-10 expression, and p65 phosphorylation. AP000439.2-deleted exosome inhibited tumor growth in vivo. Conclusion Exosomes from ccRCC deliver AP000439.2 to promote M2 macrophage polarization via STAT3, thus enhancing ccRCC progression, indicating exosomal AP000439.2 might be a novel therapeutic target in ccRCC. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00957-6.
Collapse
|
19
|
Exosomal miR-452-5p Induce M2 Macrophage Polarization to Accelerate Hepatocellular Carcinoma Progression by Targeting TIMP3. J Immunol Res 2022; 2022:1032106. [PMID: 36164322 PMCID: PMC9508462 DOI: 10.1155/2022/1032106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) cell-derived exosomes have shown effects on inducing M2 macrophage polarization and promoting HCC progression. MiR-452-5p was reported by recent studies to promote malignancy progression as an exosomal microRNA that secreted by HCC cells, of which the underlying mechanism remains unclear. Here, we further explored how miR-452-5p functions in HCC. Methods MiR-452-5p expressions in HCC cells was examined by in situ hybridization. Next, HCC cell lines were transfected with the mimics or the inhibitor of miR-452-5p. Transfected cells' biological behavior were analyzed by CCK-8, flow cytometry, and Transwell assay. Then, exosomes were purified from miR-452-5p inhibited or overexpressed HCC cells and cocultured with macrophages to examine the role of miR-452-5p in macrophage polarization. To examine the role of exosomal miR-452-5p on macrophage polarization and tumor growth. We also performed the dual-luciferase assay to explore the targeting relationship between miR-452-5p and TIMP3. Results The upregulation of miR-452-5p was identified in HCC. The effects of HCC cell-derived exosomes on accelerating HCC migration and invasion and inducing M2 macrophage polarization were confirmed, which were further enhanced after overexpressing miR-452-5p but neutralized after silencing miR-452-5p. In addition, in vivo experiments demonstrated the effect of miR-452-5p on accelerating HCC growth and metastasis. Also, we identified that TIMP3 overexpression inhibited the promoted cell invasion and migration by HCC cell-derived exosomes. Conclusion Exosomal miR-452-5p secreted from HCC cells could induce polarization of M2 macrophage and therefore stimulating HCC progression by targeting TIMP3. Thus, miR-452-5p might be a potential biomarker for HCC prognosis.
Collapse
|
20
|
Tian BW, Han CL, Dong ZR, Tan SY, Wang DX, Li T. Role of Exosomes in Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14164036. [PMID: 36011030 PMCID: PMC9406927 DOI: 10.3390/cancers14164036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is one of the most lethal malignancies, having a significantly poor prognosis. Immunotherapy, as an emerging tumor treatment option, provides new hope for many cancer patients. However, a large proportion of patients do not benefit from immunotherapy. As a critical cell-to-cell communication mediator in the tumor immune microenvironment, exosomes may play a unique role in hepatocellular carcinoma immune response and thus affect the efficiency of immunotherapy. In this review, we discuss related research on the roles of exosomes in the current immunotherapy resistance mechanism of hepatocellular carcinoma. Furthermore, we also clarify the excellent predictive value of exosomes and the roles they play in improving immunotherapy efficacy for hepatocellular carcinoma patients. We hope that our review can help readers to gain a more comprehensive understanding of exosomes’ roles in hepatocellular carcinoma immunotherapy. Abstract Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, having a significantly poor prognosis and no sufficiently efficient treatments. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has provided new therapeutic approaches for HCC patients. Nevertheless, most patients with HCC do not benefit from immunotherapy. Exosomes are biologically active lipid bilayer nano-sized vesicles ranging in size from 30 to 150 nm and can be secreted by almost any cell. In the HCC tumor microenvironment (TME), numerous cells are involved in tumor progression, and exosomes—derived from tumor cells and immune cells—exhibit unique composition profiles and act as intercellular communicators by transporting various substances. Showing the dual characteristics of tumor promotion and suppression, exosomes exert multiple functions in shaping tumor immune responses in the crosstalk between tumor cells and surrounding immune cells, mediating immunotherapy resistance by affecting the PD-1/PD-L1 axis or the anti-tumor function of immune cells in the TME. Targeting exosomes or the application of exosomes as therapies is involved in many aspects of HCC immunotherapies (e.g., ICIs, tumor vaccines, and adoptive cell therapy) and may substantially enhance their efficacy. In this review, we discuss the impact of exosomes on the HCC TME and comprehensively summarize the role of exosomes in immunotherapy resistance and therapeutic application. We also discuss the potential of exosomes as biomarkers for predicting the efficacy of immunotherapy to help clinicians in identifying HCC patients who are amenable to immunotherapies.
