1
|
Xu P, Du Z, Xie X, Yang L, Zhang J. Cancer marker TNFRSF1A: From single‑cell heterogeneity of renal cell carcinoma to functional validation. Oncol Lett 2024; 28:425. [PMID: 39021735 PMCID: PMC11253100 DOI: 10.3892/ol.2024.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
During the progression of renal cell carcinoma (RCC), tumor growth, metastasis and treatment response heterogeneity are regulated by both the tumor itself and the tumor microenvironment (TME). The aim of the present study was to investigate the role of the TME in RCC and construct a crosstalk network for clear cell RCC (ccRCC). An additional aim was to evaluate whether TNF receptor superfamily member 1A (TNFRSF1A) is a potential therapeutic target for ccRCC. Single-cell data analysis of RCC was performed using the GSE152938 dataset, focusing on key cellular components and their involvement in the ccRCC TME. Additionally, cell-cell communication was analyzed to elucidate the complex network of the ccRCC microenvironment. Analyses of data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases were performed to further mine the key TNF receptor genes, with a particular focus on the prediction and assessment of the cancer-associated features of TNFRSF1A. In addition, following the silencing of TNFRSF1A using small interfering RNA in the 786-O ccRCC cell line, a number of in vitro experiments were conducted to further investigate the cancer-promoting characteristics of TNFRSF1A. These included 5-ethynyl-2'-deoxyuridine incorporation, Cell Counting Kit-8, colony formation, Transwell, cell cycle and apoptosis assays. The TNF signaling pathway was found to have a critical role in the development of ccRCC. Based on the specific crosstalk identified between TNF and TNFRSF1A, the communication of this signaling pathway within the TME was elucidated. The results of the cellular phenotype experiments indicated that TNFRSF1A promotes the proliferation, migration and invasion of ccRCC cells. Consequently, it is proposed that targeting TNFRSF1A may disrupt tumor progression and serve as a therapeutic strategy. In conclusion, by understanding the TME and identifying significant crosstalk within the TNF signaling pathway, the potential of TNFRSF1A as a therapeutic target is highlighted. This may facilitate an advance in precision medicine and improve the prognosis for patients with RCC.
Collapse
Affiliation(s)
- Ping Xu
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Zusheng Du
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Xiaohong Xie
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Lifei Yang
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Jingjing Zhang
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| |
Collapse
|
2
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2024. [PMID: 39183666 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen/Nürnberg, Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle/Wittenberg, Germany
| | - Marcel Köhn
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| |
Collapse
|
3
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Xu S, Ma B, Jian Y, Yao C, Wang Z, Fan Y, Ma J, Chen Y, Feng X, An J, Chen J, Wang K, Xie H, Gao Y, Li L. Development of a PAK4-targeting PROTAC for renal carcinoma therapy: concurrent inhibition of cancer cell proliferation and enhancement of immune cell response. EBioMedicine 2024; 104:105162. [PMID: 38810561 PMCID: PMC11154127 DOI: 10.1016/j.ebiom.2024.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment. METHODS Utilizing AI software for peptide drug design, we have engineered a specialized peptide proteolysis targeting chimera (PROTAC) drug with selectivity for PAK4. To address challenges related to drug delivery, we developed a nano-selenium delivery system for efficient transport of the peptide PROTAC drug, termed PpD (PAK4 peptide degrader). FINDINGS We successfully designed a peptide PROTAC drug targeting PAK4. PpD effectively degraded PAK4 with high selectivity, avoiding interference with other homologous proteins. PpD significantly attenuated renal carcinoma proliferation in vitro and in vivo. Notably, PpD demonstrated a significant inhibitory effect on tumor proliferation in a fully immunocompetent mouse model, concomitantly enhancing the immune cell response. Moreover, PpD demonstrated promising tumor growth inhibitory effects in mini-PDX and PDO models, further underscoring its potential for clinical application. INTERPRETATION This PAK4-targeting peptide PROTAC drug not only curtails renal cancer cell proliferation but also improves the immune microenvironment and enhances immune response. Our study paves the way for innovative targeted therapies in the management of renal cancer. FUNDING This work is supported by Research grants from non-profit organizations, as stated in the Acknowledgments.
Collapse
Affiliation(s)
- Shan Xu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Chen Yao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Xiaoyu Feng
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiale An
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiani Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Hongjun Xie
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China.
| |
Collapse
|
5
|
Tse RT, Wong CY, Ding X, Cheng CK, Chow C, Chan RC, Ng JH, Tang VW, Chiu PK, Teoh JY, Wong N, To K, Ng C. The establishment of kidney cancer organoid line in drug testing. Cancer Med 2024; 13:e7432. [PMID: 38923304 PMCID: PMC11200131 DOI: 10.1002/cam4.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Kidney cancer is a common urological malignancy worldwide with an increasing incidence in recent years. Among all subtypes, renal cell carcinoma (RCC) represents the most predominant malignancy in kidney. Clinicians faced a major challenge to select the most effective and suitable treatment regime for patients from a wide range of modalities, despite improved understanding and diagnosis of RCC. OBJECTIVE Recently, organoid culture gained more interest as the 3D model is shown to be highly patient specific which is hypothetically beneficial to the investigation of precision medicine. Nonetheless, the development and application of organotypic culture in RCC is still immature, therefore, the primary objective of this study was to establish an organoid model for RCC. MATERIALS AND METHODS Patients diagnosed with renal tumor and underwent surgical intervention were recruited. RCC specimen was collected and derived into organoids. Derived organoids were validated by histological examminations, sequencing and xenograft. Drug response of organoids were compared with resistance cell line and patients' clinical outcomes. RESULTS Our results demonstrated that organoids could be successfully derived from renal tumor and they exhibited high concordance in terms of immunoexpressional patterns. Sequencing results also depicted concordant mutations of driver genes in both organoids and parental tumor tissues. Critical and novel growth factors were discovered during the establishment of organoid model. Besides, organoids derived from renal tumor exhibited tumorigenic properties in vivo. In addition, organoids recapitulated patient's in vivo drug resistance and served as a platform to predict responsiveness of other therapeutic agents. CONCLUSION Our RCC organoid model recaptiluated histological and genetic features observed in primary tumors. It also served as a potential platform in drug screening for RCC patients, though future studies are necessary before translating the outcomes into clinical practices.
Collapse
Affiliation(s)
- Ryan Tsz‐Hei Tse
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Christine Yim‐Ping Wong
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Xiaofan Ding
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Carol Ka‐Lo Cheng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Chit Chow
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Ronald Cheong‐Kin Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Joshua Hoi‐Yan Ng
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Victor Wai‐Lun Tang
- Department of PathologyPamela Youde Nethersole Eastern HospitalChai WanHong Kong
| | - Peter Ka‐Fung Chiu
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Jeremy Yuen‐Chun Teoh
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Nathalie Wong
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong KongChina
| | - Chi‐Fai Ng
- S.H. Ho Urology Centre, Department of SurgeryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
6
|
Gulati S, Barata PC, Elliott A, Bilen MA, Burgess EF, Choueiri TK, Darabi S, Dawson NA, Gartrell BA, Hammers HJ, Heath EI, Magee D, Rao A, Ryan CJ, Twardowski P, Wei S, Brugarolas J, Zhang T, Zibelman MR, Nabhan C, McKay RR. Molecular analysis of primary and metastatic sites in patients with renal cell carcinoma. J Clin Invest 2024; 134:e176230. [PMID: 39007269 PMCID: PMC11245151 DOI: 10.1172/jci176230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/17/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUNDMetastases are the hallmark of lethal cancer, though underlying mechanisms that drive metastatic spread to specific organs remain poorly understood. Renal cell carcinoma (RCC) is known to have distinct sites of metastases, with lung, bone, liver, and lymph nodes being more common than brain, gastrointestinal tract, and endocrine glands. Previous studies have shown varying clinical behavior and prognosis associated with the site of metastatic spread; however, little is known about the molecular underpinnings that contribute to the differential outcomes observed by the site of metastasis.METHODSWe analyzed primary renal tumors and tumors derived from metastatic sites to comprehensively characterize genomic and transcriptomic features of tumor cells as well as to evaluate the tumor microenvironment at both sites.RESULTSWe included a total of 657 tumor samples (340 from the primary site [kidney] and 317 from various sites of metastasis). We show distinct genomic alterations, transcriptomic signatures, and immune and stromal tumor microenvironments across metastatic sites in a large cohort of patients with RCC.CONCLUSIONWe demonstrate significant heterogeneity among primary tumors and metastatic sites and elucidate the complex interplay between tumor cells and the extrinsic tumor microenvironment that is vital for developing effective anticancer therapies.