Collapse
Affiliation(s)
- Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan 250000, China
- Correspondence: ; Tel./Fax: +86-531-8216-6651
| |
Collapse
|
21
|
Interplays between non-coding RNAs and chemokines in digestive system cancers. Biomed Pharmacother 2022; 152:113237. [PMID: 35716438 DOI: 10.1016/j.biopha.2022.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Within tumors, chemokines and their cognate receptors are expressed by infiltrated leukocytes, cancerous cells, and related cells of stroma, like tumor-associated fibroblasts and tumor-associated macrophages. In malignancies, the altered expression of chemokines/chemokine receptors governs leukocyte infiltration and activation, epithelial-mesenchymal transition (EMT), cancer cell proliferation, angiogenesis, and metastasis. Non-coding RNAs (ncRNAs) contribute to multiple physiological and pathophysiological processes. Some miRNAs can exert anti-tumorigenic activity in digestive system malignancies by repressing the expression of tumor-promoting chemokines/chemokine receptors or by upregulating tumor-suppressing chemokines/chemokine receptors. However, many miRNAs exert pro-tumorigenic activity by suppressing the expression of chemokines/chemokine receptors or by upregulating tumor-promoting chemokines/chemokine receptors. LncRNA and circRNAs also exert pro- and anti-tumorigenic effects by targeting downstream miRNAs influencing the expression of tumor-promoting and tumor-suppressor chemokines/chemokine receptors. On the other side, some chemokines influence the expression of ncRNAs affecting tumor formation. The current review explains the communications between ncRNAs and chemokines/chemokine receptors in certain digestive system malignancies, such as gastric, colorectal, and pancreatic cancers and hepatocellular carcinoma to gain better insights into their basic crosstalk as well as possible therapeutic modalities.
Collapse
|
22
|
Yang S, Wang J, Wang S, Zhou A, Zhao G, Li P. Roles of small extracellular vesicles in the development, diagnosis and possible treatment strategies for hepatocellular carcinoma (Review). Int J Oncol 2022; 61:91. [PMID: 35674180 PMCID: PMC9262158 DOI: 10.3892/ijo.2022.5381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of hepatocytes accounting for 75-85% of primary hepatic carcinoma cases. Small extracellular vesicles (sEVs), previously known as exosomes with a diameter of 30-200 nm, can transport a variety of biological molecules between cells, and have been proposed to function in physiological and pathological processes. Recent studies have indicated that the cargos of sEVs are implicated in intercellular crosstalk among HCC cells, paratumor cells and the tumor microenvironment. sEV-encapsulated substances (including DNA, RNA, proteins and lipids) regulate signal transduction pathways in recipient cells and contribute to cancer initiation and progression in HCC. In addition, the differential expression of sEV cargos between patients facilitates the potential utility of sEVs in the diagnosis and prognosis of patients with HCC. Furthermore, the intrinsic properties of low immunogenicity and high stability render sEVs ideal vehicles for targeted drug delivery in the treatment of HCC. The present review article summarizes the carcinogenic and anti-neoplastic capacities of sEVs and discusses the potential and prospective diagnostic and therapeutic applications of sEVs in HCC.
Collapse
Affiliation(s)
- Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
23
|
Zhao Y, Li P. Strategies of LncRNA DLX6-AS1 on Study and Therapeutics. Front Genet 2022; 13:871988. [PMID: 35719380 PMCID: PMC9198352 DOI: 10.3389/fgene.2022.871988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has revealed the vital regulatory roles of lncRNA DLX6-AS1 in various tumors at pre-transcriptional, transcriptional, and post-transcriptional levels, which makes it a potential prognosis factor and therapeutic target. In addition, the presence of lncRNA DLX6-AS1 in the exosomes of peripheral blood of patients with tumors may also contribute to it being a possible cancer-related biomarker. However, most literature studies are devoted to studying the effect of lncRNA DLX6-AS1 as a sponging molecule of miRNAs, the research of which is likely to get stuck into a dilemma. Literature studies published already have demonstrated an exciting cell malignant phenotype inhibition with the knockdown of lncRNA DLX6-AS1 in various tumor cell lines. With the comprehensive development of delivery systems, high-throughput sequencing, and aptamers, the problems of finding novel research methods and exploring the therapeutic options which are based on lncRNA DLX6-AS1 in vivo could come into a period to deal with. This review aims to summarize the research statuses of lncRNA DLX6-AS1, discuss other study methodologies and therapeutic strategies on it, which might be of help to the deep learning of lncRNA DLX6-AS1 and its application from basic to clinical research.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
25
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
26
|
Jia Z, Jia J, Yao L, Li Z. Crosstalk of Exosomal Non-Coding RNAs in The Tumor Microenvironment: Novel Frontiers. Front Immunol 2022; 13:900155. [PMID: 35663957 PMCID: PMC9162146 DOI: 10.3389/fimmu.2022.900155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) is defined as a complex and dynamic tissue entity composed of endothelial, stromal, immune cells, and the blood system. The homeostasis and evolution of the TME are governed by intimate interactions among cellular compartments. The malignant behavior of cancer cells, such as infiltrating growth, proliferation, invasion, and metastasis, is predominantly dependent on the bidirectional communication between tumor cells and the TME. And such dialogue mainly involves the transfer of multifunctional regulatory molecules from tumor cells and/or stromal cells within the TME. Interestingly, increasing evidence has confirmed that exosomes carrying regulatory molecules, proteins, and nucleic acids act as an active link in cellular crosstalk in the TME. Notably, extensive studies have identified non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), that could be encapsulated by exosomes, which regulate the coordinated function within the TME and thus participate in cancer development and progression. In this review, we summarize recent literature around the topic of the functions and mechanisms of exosomal ncRNAs in the TME and highlight their clinical significance.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlin Jia
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Lihui Yao
- Department of Otolaryngology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhihan Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Liu L, Zhou T, Li T, Liang Z, Luo X. LncRNA DLX6-AS1 promotes microglial inflammatory response in Parkinson's disease by regulating the miR-223-3p/NRP1 axis. Behav Brain Res 2022; 431:113923. [PMID: 35550840 DOI: 10.1016/j.bbr.2022.113923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. This study discussed the mechanism of lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) on inflammatory responses in PD. With healthy male C57BL/6 mice (8-10 weeks) and BV2 microglia as study subjects, we established PD models in vivo/in vitro by injection of 1-methyl-4-phenyl-2, 3, 6-tetrahydropyridine (MPTP) for 4 weeks and treatment of lipopolysaccharide (LPS) for 24hours, respectively. DLX6-AS1 expression in PD mice and BV2 microglia was examined using reverse transcription quantitative-polymerase chain reaction and then down-regulated via stereotaxic catheter injection or cell transfection to evaluate its effect on neurological function. Meanwhile, the cell number of TH+/Caspase3+/IBA1+ in substantia nigra, cell viability, and apoptosis rate of BV2 microglia, inflammatory levels, and NLR family pyrin domain containing 3 (NLRP3) inflammasome were determined using immunohistochemistry, MTT assay, flow cytometry, ELISA assay, and Western blot. The binding relationship between miR-223-3p and DLX6-AS1/Neuropilin-1 (NRP1) was verified by dual-luciferase assay and RNA immunoprecipitation assay. After down-regulation of DLX6-AS1, we down-regulated/overexpressed miR-223-3p/NRP1 levels in BV2 microglia. DLX6-AS1 was overexpressed in PD mice. Silencing DLX6-AS1 improved neurological function and alleviated microglial inflammation in PD mice. Specifically, the latency of mice falling from the rotating rod was longer, and the latency of climbing rod test was shorter; TH+ cells increased, while Caspase3+/IBA1+ cells decreased; the levels of inflammatory were lowered. Silencing DLX6-AS1 inhibited LPS-induced inflammation of BV2 microglia. DLX6-AS1 acted as the ceRNA of miR-223-3p to promote NRP1. Down-regulation of miR-223-3p or overexpression of NRP1 partially annulled the effect of silencing DLX6-AS1 on BV2 microglial inflammation. Overall, DLX6-AS1 promotes the microglial inflammatory response in PD through the ceRNA mechanism of miR-223-3p/NRP1.