Collapse
Affiliation(s)
- Shuchi Gulati
- UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Pedro C Barata
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | | | | | | | | | - Sourat Darabi
- Hoag Memorial Hospital Presbyterian, Newport Beach, California, USA
| | - Nancy Ann Dawson
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Benjamin Adam Gartrell
- Montefiore Medical Center and Albert Einstein College of Medicine, New York, New York, USA
| | | | - Elisabeth I Heath
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Arpit Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - Przemyslaw Twardowski
- Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Shuanzeng Wei
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Tian Zhang
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Rana R McKay
- University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol 2024; 14:1332528. [PMID: 38725621 PMCID: PMC11079149 DOI: 10.3389/fonc.2024.1332528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Lijin Yuan
- Department of Obstetrics and Gynecology, Huangshi Puren Hospital, Huangshi, Hubei, China
| | - Xiu Yang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Kim YH, Chung JS, Lee HH, Park JH, Kim MK. Influence of Dietary Polyunsaturated Fatty Acid Intake on Potential Lipid Metabolite Diagnostic Markers in Renal Cell Carcinoma: A Case-Control Study. Nutrients 2024; 16:1265. [PMID: 38732512 PMCID: PMC11085891 DOI: 10.3390/nu16091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Non-invasive diagnostics are crucial for the timely detection of renal cell carcinoma (RCC), significantly improving survival rates. Despite advancements, specific lipid markers for RCC remain unidentified. We aimed to discover and validate potent plasma markers and their association with dietary fats. Using lipid metabolite quantification, machine-learning algorithms, and marker validation, we identified RCC diagnostic markers in studies involving 60 RCC and 167 healthy controls (HC), as well as 27 RCC and 74 HC, by analyzing their correlation with dietary fats. RCC was associated with altered metabolism in amino acids, glycerophospholipids, and glutathione. We validated seven markers (l-tryptophan, various lysophosphatidylcholines [LysoPCs], decanoylcarnitine, and l-glutamic acid), achieving a 96.9% AUC, effectively distinguishing RCC from HC. Decreased decanoylcarnitine, due to reduced carnitine palmitoyltransferase 1 (CPT1) activity, was identified as affecting RCC risk. High intake of polyunsaturated fatty acids (PUFAs) was negatively correlated with LysoPC (18:1) and LysoPC (18:2), influencing RCC risk. We validated seven potential markers for RCC diagnosis, highlighting the influence of high PUFA intake on LysoPC levels and its impact on RCC occurrence via CPT1 downregulation. These insights support the efficient and accurate diagnosis of RCC, thereby facilitating risk mitigation and improving patient outcomes.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Republic of Korea; (Y.-H.K.); (J.-H.P.)
| | - Jin-Soo Chung
- Department of Urology, Center for Urologic Cancer, Research Institute, Hospital of National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Republic of Korea; (J.-S.C.); (H.-H.L.)
| | - Hyung-Ho Lee
- Department of Urology, Center for Urologic Cancer, Research Institute, Hospital of National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Republic of Korea; (J.-S.C.); (H.-H.L.)
| | - Jin-Hee Park
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Republic of Korea; (Y.-H.K.); (J.-H.P.)
| | - Mi-Kyung Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Republic of Korea; (Y.-H.K.); (J.-H.P.)
| |
Collapse
|
9
|
Jani Y, Jansen CS, Gerke MB, Bilen MA. Established and emerging biomarkers of immunotherapy in renal cell carcinoma. Immunotherapy 2024; 16:405-426. [PMID: 38264827 DOI: 10.2217/imt-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors, have heralded impressive progress for patient care in renal cell carcinoma (RCC). Despite this success, some patients' disease fails to respond, and other patients experience significant side effects. Thus, development of biomarkers is needed to ensure that patients can be selected to maximize benefit from immunotherapies. Improving clinicians' ability to predict which patients will respond to immunotherapy and which are most at risk of adverse events - namely through clinical biomarkers - is indispensable for patient safety and therapeutic efficacy. Accordingly, an evolving suite of therapeutic biomarkers continues to be investigated. This review discusses biomarkers for immunotherapy in RCC, highlighting current practices and emerging innovations, aiming to contribute to improved outcomes for patients with RCC.
Collapse
Affiliation(s)
- Yash Jani
- Mercer University, Macon, GA 31207, USA
| | - Caroline S Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Margo B Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Hou C, Zhong B, Gu S, Wang Y, Ji L. Identification and validation of the biomarkers related to ferroptosis in calcium oxalate nephrolithiasis. Aging (Albany NY) 2024; 16:5987-6007. [PMID: 38536018 PMCID: PMC11042938 DOI: 10.18632/aging.205684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.
Collapse
Affiliation(s)
- Chao Hou
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Shuo Gu
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Yunyan Wang
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| | - Lu Ji
- Department of Urology, The Affiliated Huai'an First People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu, China
| |
Collapse
|
11
|
Chiang IC, Chen SY, Hsu YH, Shahidi F, Yen GC. Pterostilbene and 6-shogaol exhibit inhibitory effects on sunitinib resistance and motility by suppressing the RLIP76-initiated Ras/ERK and Akt/mTOR pathways in renal cancer cells. Eur J Pharmacol 2024; 967:176393. [PMID: 38325792 DOI: 10.1016/j.ejphar.2024.176393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Sunitinib (SUN) is the first-line targeted therapeutic drug for advanced renal cell carcinoma (RCC). However, SUN resistance is frequently observed to result in tumor metastasis, with a poor survival rate. Therefore, finding an effective and safe adjuvant to reduce drug resistance is important for RCC treatment. Pterostilbene (PTE) and 6-shogaol (6-S) are natural phytochemicals found in edible sources and have potential applications against various cancers. However, the biological mechanisms of PTE and 6-S in SUN-resistant RCC are still unclear. Accordingly, this study investigated the regulatory effects of PTE and 6-S on cell survival, drug resistance, and cell invasion in 786-O and SUN-resistant 786-O (786-O SUNR) cells, respectively. The results demonstrated that PTE and 6-S induced apoptosis in both cell lines by upregulating the Bax/Bcl-2 ratio. Additionally, PTE and 6-S increased SUN sensitivity by inhibiting the expression of the RLIP76 transport protein, reduced cell invasion and downregulated MMP expression in both 786-O and 786-O SUNR cells. Mechanistically, PTE, and 6-S significantly and dose-dependently suppressed the RLIP76-initiated Ras/ERK and Akt/mTOR pathways. In summary, PTE and 6-S induce apoptosis, enhance SUN sensitivity, and inhibit migration in both 786-O and 786-O SUNR cells. These novel findings demonstrate the potential of PTE and 6-S as target therapeutic adjuvants for RCC treatment.
Collapse
Affiliation(s)
- I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Yi-Hao Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
12
|
Liu Z, Huang Y, Zhang P, Yang C, Wang Y, Yu Y, Xiang H. Establishment of an immunogenic cell death-related model for prognostic prediction and identification of therapeutic targets in endometrial carcinoma. Aging (Albany NY) 2024; 16:4920-4942. [PMID: 38461430 PMCID: PMC10968672 DOI: 10.18632/aging.205647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Studies have firmly established the pivotal role of the immunogenic cell death (ICD) in the development of tumors. This study seeks to develop a risk model related to ICD to predict the prognosis of patients with endometrial carcinoma (EC). MATERIALS AND METHODS RNA-seq data of EC retrieved from TCGA database were analyzed using R software. We determined clusters based on ICD-related genes (ICDRGs) expression levels. Cox and LASSO analyses were further used to build the prediction model, and its accuracy was evaluated in the train and validation sets. Finally, in vitro and in vivo experiments were conducted to confirm the impact of the high-risk gene IFNA2 on EC. RESULTS Patients were sorted into two ICD clusters, with survival analysis revealing divergent prognoses between the clusters. The Cox regression analysis identified prognostic risk genes, and the LASSO analysis constructed a model based on 9 of these genes. Notably, this model displayed excellent predictive accuracy when validated. Finally, increased IFNA2 levels led to decreased vitality, proliferation, and invasiveness in vitro. IFNA2 also has significant tumor inhibiting effect in vivo. CONCLUSIONS The ICD-related model can accurately predict the prognosis of patients with EC, and IFNA2 may be a potential treatment target.
Collapse
Affiliation(s)
- Zhenran Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yujie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei 230032, Anhui, China
| |
Collapse
|
13
|
Lyskjær I, Iisager L, Axelsen CT, Nielsen TK, Dyrskjøt L, Fristrup N. Management of Renal Cell Carcinoma: Promising Biomarkers and the Challenges to Reach the Clinic. Clin Cancer Res 2024; 30:663-672. [PMID: 37874628 PMCID: PMC10870122 DOI: 10.1158/1078-0432.ccr-23-1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
The incidence of renal cell carcinoma (RCC) is increasing worldwide, yet research within this field is lagging behind other cancers. Despite increased detection of early disease as a consequence of the widespread use of diagnostic CT scans, 25% of patients have disseminated disease at diagnosis. Similarly, around 25% progress to metastatic disease following curatively intended surgery. Surgery is the cornerstone in the treatment of RCC; however, when the disease is disseminated, immunotherapy or immunotherapy in combination with a tyrosine kinase inhibitor is the patient's best option. Immunotherapy is a potent treatment, with durable treatment responses and potential to cure the patient, but only half of the patients benefit from the administered treatment, and there are currently no methods that can identify which patients will respond to immunotherapy. Moreover, there is a need to identify the patients in greatest risk of relapsing after surgery for localized disease and direct adjuvant treatment there. Even though several molecular biomarkers have been published to date, we are still lacking routinely used biomarkers to guide optimal clinical management. The purpose of this review is to highlight some of the most promising biomarkers, discuss the efforts made within this field to date, and describe the barriers needed to be overcome to have reliable and robust predictive and prognostic biomarkers in the clinic for renal cancer.