Collapse
Affiliation(s)
- Lin Liu
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Tingting Zhou
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Tao Li
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Zhanhua Liang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China.
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, Guangdong Province, 518020, China
| |
Collapse
|
28
|
Zheng W, Guo J, Lu X, Qiao Y, Liu D, Pan S, Liang L, Liu C, Zhu H, Liu Z, Liu Z. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabolism 2022; 129:155155. [PMID: 35093327 DOI: 10.1016/j.metabol.2022.155155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Progressive proteinuria is one of the earliest clinical features of diabetic nephropathy (DN). In our previous study, lncRNA DLX6-AS1 (DLX6-AS1, Dlx6os1 in the mouse) was found to be associated with the extent of albuminuria in DN patients. Furthermore, the lack of Dlx6os1 was pivotal in switching off the inflammatory response in db/db mouse model. However, the regulatory factors responsible for elevated DLX6-AS1 in DN remains unknown. METHODS To identify potential regulatory factors for DLX6-AS1, JASPAR database and DNA pull down combined subsequent liquid chromatography-tandem mass spectrometry were used. Dual-luciferase reporter assay and chromatin immunoprecipitation were then performed to confirm binding sites. We also investigated the effects of the regulatory factors on DN progression in db/db mouse model and cultured human podocytes. RESULTS Our analyses demonstrated that cAMP-response element binding protein (CREB) was highly expressed and closely associated with DLX6-AS1 in DN. In db/db mouse and in cultured podocytes, CREB silencing significantly reduced the level of DLX6-AS1 or Dlx6os1 and attenuated renal damage. Mechanistically, CREB overexpression aggravated renal inflammation and destroyed the structure of podocytes by targeting DLX6-AS1. The damaging role of CREB in podocyte injury was also inhibited by 666-15, a selective inhibitor, in a dose-dependent manner. In vivo, the inhibition of CREB by 666-15 significantly attenuated albuminuria and ameliorated inflammatory infiltration in podocytes. CONCLUSIONS Our findings indicated that CREB is a key mediator of podocyte injury and acts by regulating DLX6-AS1. Thus, CREB may be an effective and potential therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Jia Guo
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Xiaoqing Lu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Yingjin Qiao
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
| | - Lulu Liang
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Chang Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Hongchao Zhu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
29
|
Shi R, Zhang W, Zhang J, Yu Z, An L, Zhao R, Zhou X, Wang Z, Wei S, Wang H. CircESRP1 enhances metastasis and epithelial-mesenchymal transition in endometrial cancer via the miR-874-3p/CPEB4 axis. J Transl Med 2022; 20:139. [PMID: 35317822 PMCID: PMC8939068 DOI: 10.1186/s12967-022-03334-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background Metastasis is critical for endometrial cancer (EC) progression and prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) can operate as independent functional entities. However, the functional regulatory mechanisms of circRNAs in EC remain unclear. Methods The levels of circESRP1, miR-874-3p, and CPEB4 mRNA in EC tissues and cells were determined by qRT-PCR. Sanger sequencing, PCR with divergent primers, an actinomycin D assay, and RNase R treatment were applied to verify the circular properties. Fluorescence in situ hybridization (FISH) and nuclear-cytoplasmic fractionation were used to determine the localization of circESRP1. CCK-8, EdU incorporation, colony formation, Transwell, and wound healing assays were applied to assess the effects of circESRP1 on cell proliferation, migration, and invasion. The mutual regulatory mechanism of ceRNAs was investigated using dual-luciferase reporter, RNA pulldown, RNA immunoprecipitation (RIP), and Western blot assays. The biological effects were further validated in vivo in nude mouse xenograft models. Results circESRP1 was highly expressed in EC tissues and cells and was mainly localized in the cytoplasm. Silencing circESRP1 inhibited the proliferation, migration, and invasion of EC cells in vitro and in vivo; however, overexpression of circESRP1 had the opposite effects. Mechanistically, circESRP1 sponged miR-874-3p to upregulate CPEB4 expression and ultimately contribute to EC cell proliferation and metastasis. Furthermore, circESRP1 regulated tumour growth in xenograft models. Conclusions CircESRP1 can interact with miR-874-3p to regulate EMT in endometrial cancer via the miR-874-3p/CPEB4 axis. CircESRP1 may serve as a promising therapeutic target for endometrial cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03334-6.
Collapse
Affiliation(s)
- Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ziwei Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
30
|
Exosomal non-coding RNAs: Emerging roles in bilateral communication between cancer cells and macrophages. Mol Ther 2022; 30:1036-1053. [PMID: 34864204 PMCID: PMC8899606 DOI: 10.1016/j.ymthe.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic network of cellular organization that comprises diverse cell types and significantly contributes to cancer development. As pivotal immune stromal cells in the TME, macrophages are extensively heterogeneous and exert both antitumor and protumor functions. Exosomes are nanosized extracellular membranous vesicles with diameters between 30 and 150 nm. By transferring multiple bioactive substances such as proteins, lipids, and nucleic acids, exosomes play an important role in the communication between cells. Recently, growing evidence has demonstrated that non-coding RNAs (ncRNAs) are enriched in exosomes and that exosomal ncRNAs are involved in the crosstalk between cancer cells and macrophages. Furthermore, circulating exosomal ncRNAs can be detected in biofluids, serving as promising noninvasive biomarkers for the early diagnosis and prognostic prediction of cancer. Exosome-based therapies are emerging as potent strategies that can be utilized to alleviate tumor progression. Herein, the present knowledge of exosomal ncRNAs and their vital roles in regulating the interplay between cancer cells and macrophages, as well as their clinical applications are summarized.
Collapse
|
31
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
32
|
Zhang Z, Peng Y, Dang J, Liu X, Zhu D, Zhang Y, Shi Y, Fan H. Identification of key biomarkers related to epithelial-mesenchymal transition and immune infiltration in ameloblastoma using integrated bioinformatics analysis. Oral Dis 2022; 29:1657-1667. [PMID: 35226761 DOI: 10.1111/odi.14173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aimed to elucidate the underlying mechanisms of ameloblastoma (AM) through integrated bioinformatics analysis. METHODS We downloaded two microarrays of AMs from the GEO database and identified differentially expressed genes (DEGs) by integrated bioinformatics analysis. The enrichment analysis of DEGs was conducted to characterize GO and KEGG pathways. Protein-protein interaction (PPI) network and hub genes were screened via STRING and Cytoscape. CIBERSORT algorithm was utilized to analyze immune infiltration in AMs. We also verified the diagnostic and therapeutic value of hub genes. RESULTS Overall, 776 DEGs were identified in AMs through bioinformatics analysis. The function enrichment analysis shed light on pathways involved in AMs. Subsequently, we screened six hub genes via PPI network. Furthermore, we evaluated immune infiltration in AMs and found that macrophages may be participating in the progression of AMs. The upregulated expression of FN1 was related to the macrophages M2 polarization. Finally, ROC analysis indicated that six hub genes had high diagnostic value for AMs and 11 drugs interacted with upregulated hub genes were identified by screening the DGIdb database. CONCLUSION This study revealed the underlying mechanisms of pathogenesis and biological behavior of AMs and provided candidate targets for the diagnosis and treatment of AMs.