Collapse
Affiliation(s)
- Iben Lyskjær
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Laura Iisager
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Fristrup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Yi B, Wei X, Liu D, Jing L, Xu S, Zhang M, Liang Z, Liu R, Zhang Z. Comprehensive analysis of disulfidptosis-related genes: a prognosis model construction and tumor microenvironment characterization in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3647-3673. [PMID: 38358909 PMCID: PMC10929811 DOI: 10.18632/aging.205550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Disulfidptosis, a form of cell death induced by abnormal intracellular accumulation of disulfides, is a newly recognized variety of cell death. Clear cell renal cell carcinoma (ccRCC) is a usual urological tumor that poses serious health risks. There are few studies of disulfidptosis-related genes (DRGs) in ccRCC so far. METHODS The expression, transcriptional variants, and prognostic role of DRGs were assessed. Based on DRGs, consensus unsupervised clustering analysis was performed to stratify ccRCC patients into various subtypes and constructed a DRG risk scoring model. Patients were stratified into high or low-risk groups by this model. We focused on assessing the discrepancy in prognosis, TME, chemotherapeutic susceptibility, and landscape of immune between the two risk groups. Finally, we validated the expression and explored the biological function of the risk scoring gene FLRT3 through in vitro experiments. RESULTS The different subtypes had significantly different gene expression, immune, and prognostic landscapes. In the two risk groups, the high-risk group had higher TME scores, more significant immune cell infiltration, and a higher probability of benefiting from immunotherapy, but had a worse prognosis. There were also remarkable differences in chemotherapeutic susceptibility between the two risk groups. In ccRCC cells, the expression of FLRT3 was shown to be lower and its overexpression caused a decrease in cell proliferation and metastatic capacity. CONCLUSIONS Starting from disulfidptosis, we established a new risk scoring model which can provide new ideas for doctors to forecast patient survival and determine clinical treatment plans.
Collapse
Affiliation(s)
- Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xifeng Wei
- Department of Urology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Dongze Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liwei Jing
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shengxian Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Man Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Zhengxin Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Lai SW, Weng PW, Yadav VK, Pikatan NW, Yeh CT, Hsieh MS, Chou CL. Underlying mechanisms of novel cuproptosis-related dihydrolipoamide branched-chain transacylase E2 (DBT) signature in sunitinib-resistant clear-cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2679-2701. [PMID: 38305803 PMCID: PMC10911363 DOI: 10.18632/aging.205504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - Ming-Shou Hsieh
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| |
Collapse
|
16
|
Luomala L, Mattila K, Vainio P, Nisén H, Pellinen T, Lohi J, Laajala TD, Järvinen P, Koskenniemi A, Jaakkola P, Mirtti T. Low nuclear expression of HIF-hydroxylases PHD2/EGLN1 and PHD3/EGLN3 are associated with poor recurrence-free survival in clear cell renal cell carcinoma. Cancer Med 2024; 13:e6998. [PMID: 38400673 PMCID: PMC10891444 DOI: 10.1002/cam4.6998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hypoxia inducible factors, HIF-1α and HIF-2α, and their main regulators, the prolyl hydroxylase domain proteins (PHDs), mediate cellular response to hypoxia and contribute to tumor progression in clear cell renal cell carcinoma (ccRCC). These biomarkers may improve the value of traditional histopathological features in predicting disease progression after nephrectomy for localized ccRCC and guide patient selection for adjuvant treatments. PATIENTS AND METHODS In this study, we analyzed the associations of PHD2 and PHD3 with histopathological tumor features and recurrence-free survival (RFS) in a retrospective cohort of 173 patients who had undergone surgery for localized ccRCC at Helsinki University Hospital (HUH), Finland. An external validation cohort of 191 patients was obtained from Turku University Hospital (TUH), Finland. Tissue-microarrays (TMA) were constructed using the primary tumor samples. Clinical parameters and follow-up information from 2006 to 2019 were obtained from electronic medical records. The cytoplasmic and nuclear expression of PHD2, and PHD3 were scored based on immunohistochemical staining and their associations with histopathological features and RFS were evaluated. RESULTS Nuclear PHD2 and PHD3 expression in cancer cells were associated with lower pT-stage and Fuhrman grade compared with negative nuclei. Patients with positive nuclear expression of PHD2 and PHD3 in cancer cells had favorable RFS compared with patients having negative tumors. The nuclear expression of PHD2 was independently associated with a decreased risk of disease recurrence or death from RCC in multivariable analysis. These results were observed in both cohorts. CONCLUSIONS The absence of nuclear PHD2 and PHD3 expression in ccRCC was associated with poor RFS and the nuclear expression of PHD2 predicted RFS regardless of other known histopathological prognostic factors. Nuclear PHD2 and PHD3 are potential prognostic biomarkers in patients with localized ccRCC and should be further investigated and validated in prospective studies.
Collapse
Affiliation(s)
- Lassi Luomala
- Dept. of UrologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Kalle Mattila
- Department of Oncology and Radiotherapy, FICAN West Cancer CentreUniversity of Turku, Turku University HospitalTurkuFinland
- InFlames Research FlagshipUniversity of TurkuTurkuFinland
| | - Paula Vainio
- Dept. of Pathology, Turku University HospitalUniversity of TurkuTurkuFinland
| | - Harry Nisén
- Dept. of UrologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Jouni Lohi
- Diagnostic Center, HUSLAB Laboratory ServicesHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Teemu D. Laajala
- Diagnostic Center, HUSLAB Laboratory ServicesHelsinki University Hospital and University of HelsinkiHelsinkiFinland
- Research Program in Systems Oncology (ONCOSYS) and iCAN – Digital Precision Cancer Medicine FlagshipUniversity of HelsinkiHelsinkiFinland
| | - Petrus Järvinen
- Dept. of UrologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | | | - Panu Jaakkola
- Department of Oncology and Radiotherapy, FICAN West Cancer CentreUniversity of Turku, Turku University HospitalTurkuFinland
| | - Tuomas Mirtti
- Diagnostic Center, HUSLAB Laboratory ServicesHelsinki University Hospital and University of HelsinkiHelsinkiFinland
- Research Program in Systems Oncology (ONCOSYS) and iCAN – Digital Precision Cancer Medicine FlagshipUniversity of HelsinkiHelsinkiFinland
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
| |
Collapse
|
17
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