Collapse
Affiliation(s)
- Zhao Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Ye Peng
- Department of Orthopaedics, Air Force Medical Center, PLA, Beijing, China
| | - Jingyi Dang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Xincheng Liu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Dongze Zhu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yushen Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yubo Shi
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Hongbin Fan
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
33
|
Chen X, Chi H, Zhao X, Pan R, Wei Y, Han Y. Role of Exosomes in Immune Microenvironment of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2521025. [PMID: 35126514 PMCID: PMC8816547 DOI: 10.1155/2022/2521025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/08/2022] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Since most patients with HCC are diagnosed at the intermediate or advanced stage and because HCC has a high incidence of metastasis and recurrence, it is one of the leading causes of cancer death. Exosomes are a subtype of extracellular vesicles and are typically 30-150 nm in diameter. Originating from endosomes, they can be secreted by almost all living cells. They are widely present in various body fluids and serve as an important medium for the interactions between cells. A series of studies have revealed that exosomes-mediated intercellular transfer of proteins, nucleic acids, and metabolites plays a crucial role in the initiation and progression of HCC, hypoxia and angiogenesis, chemotherapy sensitivity, and cell death mode and regulates the immune microenvironment. In this paper, we reviewed the recent researches on the multiple roles of tumor-associated exosomes in the progression of HCC. We laid particular focus on those researches that reveal how exosomes regulate the tumor immune microenvironment (TIME) and how exosomal cargos affect the progression of HCC. Besides, we emphasize some prospective directions to achieve a more accurate and complete analysis of the HCC immune microenvironment.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xiaozhao Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Rui Pan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ying Wei
- Clinical Medical College, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan, China
| |
Collapse
|
34
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|
35
|
Yun BD, Choi YJ, Son SW, Cipolla GA, Berti FCB, Malheiros D, Oh TJ, Kuh HJ, Choi SY, Park JK. Oncogenic Role of Exosomal Circular and Long Noncoding RNAs in Gastrointestinal Cancers. Int J Mol Sci 2022; 23:ijms23020930. [PMID: 35055115 PMCID: PMC8781283 DOI: 10.3390/ijms23020930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell-cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Ye Ji Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
- Genome-Based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
36
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Lu W, Bai L, Chen Y. The Role of Macrophage-Derived Exosomes in Liver Diseases. INFECTIOUS DISEASES & IMMUNITY 2022; 2:34-41. [DOI: 10.1097/id9.0000000000000034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Abstract
Exosomes (exos) widely distributed in a variety of biological fluids, including blood, urine, saliva, sputum, breast milk, cerebrospinal fluid, and ascites, contain specific bioactive contents which are involved in physiological and pathological processes, such as signal molecular transfer, substance metabolism, gene regulation, and immune regulation. Macrophages are important innate immune cells which usually act as the first line of defense against infection, and can switch between different functional phenotypes in response to the changes around the microenvironment. Evidence suggests that macrophage-derived exos exert a crucial effect on infection, inflammation, regeneration, tumors, fibrosis, and other lesions in multiple human diseases. However, the role and mechanism of macrophage-derived exos in liver diseases remain to be explored. This review summarizes the current researches on the role and possible mechanism of macrophage-derived exos in liver diseases, with the purpose of providing new potential targets and directions for diagnostic biomarker and clinical treatment of liver diseases.
Collapse
Affiliation(s)
- Wang Lu
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Li Bai
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing 100069, China
| |
Collapse
|
38
|
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, Mahmud Hussen B, Babashah S. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med 2021; 26:287-305. [PMID: 34907642 PMCID: PMC8743668 DOI: 10.1111/jcmm.17126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Abstract
Long non-coding RNAs (lncRNAs) have important roles in regulating the expression of genes and act as biomarkers in the initial development of different cancers. Increasing research studies have verified that dysregulation of lncRNAs occurs in various pathological processes including tumorigenesis and cancer progression. Among the different lncRNAs, DLX6-AS1 has been reported to act as an oncogene in the development and prognoses of different cancers, by affecting many different signalling pathways. This review summarises and analyses the recent research studies describing the biological functions of DLX6-AS1, its overall effect on signalling pathways and the molecular mechanisms underlying its action on the expression of genes in multiple human cancers. Our critical analysis suggests that different signalling pathways associated to this lncRNA may be used as a biomarker for diagnosis, or targets of treatment in cancers.