Gao Y, Wan L, Li M, Wang B, Ma Y. NRF2/HO-1 axis, BIRC5, and TP53 expression in ESCC and its correlation with clinical pathological characteristics and prognosis. Int J Biol Markers 2023; 38:174-184. [PMID: 37312528 DOI: 10.1177/03936155231176571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many types of cancer exhibit high nuclear factor erythroid 2-related factor 2 (NRF2), which is effective in resisting drugs and radiation. However, the role of NRF2 gene expression in predicting the prognosis of esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS The association between NRF2, heme oxygenase-1 (HO-1), baculovirus IAP repeat 5 (BIRC5), P53 gene expression levels and their relationship to immune-infiltrating cells were assessed using the Cancer Genome Atlas dataset, the Human Protein Atlas and the TISDB database. The expression of NRF2, HO-1, BIRC5, and TP53 in 118 ESCC patients was detected by immunohistochemistry, and the relationship between their expression level and clinicopathological parameters and prognosis was analyzed. RESULTS In ESCC, NRF2 overexpression was significantly associated with Han ethnicity, lymph node metastasis, and distant metastasis. HO-1 overexpression was significantly associated with differentiation, advanced clinical staging, lymph node metastasis, nerve invasion, and distant metastasis. BIRC5 overexpression was significantly associated with Han ethnicity and lymph node metastasis. TP53 overexpression was significantly associated with Han ethnicity and T staging. The NRF2/HO-1 axis expression was positively correlated with BIRC5 and TP53. Kaplan-Meier and multivariate Cox regression analysis showed that NRF2, BIRC5, and TP53 genes co-expression was an independent prognostic risk factor. TISIDB dataset analysis showed that immune-infiltrating cells were significantly negatively correlated with NRF2 and BIRC5. CONCLUSION NRF2, BIRC5, and TP53 axis gene expressions are predictors of poor prognosis for ESCC. The overexpression of the NRF2/HO-1/BIRC5 axis may not be related to immune-infiltrating cells.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wan
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
19
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Li Z, Zhang M, Chen S, Dong W, Zong R, Wang Y, Fan S. BTN3A3 inhibits clear cell renal cell carcinoma progression by regulating the ROS/MAPK pathway via interacting with RPS3A. Cell Signal 2023; 112:110914. [PMID: 37806541 DOI: 10.1016/j.cellsig.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Butyrophilin subfamily 3 member A3 (BTN3A3) is a member of the immunoglobulin superfamily and functions as a tumor suppressor in multiple cancer types. Our study has revealed that in clear cell renal cell carcinoma (ccRCC), patients who express high levels of BTN3A3 experience longer survival times than those with lower expression. Further, we have observed that BTN3A3 inhibits the proliferation, migration, and invasion of ccRCC cells. Through the utilization of an immunoprecipitation assay followed by mass spectrometry, we have discovered that BTN3A3 binds directly to RPS3A. Knockdown of BTN3A3 led to increased cell proliferation, migration, and invasion. However, this effect was significantly reduced when RPS3A was simultaneously overexpressed. Previous reports have demonstrated that RPS3A positively regulates mitochondrial function and reactive oxygen species (ROS) levels. Our study has shown that overexpression of both BTN3A3 and RPS3A can increase cellular oxygen consumption rate (OCR) and ROS levels. Furthermore, we have observed that the addition of H2O2 can reverse the effects of BTN3A3 knockdown on cell proliferation and migration by increasing the cellular ROS level. ROS play a crucial role in regulating the MAPK pathway and tumor cell growth. To further explore this relationship, we examined RNA-Seq and immunoblotting data and found that BTN3A3 can negatively regulate the degree of activation of the MAPK signaling pathway. This finding suggests that the BTN3A3/RPS3A complex may regulate ccRCC progression by modulating MAPK pathways. Therefore, BTN3A3 could serve as both a prognostic marker and a potential therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Sihan Chen
- Central Laboratory, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Weiyu Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Rui Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| |
Collapse
|
21
|
Chang Q, Sun J, Zhao S, Li L, Zhang N, Yan L, Fan Y, Liu J. PBRM1 mutation and WDR72 expression as potential combinatorial biomarker for predicting the response to Nivolumab in patients with ccRCC: a tumor marker prognostic study. Aging (Albany NY) 2023; 15:13753-13775. [PMID: 38048211 PMCID: PMC10756125 DOI: 10.18632/aging.205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE Immune checkpoint therapy (ICT) provides a new idea for the treatment of advanced clear cell renal cell carcinoma (ccRCC), which can bring significant benefits to patients. However, the clinical application of ICT is limited because of the lack of predictive biomarkers to select potential responders. This study aims to propose a new biomarker to predict the response to Nivolumab in patients with ccRCC. MATERIALS AND METHODS The genes that significantly improve the prognosis of ccRCC were retrieved from The Cancer Genome Atlas (TCGA) database. The genomic and clinical data were from patients that had been registered in prospective clinical trials (CheckMate 009, CheckMate 010 and CheckMate 025). TCGA, Gene Expression Omnibus (GEO), and The Human Protein Atlas database were used to analyze the gene and protein expression of WD repeat-containing protein 72 (WDR72) in ccRCC. Gene Ontology (GO) & The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to dig relevant mechanisms of WDR72. Single sample gene set enrichment analysis (ssGSEA) was conducted to evaluate the role of WDR72 in immune infiltration. Cell proliferation assay, FAO and ATP quantification were used to explore and verify the molecular mechanisms. The expression of WDR72, FOXP3, CD8, and CPT1A was examined by IHC in 20 advanced ccRCC tissue samples at the Urology Department of our hospital. The MethSurv was used to identify PBRM1 and WDR72 gene methylation and its effect on prognosis of ccRCC. RESULTS WDR72 is the most significant gene for improving overall survival (OS) in ccRCC. In all three checkmates, OS and progression free survival (PFS) were found to be significantly higher in WDR72 high expression group than that in WDR72 low expression group (P=0.040 and P=0.012, respectively), and similar conclusions could be drawn from the PBRM1-mutation (MUT) compared with the PBRM1-wildtype (WT) (P=0.007 and P=0.006, respectively). What's more, high expression of WDR72 plus PBRM1-MUT as a combinatorial biomarker showed improved OS (HR=0.388, P=0.0026) and PFS (HR=0.39, P=0.0066) compared to low expression of WDR72 plus PBRM1-WT. Functional enrichment analysis showed that WDR72 was closely positively related to fatty acid degradation and fatty acid beta oxidation pathway in ccRCC. In vitro experiments showed that high expression of WDR72 can promote fatty acids oxidation and inhibit the proliferation of ccRCC cells. Immune analysis revealed that WDR72 high expression was associated with decreased infiltration of Treg cells and low ssGSEA score of check-point. IHC results showed that WDR72 was negatively correlated with FOXP3 expression (r=-0.506, P=0.023) and positively correlated with CPT1A expression (r=0.529, P=0.017). CONCLUSIONS The present study indicated that high expression of WDR72 may indicate a good prognosis of patients treated with Nivolumab and WDR72 expression combined with PBRM1 mutation could be more persuasive to predict the response for ICT in ccRCC patients.
Collapse
Affiliation(s)
- Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Luchao Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Liu Y, Wu G. The utilization of single-cell sequencing technology in investigating the immune microenvironment of ccRCC. Front Immunol 2023; 14:1276658. [PMID: 38090562 PMCID: PMC10715415 DOI: 10.3389/fimmu.2023.1276658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The growth and advancement of ccRCC are strongly associated with the presence of immune infiltration and the tumor microenvironment, comprising tumor cells, immune cells, stromal cells, vascular cells, myeloid-derived cells, and extracellular matrix (ECM). Nevertheless, as a result of the diverse and constantly evolving characteristics of the tumor microenvironment, prior advanced sequencing methods have frequently disregarded specific less prevalent cellular traits at varying intervals, thereby concealing their significance. The advancement and widespread use of single-cell sequencing technology enable us to comprehend the source of individual tumor cells and the characteristics of a greater number of individual cells. This, in turn, minimizes the impact of intercellular heterogeneity and temporal heterogeneity of the same cell on experimental outcomes. This review examines the attributes of the tumor microenvironment in ccRCC and provides an overview of the progress made in single-cell sequencing technology and its particular uses in the current focus of immune infiltration in ccRCC.