Collapse
|
40
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|
41
|
Zhang J, Zhang D, Yan X, Jiang F. The expression level and prognostic value of microRNA-15a-5p in endometrial carcinoma. Transl Cancer Res 2021; 10:4838-4844. [PMID: 35116336 PMCID: PMC8798199 DOI: 10.21037/tcr-21-2079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent studies have shown that the microRNA-15a-5p (miR-15a-5p) plays varying roles in different malignancies. However, to date, the role and prognostic value of miR-15a-5p in patients with endometrial cancer has not been explored. This study investigated the expression level of miR-15a-5p in endometrial carcinoma and its prognostic value. METHODS A total of 108 patients with endometrial cancer treated in our hospital from January 2015 to January 2016 were enrolled in this study. The patients were followed up for 5 years. Patients who experienced recurrence or metastasis after surgery were assigned into the recurrence and metastasis group (n=45) and the remaining patients were assigned into the control group (n=63). The expression level of microRNA-15a-5p in endometrial cancer was analyzed. Furthermore, the correlation between the expression of miR-15a-5p and the pathological features and prognosis was examined. RESULTS The expression of miR-15a-5p in endometrial carcinoma was significantly lower than that in adjacent healthy tissues (2.22±0.75 vs. 2.59±0.91, P=0.000). Furthermore, the expression of miR-15a-5p in the endometrial cancer tissues of patients in the recurrence and metastasis group was significantly lower than that observed in patients in the control group (1.91±0.62 vs. 2.45±0.75, P=0.000). The receiver operating characteristic curve was used to analyze the predictive value of miR-15a-5p in endometrial cancer tissue for postoperative recurrence or metastasis in endometrial cancer patients. The area under the curve was 0.690 [95% confidence interval (CI): 0.601 to 0.798, P=0.000], the best cut-off value of diagnosis was 2.325, the sensitivity was 0.619, and the specificity was 0.733. Multivariate logistic regression analysis showed that miR-15a-5p expression <2.325 was a risk factor for postoperative recurrence or metastasis of endometrial cancer [odds ratio (OR) =3.544 (95% CI: 1.489 to 8.436), P=0.004]. Furthermore, the expression of miR-15a-5p in endometrial carcinoma was correlated with lymph node metastasis, TNM stage, and patient mortality. CONCLUSIONS The expression of miR-15a-5p in endometrial carcinoma is related to lymph node metastasis, TNM stage, and mortality. Furthermore, the expression of miR-15a-5p was significantly decreased in endometrial cancer patients with recurrence or metastasis and thus, miR-15a-5p may have certain value in predicting postoperative recurrence or metastasis in such patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gynecology, Baoji Central Hospital, Baoji, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, Xichang People’s Hospital, Xichang, China
| | - Xiaofang Yan
- Department of Obstetrics and Gynecology, Yixing People’s Hospital, Yixing, China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
42
|
The Role of Long Non-Coding RNA and microRNA Networks in Hepatocellular Carcinoma and Its Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910630. [PMID: 34638971 PMCID: PMC8508708 DOI: 10.3390/ijms221910630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common liver malignancy with high morbidity and poor prognosis. Long non-coding RNAs (lncRNAs) are involved in crucial biological processes of tumorigenesis and progression, and play four major regulatory roles, namely signal, decoy, guide, and scaffold, to regulate gene expression. Through these processes, lncRNAs can target microRNAs (miRNAs) to form lncRNA and miRNA networks, which regulate cancer cell proliferation, metastasis, drug resistance, and the tumor microenvironment. Here, we summarize the multifaceted functions of lncRNA and miRNA networks in the pathogenesis of HCC, the potential use of diagnostic or prognostic biomarkers, and novel therapeutic targets in HCC. This review also highlights the regulatory effects of lncRNA and miRNA networks in the tumor microenvironment of HCC.
Collapse
|