Collapse
Affiliation(s)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Iacobas DA, Obiomon EA, Iacobas S. Genomic Fabrics of the Excretory System's Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:9471-9499. [PMID: 38132440 PMCID: PMC10742519 DOI: 10.3390/cimb45120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent form of kidney cancer. Metastatic stages of ccRCC reduce the five-year survival rate to 15%. In this report, we analyze the ccRCC-induced remodeling of the five KEGG-constructed excretory functional pathways in a surgically removed right kidney and its metastasis in the chest wall from the perspective of the Genomic Fabric Paradigm (GFP). The GFP characterizes every single gene in each region by these independent variables: the average expression level (AVE), relative expression variability (REV), and expression correlation (COR) with each other gene. While the traditional approach is limited to only AVE analysis, the novel REV analysis identifies the genes whose correct expression level is critical for cell survival and proliferation. The COR analysis determines the real gene networks responsible for functional pathways. The analyses covered the pathways for aldosterone-regulated sodium reabsorption, collecting duct acid secretion, endocrine and other factor-regulated sodium reabsorption, proximal tubule bicarbonate reclamation, and vasopressin-regulated water reabsorption. The present study confirms the conclusion of our previously published articles on prostate and kidney cancers that even equally graded cancer nodules from the same tumor have different transcriptomic topologies. Therefore, the personalization of anti-cancer therapy should go beyond the individual, to his/her major cancer nodules.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Ehiguese Alade Obiomon
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
24
|
Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol 2023; 40:355. [PMID: 37955787 DOI: 10.1007/s12032-023-02225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal genitourinary cancers, with the highest mortality rate, and may remain undetected throughout its development. RCC can be sporadic or hereditary. Exploring the underlying genetic abnormalities in RCC will have important implications for understanding the origins of nonhereditary renal cancers. The treatment of RCC has evolved over centuries from the era of cytokines to targeted therapy to immunotherapy. A surgical cure is the primary treatment modality, especially for organ-confined diseases. Furthermore, the urologic oncology community focuses on nephron-sparing surgical approaches and ablative procedures when small renal masses are detected incidentally in conjunction with interventional radiologists. In addition to new combination therapies approved for RCC treatment, several trials have been conducted to investigate the potential benefits of certain drugs. This may lead to durable responses and more extended survival benefits for patients with metastatic RCC (mRCC). Several approved drugs have reduced the mortality rate of patients with RCC by targeting VEGF signaling and mTOR. This review better explains the signaling pathways involved in the RCC progression, oncometabolites, and essential biomarkers in RCC that can be used for its diagnosis. Further, it provides an overview of the characteristics of RCC carcinogenesis to assist in combating treatment resistance, as well as details about the current management and future therapeutic options. In the future, multimodal and integrated care will be available, with new treatment options emerging as we learn more about the disease.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
25
|
Zhou W, Hu Y, Wang B, Yuan L, Ma J, Meng X. Aberrant expression of PELI1 caused by Jagged1 accelerates the malignant phenotype of pancreatic cancer. Cell Signal 2023; 111:110877. [PMID: 37657587 DOI: 10.1016/j.cellsig.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers. PELI1 has been reported to promote cell survival and proliferation in multiple cancers. As of now, the role of PELI1 in pancreatic cancer is largely unknown. Here, we found that the PELI1 mRNA was higher expressed in pancreatic tumor tissues than in adjacent normal tissues, and the high PELI1 level in pancreatic cancer patients had a short survival time compared with the low level. Moreover, the results showed that PELI1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in vitro. Xenograft tumor experiments were used to determine the biological function of PELI1, and the results showed that PELI1 promoted tumor growth in vivo. Additionally, we found that Jagged1 activated PELI1 transcription in pancreatic cancer cells. To sum up, our results show that PELI1 affects the malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yuying Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Yuan
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
26
|
Li XM, Liu SP, Liu DM, Li Y, Cai XM, Su Y, Xie ZF. Identification of disulfidptosis-related genes and immune infiltration in lower-grade glioma. Open Med (Wars) 2023; 18:20230825. [PMID: 37900961 PMCID: PMC10612529 DOI: 10.1515/med-2023-0825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Lower-grade glioma (LGG), a prevalent malignant tumor in the central nervous system, requires accurate prediction and treatment to prevent aggressive progression. We aimed to explore the role of disulfidptosis-related genes (DRGs) in LGG, a recently discovered form of programmed cell death characterized by abnormal disulfide accumulation. Leveraging public databases, we analyzed 532 LGG tumor tissues (The Cancer Genome Atlas), 1,157 normal samples (Genotype-Tissue Expression), and 21 LGG tumor samples with 8 paired normal samples (GSE16011). Our research uncovered intricate relationships between DRGs and crucial aspects of LGG, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we identified significant heterogeneity among disulfidptosis sub-clusters and elucidated specific differential gene expression in LGG, with myeloid cell leukemia-1 (MCL1) as a key candidate. Machine learning techniques validated the relevance of MCL1, considering its expression patterns, prognostic value, diagnostic potential, and impact on immune infiltration. Our study offers opportunities and challenges to unravel potential mechanisms underlying LGG prognosis, paving the way for personalized cancer care and innovative immunotherapeutic strategies. By shedding light on DRGs, particularly MCL1, we enhance understanding and management of LGG.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-man Liu
- Breast Surgery Clinics, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Su
- Department of Microbiology & Immunology, Shantou University Medical College, 22 Xinling Road, Shantou515041, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
27
|
Ma C, Jin Y, Wang Y, Xu H, Zhang J. Beyond liver cancer, more application scenarios for alpha-fetoprotein in clinical practice. Front Oncol 2023; 13:1231420. [PMID: 37781207 PMCID: PMC10540843 DOI: 10.3389/fonc.2023.1231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a commonly used clinical biomarker. Before 1970, the two-way agar diffusion method was mainly used, and the specificity of AFP in the diagnosis of primary liver cancer was satisfactory. However, its positivity rate was not very high. The diagnostic value of AFP is changing with the evolution of detection methods. Here, we performed a literature search to identify English-language publications. The search was performed from January 2015 to April 2023 using the PubMed database and the following terms in [Titles/Abstracts]: alpha-fetoprotein, clinical practice, detection, etc. The references of retrieved articles were also screened to broaden the search. Studies referring to liver cancer and AFP detection methods were excluded. In this review, several clinical application scenarios for AFP were systematically reviewed, and its potential detection value in the future was discussed.
Collapse
Affiliation(s)
- Chenyu Ma
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuhan Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Huaguo Xu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Yang X, Yu X, Nie H, Jiang W, Zhou J, Ou C, He X. Comprehensive analysis of prognostic value and immune infiltration of IAPs family in hepatocellular carcinoma. J Cancer 2023; 14:2848-2866. [PMID: 37781078 PMCID: PMC10539558 DOI: 10.7150/jca.87590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality rates. The inhibitors of apoptosis (IAP) family act as oncogenes in various tumor types; however, their functions in HCC remain unclear. Here, we used integrated bioinformatics analysis and experimental verification to assess the expression and the prognostic and clinical value of the IAP family in HCC. Using the University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) and the Tumor Immune Estimation Resource (TIMER), we analyzed the expression profiles of IAP family members in HCC tissue, normal tissues, and in patients with different stages and grades of HCC. We further verified the expression level of BIRC2 in 25 HCC samples and matched adjacent normal tissues using quantitative real-time PCR (qRT-PCR), and analyzed its correlation with the marker gene of T-helper type 1 cells (Th1)-STAT1. Meanwhile, the association between BIRC2 and the immunotherapeutic response or immunomodulators was confirmed using the Biomarker Exploration of Solid Tumors (BEST) database. The results showed that NAIP, BIRC2, BIRC3, XIAP, BIRC5, and BIRC6 mRNAs were overexpressed in HCC. The clinical stages, pathological grades, and other clinicopathological features of HCC were closely related to the expression levels of the IAP family members, especially the BIRC2 and BIRC5, which were found to be potential prognostic biomarkers for HCC. Expression of the IAPs was strongly associated with immune cell infiltration. Based on the infiltrative status of various immune cells, HCC patients with high BIRC2 and BIRC5 expression demonstrated poor overall survival (OS) rates. In patients with HCC, BIRC2 expression was noticeably elevated. Concurrently, the expression levels of BIRC2 and STAT1 showed a favorable correlation. BEST database analysis revealed that BIRC2 was a negative predictor of responsiveness to anti-programmed cell death ligand 1 (PD-L1)/cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) inhibitor treatment in HCC, and BIRC2 mRNA expression levels were positively correlated with the expression levels of the immune checkpoint genes programmed cell death protein 1 (PD-1), PD-L1, and CTLA-4 in HCC. Consequently, the IAP family may play a role in carcinogenesis and cancer-immune system interactions in HCC. Our results demonstrate that IAP family members may be viable predictive biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Kościuszko M, Buczyńska A, Krętowski AJ, Popławska-Kita A. Could Oxidative Stress Play a Role in the Development and Clinical Management of Differentiated Thyroid Cancer? Cancers (Basel) 2023; 15:3182. [PMID: 37370792 DOI: 10.3390/cancers15123182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Increased oxidative stress (OS) has been implicated as a relevant risk factor for cancer progression. Furthermore, patients diagnosed with differentiated thyroid cancer (DTC) have been characterized by an increased OS status. Therefore, assessing OS status could potentially be considered a useful tool in DTC clinical management. This measurement could be particularly valuable in personalizing treatment protocols and determining new potential medical targets to improve commonly used therapies. A literature review was conducted to gather new information on DTC clinical management, with a particular focus on evaluating the clinical utility of OS. These meta-analyses concentrate on novel approaches that employ the measurement of oxidative-antioxidant status, which could represent the most promising area for implementing clinical management.
Collapse
Affiliation(s)
- Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Angelika Buczyńska
- Clinical Research Center, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
- Clinical Research Center, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
30
|
Guo SB, Du S, Cai KY, Cai HJ, Huang WJ, Tian XP. A scientometrics and visualization analysis of oxidative stress modulator Nrf2 in cancer profiles its characteristics and reveals its association with immune response. Heliyon 2023; 9:e17075. [PMID: 37342570 PMCID: PMC10277599 DOI: 10.1016/j.heliyon.2023.e17075] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Background Nrf2, an essential and fascinating transcription factor, enjoys a dual property in the occurrence and development of inflammation and cancer. For over two decades, numerous studies regarding Nrf2 in cancer have been reported, whereas there is still a lack of a scientometrics and visualization analysis of Nrf2 in cancer. Hence, a scientometric study regarding the oxidative stress modulator Nrf2 was implemented. Methods After the quality screening, we defined 7168 relevant studies from 2000 to 2021. CiteSpace, VOSviewer, R software, and GraphPad Prism were used for the following scientometric study and visualization analysis, including field profiles, research hotspots, and future predictions. Results The total number of publications and citations are 1058 and 54,690, respectively. After polynomial fitting curve analysis, two prediction functions of the annual publication number (y = 3.3909x2 - 13585x + 1 E+07) and citation number (185.45x2 - 743669x + 7 E+08) were generated. After scientometric analysis, we found that Biochemistry Molecular Biology correlates with Nrf2 in cancer highly, and Free Radical Biology and Medicine is a good choice for submitting Nrf2-related manuscripts. The current research hotspots of Nrf2 in cancer mainly focus on cancer therapy and its cellular and molecular mechanisms. "antioxidant response element (87.5)", "gene expression (43.98)", "antioxidant responsive element (21.14)", "chemoprevention (20.05)", "carcinogenesis (19.2)", "cancer chemoprevention (18.45)", "free radical (17.15)", "response element (14.17)", and "chemopreventive agent (14.04)" are important for cancer therapy study. In addition, "glutathione-S-transferase (47)", "keap1 (15.39)", and "heme oxygenase 1 gene (24.35)" are important for inflammation and cell fate study. More interestingly, by performing an "InfoMap" algorithm, the thematic map showed that the "immune response" is essential to oxidative stress modulator Nrf2 but not well developed, indicating it deserves further exploration. Conclusion This study revealed field profiles, research hotspots, and future directions of oxidative stress modulator Nrf2 in inflammation and cancer research, and our findings will offer a vigorous roadmap for further studies in this field.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Sheng Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Ke-Yu Cai
- Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, PR China
| | - Han-Jia Cai
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
31
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
32
|
Radovanović M, Petrović M, Šantrić V, Milojević B, Zubelić A, Isaković A. P53 and survivin expression in renal cell carcinoma. Urol Ann 2023; 15:186-190. [PMID: 37304521 PMCID: PMC10252781 DOI: 10.4103/ua.ua_91_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/13/2023] Open
Abstract
Objective Mutation of p53 is detected in more than 50% of human cancers, expression of p53 has a potential prognostic value in patients with renal cell carcinoma (RCC). Survivin is a member of the inhibitor of apoptosis protein family, its overexpression is observed in many malignancies, including RCC. The aim of the study was to estimate a correlation between survivin and p53 expression in tumor samples and the histologic type of a tumor, tumor stage, tumor grade, and survival of patients. Materials and Methods Tumor samples were collected from surgical specimens of 90 patients who underwent radical or partial nephrectomy for RCC between November 2017 and July 2020. Tumors were staged according to the UICC (The Union for International Cancer Control) TNM classification system and histopathologically graded according to Fuhrman nuclear grade system. Histopathological diagnosis was confirmed with standard light microscopic evaluation, using hematoxylin and eosin staining and standard p53 and survivin antibodies. Results Positive p53 staining was observed in 36.7% of tumor specimens and 24.4% were survivin positive. There was a statistically significant correlation between p53 or survivin expression and histologic subtype of clear cell RCC as well as Type I and II of papillary RCC. There was a statistically significant correlation between p53 expression and tumor size, stage, and grade. The p53 or survivin expression was related to lower overall survival. Conclusion The results of this study suggest that p53 overexpression and survivin positivity in RCC patients could be associated with poor prognosis. Thus, these proteins could be used as prognostic markers in RCC.
Collapse
Affiliation(s)
- Milan Radovanović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Petrović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Veljko Šantrić
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bogomir Milojević
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksa Zubelić
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
33
|
Kim KS, Moon KM, Min KW, Jung WY, Shin SJ, Lee SW, Kwon MJ, Kim DH, Oh S, Noh YK. Low gamma-butyrobetaine dioxygenase (BBOX1) expression as a prognostic biomarker in patients with clear cell renal cell carcinoma: a machine learning approach. J Pathol Clin Res 2023; 9:236-248. [PMID: 36864013 PMCID: PMC10073934 DOI: 10.1002/cjp2.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Gamma-butyrobetaine dioxygenase (BBOX1) is a catalyst for the conversion of gamma-butyrobetaine to l-carnitine, which is detected in normal renal tubules. The purpose of this study was to analyze the prognosis, immune response, and genetic alterations associated with low BBOX1 expression in patients with clear cell renal cell carcinoma (RCC). We analyzed the relative influence of BBOX1 on survival using machine learning and investigated drugs that can inhibit renal cancer cells with low BBOX1 expression. We analyzed clinicopathologic factors, survival rates, immune profiles, and gene sets according to BBOX1 expression in a total of 857 patients with kidney cancer from the Hanyang University Hospital cohort (247 cases) and The Cancer Genome Atlas (610 cases). We employed immunohistochemical staining, gene set enrichment analysis, in silico cytometry, pathway network analyses, in vitro drug screening, and gradient boosting machines. BBOX1 expression in RCC was decreased compared with that in normal tissues. Low BBOX1 expression was associated with poor prognosis, decreased CD8+ T cells, and increased neutrophils. In gene set enrichment analyses, low BBOX1 expression was related to gene sets with oncogenic activity and a weak immune response. In pathway network analysis, BBOX1 was linked to regulation of various T cells and programmed death-ligand 1. In vitro drug screening showed that midostaurin, BAY-61-3606, GSK690693, and linifanib inhibited the growth of RCC cells with low BBOX1 expression. Low BBOX1 expression in patients with RCC is related to short survival time and reduced CD8+ T cells; midostaurin, among other drugs, may have enhanced therapeutic effects in this context.
Collapse
Affiliation(s)
- Kyu-Shik Kim
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyoung Min Moon
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Lee
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sukjoong Oh
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
34
|
Yuan Y, Liu Z, Li B, Gong Z, Piao C, Liu Z, Zhang Z, Dong X. FBXO30 functions as a tumor suppressor and an E3 ubiquitin ligase for hZIP1‑mediated HIF‑1α degradation in renal cell carcinoma. Int J Oncol 2023; 62:40. [PMID: 36799168 PMCID: PMC9946804 DOI: 10.3892/ijo.2023.5488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Studies on clear cell renal cell carcinoma (ccRCC) are gaining momentum due to its high malignancy and potential to metastasize. F‑box protein 30 (FBXO30) is a member of the F‑box protein family; however, its role and mechanism in cancer remains to be fully elucidated. Western blotting, reverse transcription‑quantitative PCR and immunohistochemsitry were performed to detect the expression levels of FBXO30 in ccRCC tissues and adjacent normal tissues. Tumor biological function assays and animal experiments were conducted to clarify the inhibitory effect of FBXO30 on the progression and metastasis of ccRCC. Protein half‑life assay, MG132 inhibition assay, immunofluorescence assay and co‑immunoprecipitation assay were performed to explore the ubiquitination mechanism of FBXO30 and HIF‑1α. Zinc supplementation assay was used to verify the regulatory relationship between human ZRT, IRT‑like protein 1 (hZIP1), FBXO30 and HIF‑1α. The present study revealed that the expression levels of FBXO30 were lower in ccRCC tissues compared with those in normal adjacent tissues. In addition, FBXO30 inhibited the tumorigenesis and metastatic capacity of ccRCC cells in vivo and in vitro. FBXO30 mediated the ubiquitination and degradation of hypoxia‑inducible factor‑1α (HIF‑1α) in ccRCC cells under normoxia, thereby inhibiting the oncogenic effect of HIF‑1α. Notably, hZIP1 served as an upstream regulator of FBXO30, regulating the expression of FBXO30 and HIF‑1α by recruiting Zn2+. In conclusion, the present data suggested that FBXO30 is a novel E3 ubiquitination ligase that can function as a tumor suppressor in ccRCC, and the hZIP1/Zn2+/FBXO30/HIF‑1α axis may provide potential biomarkers or therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Yulin Yuan
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zimeng Liu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Bohan Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zheng Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhuonan Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China,Correspondence to: Professor Xiao Dong, Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, Liaoning 110002, P.R. China, E-mail:
| |
Collapse
|
35
|
Gao S, Liu S, Wei W, Qi Y, Meng F. Advances in targeting of miR‑10‑associated lncRNAs/circRNAs for the management of cancer (Review). Oncol Lett 2023; 25:89. [PMID: 36817057 PMCID: PMC9931999 DOI: 10.3892/ol.2023.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
With advancements in sequencing technologies, an increasing number of aberrantly expressed long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have been identified in various types of cancer. lncRNAs and circRNAs are now well-established tumor-influencing factors in cancer, driving not only tumor proliferation and invasion, but also cancer progression, drug resistance and metastatic recurrence. The majority of lncRNAs and circRNAs influence cancer progression by targeting microRNAs (miRNAs/miRs). miR-10a and miR-10b, key members of the miR-10 family, have been shown to play important regulatory roles in cell proliferation, differentiation to cancer progression, and development. Manual evaluation and grouping according to different types of competing endogenous RNA and tumor was performed. The review outlined the current state of knowledge on the regulation of miR-10 family-related lncRNAs and circRNAs. The involvement of lncRNAs and circRNAs in the biogenesis, maturation and function of malignant tumors through the miR-10 family, and the key gene targets and signaling cascades that lncRNAs and circRNAs regulate through the miR-10 family were summarized. Based on the findings of this review, it can be hypothesized that lncRNAs and circRNAs targeting the miR-10 family may serve as diagnostic/prognostic markers and/or therapeutic targets for the management of cancer.
Collapse
Affiliation(s)
- Shengyu Gao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weiwei Wei
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yanxiu Qi
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Fanshi Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Correspondence to: Professor Fanshi Meng, Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang 154002, P.R. China, E-mail:
| |
Collapse
|
36
|
Wang Y, He P, Zhou X, Wang C, Fu J, Zhang D, Liao D, Zhou Z, Wu C, Gong W. Gene mutation profiling and clinical significances in patients with renal cell carcinoma. Clinics (Sao Paulo) 2023; 78:100259. [PMID: 37515929 PMCID: PMC10410166 DOI: 10.1016/j.clinsp.2023.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVES The pathological mechanisms of patients with Renal Cell Carcinoma (RCC) remain defined. This study aimed to evaluate relationships between the landscape of gene mutations and their clinical significance in RCC patients. METHODS Tissue and peripheral blood samples of 42 patients with RCC were collected and performed for the Next Generation Sequencing (NGS) with Geneseeq PrimeTM 425-gene panel probes. Their landscapes of gene mutation were analyzed. We also carried out an evaluation of Tumor-Node-Metastasis (TNM) staging, RENAL nephelometry score, surgery, and targeted drug treatment of patients. Then we compared the correlations of landscape in gene mutations and the prognosis. RESULTS The most common gene alternations, including BAP1, PBRM1, SETD2, CSF1R, NPM1, EGFR, POLE, RB1, and VHL genes, were identified in tissue and blood samples of 75% of patients. EGFR, POLE, and RB1 gene mutations frequently occurred in relapsed and metastatic patients. BAP1, CCND2, KRAS, PTPN11, ERBB2/3, JAK2, and POLE were presented in the patients with > 9 RENAL nephelometry score. Univariable analysis indicated that SETD2, BAP1, and PBRM1 genes were key factors for Disease-Free Survival (DFS). Multivariable analysis confirmed that mutated SETD1, NPM1, and CSF1R were critical factors for the Progression Free Survival (PFS) of RCC patients with target therapy. CONCLUSIONS Wild-type PBRM1 and mutated BAP1 in patients with RCC were strongly associated with the outcomes of the patient. The PFS of the patients with SETD2, NPM1, and CSF1R mutations were significantly shorter than those patients without variants.
Collapse
Affiliation(s)
- Yongquan Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Xiaozhou Zhou
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Cong Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Jian Fu
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Dawei Zhang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Deyang Liao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Chunman Wu
- Medicine Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Wei Gong
- Department of Biochemistry, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Road, Shapingba District, Chongqing, China.
| |
Collapse
|
37
|
Sonicated Extract from the Aril of Momordica Cochinchinensis Inhibits Cell Proliferation and Migration in Aggressive Prostate Cancer Cells. J Toxicol 2022; 2022:1149856. [PMID: 36605288 PMCID: PMC9810401 DOI: 10.1155/2022/1149856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Momordica cochinchinensis or gac fruit has been reported to have several biological activities, including antioxidation, anti-inflammatory, and anticancer activities. However, the effect on cancer cell metastasis has not been extensively studied. With this aim, the extract from the aril part was selected and investigated for prostate cancer cell migration. The aril extracts were prepared as boiled extract, sonicated extract, ethanol extract, and HAE (hexane:acetone:ethanol; 2 : 1 : 1) extract, while the prostate cancer cell models were PC-3 and LNCaP cells. An MTT assay was performed to compare the antiproliferative effect between prostate cancer cells and normal Vero cells. As a result, the sonicated extract had the highest efficiency in PC-3 cells, with IC50 values of 2 mg/mL and 0.59 mg/mL for 48 and 72 h, respectively, while it had less of an effect in LNCaP cells and was not toxic to normal cells. Cell damage was further confirmed using LDH and cell cycle analysis. As a result, the sonicated extract did not cause cell damage or death and only inhibited cell proliferation. The effect on cancer metastasis was further examined by wound healing, transwell migration assays, and western blotting. The results demonstrated that the sonicated extract inhibited PC-3 cell migration and decreased MMP-9 but increased TIMP-1 expression. All these results support that gac fruit is a valuable source for further development as an anticancer agent for prostate cancer patients.
Collapse
|
38
|
Izmailova O, Kabaliei A, Shynkevych V, Shlykova O, Kaidashev I. PPARG agonist pioglitazone influences diurnal kidney medulla mRNA expression of core clock, inflammation-, and metabolism-related genes disrupted by reverse feeding in mice. Physiol Rep 2022; 10:e15535. [PMID: 36511486 PMCID: PMC9746034 DOI: 10.14814/phy2.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.
Collapse
|
39
|
Amendolare A, Marzano F, Petruzzella V, Vacca RA, Guerrini L, Pesole G, Sbisà E, Tullo A. The Underestimated Role of the p53 Pathway in Renal Cancer. Cancers (Basel) 2022; 14:cancers14235733. [PMID: 36497215 PMCID: PMC9736171 DOI: 10.3390/cancers14235733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.
Collapse
Affiliation(s)
- Alessandra Amendolare
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council—CNR, 70126 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-0805929672
| |
Collapse
|
40
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
41
|
Tanvir I, Hassan A, Albeladi F. DNA Methylation and Epigenetic Events Underlying Renal Cell Carcinomas. Cureus 2022; 14:e30743. [DOI: 10.7759/cureus.30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
42
|
Li Y, Du Y, Zhang Y, Chen C, Zhang J, Zhang X, Zhang M, Yan Y. Machine learning algorithm-based identification and verification of characteristic genes in acute kidney injury. Front Med (Lausanne) 2022; 9:1016459. [PMID: 36313991 PMCID: PMC9606399 DOI: 10.3389/fmed.2022.1016459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute kidney injury is a common renal disease with high incidence and mortality. Early identification of high-risk acute renal injury patients following renal transplant could improve their prognosis, however, no biomarker exists for early detection. Methods The GSE139061 dataset was used to identify hub genes in 86 DEGs between acute kidney injury and control samples using three machine learning algorithms (LASSO, random forest, and support vector machine-recursive feature elimination). We used GSEA to identify the related signal pathways of six hub genes. Finally, we validated these potential biomarkers in an in vitro hypoxia/reoxygenation injury cell model using RT-qPCR. Results Six hub genes (MDFI, EHBP1L1, FBXW4, MDM4, RALYL, and ESM1) were identified as potentially predictive of an acute kidney injury. The expression of ESM1 and RALYL were markedly increased in control samples, while EHBP1L1, FBXW4, MDFI, and MDM4 were markedly increased in acute kidney injury samples. Conclusion We screened six hub genes related to acute kidney injury using three machine learning algorithms and identified genes with potential diagnostic utility. The hub genes identified in this study might play a significant role in the pathophysiology and progression of AKI. As such, they might be useful for the early diagnosis of AKI and provide the possibility of improving the prognosis of AKI patients.
Collapse
Affiliation(s)
- Yinghao Li
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Yanlong Zhang
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chao Chen
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yong Yan,
| | - Min Zhang
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,Min Zhang,
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,Xin Zhang,
| |
Collapse
|
43
|
Li H, Sun X, Li J, Liu W, Pan G, Mao A, Liu J, Zhang Q, Rao L, Xie X, Sheng X. Hypoxia induces docetaxel resistance in triple-negative breast cancer via the HIF-1α/miR-494/Survivin signaling pathway. Neoplasia 2022; 32:100821. [PMID: 35985176 PMCID: PMC9403568 DOI: 10.1016/j.neo.2022.100821] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Cytotoxic chemotherapy is the major strategy to prevent and reduce triple-negative breast cancer (TNBC) progression and metastasis. Hypoxia increases chemoresistance and is associated with a poor prognosis for patients with cancer. Based on accumulating evidence, microRNAs (miRNAs) play an important role in acquired drug resistance. However, the role of miRNAs in hypoxia-induced TNBC drug resistance remains to be clarified. Here, we found that hypoxia induced TNBC docetaxel resistance by decreasing the miR-494 level. Modulating miR-494 expression altered the sensitivity of TNBC cells to DTX under hypoxic conditions. Furthermore, we identified Survivin as a direct miR-494 target. Hypoxia upregulated survivin expression. In a clinical study, the HIF-1α/miR-494/Survivin signaling pathway was also active in primary human TNBC, and miR-494 expression negatively correlated with HIF-1α and survivin expression. Finally, in a xenograft model, both miR-494 overexpression and the HIF-1α inhibitor PX-478 increased the sensitivity of TNBC to DTX by suppressing the HIF-1α/miR-494/Survivin signaling pathway in vivo. In conclusion, treatments targeting the HIF-1α/miR-494/Survivin signaling pathway potentially reverse hypoxia-induced drug resistance in TNBC.
Collapse
Affiliation(s)
- Hongchang Li
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Xianhao Sun
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Anwei Mao
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Qing Zhang
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China
| | - Longhua Rao
- Department of General Surgery, Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China.
| | - Xiaofeng Xie
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, China.
| | - Xia Sheng
- Department of Pathology, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University. 170 Xinsong Rd, Shanghai, China.
| |
Collapse
|
44
|
Zhou X, Zhou X, Yao L, Zhang X, Cong R, Luan J, Zhang T, Song N. Organophosphate flame retardant TDCPP: A risk factor for renal cancer? CHEMOSPHERE 2022; 305:135485. [PMID: 35764118 DOI: 10.1016/j.chemosphere.2022.135485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a chlorinated organophosphate flame retardants(OPFRs), is widely used in a range of plastic foams, resins, and latexes. It can be detected in human tissues, including urine, and milk. Recent research has suggested that TDCPP has neurotoxic, reproductive, and potentially carcinogenic. In our study, we proposed a novel method for predicting the gene associated with tumor-compound interactions. We firstly used The Comparative Toxicogenomics Database (CTD) and downloaded potentially interactive genes about TDCPP in renal carcinoma. Gene expression data and the corresponding clinical information of the Kidney renal clear cell cancer (KIRC) patients were obtained from The Cancer Genome Atlas database (TCGA). Data from normal people in The Genotype-Tissue Expression (GTEx) databases was used to supplement the calculations. After being predicted by PharmMapper database, and validated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, 25 genes were selected to construct protein-protein interaction network analysis. The prognostic value of these genes was evaluated with Kaplan-Meier analysis, and four interactive genes were selected. Gene set variation analysis and drug-target binding prediction proved the hub gene has a potential relationship with renal clear cell carcinoma. We then used the ChEA3 (Chip-X Enrichment Analysis, Version 3) database to predict the upstream of these interactive genes. Molecular docking was used to predict the binding of these transcription factors to TDCPP and interactive genes to TDCPP. Moreover, in cell lines and in vivo experiments demonstrated the cancer-promoting effect of TDCPP. The expression of the interactive genes was verified by qPCR and Western blot. Combining binding energy and qPCR results, we choose EPAS1 to verify its function in renal carcinoma cell lines. Our study provides a novel method to predict the potential interactive genes between TDCPP and renal cancer, which may reveal potential targets for the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, 845350, China.
| |
Collapse
|
45
|
Bian C, Su J, Zheng Z, Wei J, Wang H, Meng L, Xin Y, Jiang X. ARTS, an unusual septin, regulates tumorigenesis by promoting apoptosis. Biomed Pharmacother 2022; 152:113281. [PMID: 35714512 DOI: 10.1016/j.biopha.2022.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Apoptosis plays particularly important roles in tumorigenesis through various mechanisms. Apoptosis can be initiated by both extrinsic and intrinsic signals centered in and coming from the mitochondria. Antiapoptotic proteins promote tumor progression, and the occurrence and progression of tumors are closely related to antiapoptotic protein expression. As the only member of the septin gene family with proapoptotic function, apoptosis-related proteins in the TGF-β signaling pathway (ARTS) has received extensive attention for its unique structure. In contrast, unlike other known inhibitors of apoptosis protein (IAP) antagonists, ARTS exhibits a stronger tumor suppressor potential. Recent research has shown that ARTS can bind and inhibit XIAP and Bcl-2 directly or assist p53 in the degradation of Bcl-XL. Here, we review recent advances in the molecular mechanisms by which the proapoptotic protein ARTS, with its unique structure, inhibits tumorigenesis. We also discuss the possibility of mimicking ARTS to develop small-molecule drugs.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
46
|
Yu R, Zhou Y, Shi S, Wang X, Huang S, Ren Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154182. [PMID: 35636172 DOI: 10.1016/j.phymed.2022.154182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Icariside II (ICS II) is an active flavonoid having anti-tumor properties. However, the role of ICS II in renal cell carcinoma (RCC) and its underlying mechanisms have not been investigated to date. In this study, we demonstrated that ICS II inhibited proliferation, migration, and invasion of RCC cells. Furthermore, ferroptosis, a novel form of cell death, induced in RCC cells by ICS II, accompanied by accumulation of Fe2+, MDA (lipid peroxidation), and ROS (reactive oxygen species), and reduced GSH levels. The underlying mechanism was found to be the downregulation of GPX4, independent of p53, that occurs during ICS II-induced ferroptosis. Overexpression of GPX4 reversed the ferroptosis induced by ICS II. Moreover, ICS II treatment resulted in the upregulation of miR-324-3p, which directly targets GPX4. Overall, our results suggested that ICS II-induced ferroptosis via the miR-324-3p/GPX4 axis in RCC cells could be a promising therapeutic agent for RCC.
Collapse
Affiliation(s)
- Rui Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Youfeng Zhou
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou NO2. Hospital, Ningbo, China
| | - Shufeng Shi
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou NO2. Hospital, Ningbo, China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou NO2. Hospital, Ningbo, China
| | - Shuaishuai Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou NO2. Hospital, Ningbo, China
| | - Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou NO2. Hospital, Ningbo, China.
| |
Collapse
|
47
|
Shlyapnikov YM, Malakhova EA, Potoldykova NV, Svetocheva YA, Vinarov AZ, Zinchenko DV, Zernii EY, Zamyatnin AA, Shlyapnikova EA. Non-Invasive Diagnostics of Renal Cell Carcinoma Using Ultrasensitive Immunodetection of Cancer-Retina Antigens. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:658-666. [PMID: 36154884 DOI: 10.1134/s0006297922070070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Renal cell carcinoma (RCC) is the most common urological malignancy with a high mortality and low detection rate. One of the approaches to improving its diagnostics may be the search for new non-invasive biomarkers in liquid biopsy and development of more sensitive methods for their detection. Cancer-retina antigens, which are known to be aberrantly expressed in malignant tumors, are present in liquid biopsy at extremely low concentrations. Using the developed multiplex immunoassay with a detection limit of 0.1 pg/ml, urine and serum samples of 89 patients with RCC and 50 non-cancer patients were examined for the presence of cancer-retina antigens (arrestin, recoverin, rhodopsin kinase, and transducin); the difference between the RCC and control groups was evaluated with the χ2 test. The results showed high diagnostic efficiency of a combination of arrestin and recoverin: at a threshold of 0.1 pg/ml, the sensitivity was 96%, specificity 92%, and AUC = 0.96 (95% confidence interval, 0.93-0.99). Seven days after nephrectomy, the concentration of the antigens returned to the level characteristic of the control group. Therefore, arrestin in a combination with recoverin can serve as a diagnostic non-invasive urinary biomarker of RCC.
Collapse
Affiliation(s)
- Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Ekaterina A Malakhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Natalia V Potoldykova
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Yana A Svetocheva
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Andrei Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 117997, Russia.
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, 354340, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Elena A Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
48
|
Abstract
PURPOSE OF THE REVIEW Papillary renal cell carcinoma (pRCC) is the second most frequent renal cancer subtype and represents 15-20% of all RCC. Classification of pRCC is changing because novel tumour entities have been discovered in the last years. In this review, we summarise recent studies relevant for the understanding of the molecular complexity and the broader differential diagnosis of pRCC. RECENT FINDINGS It has been 25 years ago, that pRCC was morphologically subdivided into type 1 and type 2. Recently described tumour entities in the 2022 WHO classification challenged this concept and allow a new view on the molecular background in pRCC. Biphasic hyalinizing psammomatous RCC and papillary renal neoplasm with reversed polarity are emerging tumour entities derived from the new concept of molecularly defined RCC subtypes. Immune checkpoint inhibition and tyrosine kinase inhibitors have been introduced as the new backbone in the first-line treatment of advanced pRCCs. To identify novel targeted treatments for patients with pRCC it is crucial to investigate the specific molecular background of pRCC considering emerging pRCC subtypes. SUMMARY In the future, a deeper understanding of the correlation between molecular aberrations and new pRCC subtypes may improve the classification of pRCC patients and could reveal potential predictive biomarkers for each subgroup.
Collapse
Affiliation(s)
- Silvia Angori
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr António Bernardino de Almeida
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
p53 and Its Isoforms in Renal Cell Carcinoma—Do They Matter? Biomedicines 2022; 10:biomedicines10061330. [PMID: 35740352 PMCID: PMC9219959 DOI: 10.3390/biomedicines10061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a transcription al factor responsible for the maintenance of cellular homeostasis. It has been shown that more than 50% of tumors are connected with mutations in the Tp53 gene. These mutations cause a disturbance in cellular response to stress, and eventually, cancer development. Apart from the full-length p53, at least twelve isoforms of p53 have been characterized. They are able to modulate p53 activity under stress conditions. In 2020, almost a half of million people around the world were diagnosed with renal cancer. One genetic disturbance which is linked to the most common type of kidney cancer, renal cell carcinoma, RCC, occurs from mutations in the VHL gene. Recent data has revealed that the VHL protein is needed to fully activate p53. Disturbance of the interplay between p53 and VHL seems to explain the lack of efficient response to chemotherapy in RCC. Moreover, it has been observed that changes in the expression of p53 isoforms are associated with different stages of RCC and overall survival. Thus, herein, an attempt was made to answer the question whether p53 and its isoforms are important factors in the development of RCC on the one hand, and in positive response to anti-RCC therapy on the other hand.
Collapse
|
50
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|