1
|
Lee CS, Sim J, Kim SY, Lee H, Roh TY, Hwang CS. Formyl-methionine-mediated eukaryotic ribosome quality control pathway for cold adaptation. Mol Cell 2025; 85:602-619.e16. [PMID: 39721582 DOI: 10.1016/j.molcel.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Protein synthesis in the eukaryotic cytosol can start using both conventional methionine and formyl-methionine (fMet). However, a mechanism, if such exists, for detecting and regulating the incorporation of fMet (instead of Met) during translation, thereby preventing cellular toxicity of nascent fMet-bearing (fMet-) polypeptides, remains unknown. Here, we describe the fMet-mediated ribosome quality control (fMet-RQC) pathway in Saccharomyces cerevisiae. A eukaryotic translation initiation factor 3 subunit c, Nip1, specifically recognizes N-terminal fMet in nascent polypeptides, recruiting a small GTPase, Arf1, to induce ribosome stalling, largely with 41-residue fMet-peptidyl tRNAs. This leads to ribosome dissociation and subsequent stress granule formation. Loss of the fMet-RQC pathway causes the continued synthesis of fMet polypeptides, which inhibits essential N-terminal Met modifications and promotes their coaggregation with ribosomes. This fMet-RQC pathway is important for the adaptation of yeast cells to cold stress by promoting stress granule formation and preventing a buildup of toxic fMet polypeptides.
Collapse
Affiliation(s)
- Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jaehwan Sim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Kim D, Park KS, Hwang CS. Development of an enhanced anti-pan-N-formylmethionine-specific antibody. Biotechniques 2025; 77:46-55. [PMID: 39973362 DOI: 10.1080/07366205.2025.2467583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Both bacterial and eukaryotic ribosomes can initiate protein synthesis with formylmethionine (fMet), but detecting fMet-bearing peptides and fMet-bearing proteins has been challenging due to the lack of effective anti-pan-fMet antibodies. Previously, we developed a polyclonal anti-fMet antibody using a fMet-Gly-Ser-Gly-Cys pentapeptide that detects those fMet-bearing peptides and fMet-bearing proteins regardless of their sequence context. In this study, we significantly improved the antibody's specificity and affinity by using a mixture of fMet-Xaa-Cys tripeptides (Xaa, any of the 20 amino acids) as the immunogen. This newly optimized anti-fMet antibody is a powerful, cost-effective tool for detecting fMet-bearing proteins across species. Furthermore, this approach provides a foundation for developing anti-pan-specific antibodies targeting other N-terminal modifications through acylation, alkylation, oxidation, arginylation, etc.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Stoppe C, Hill A, Christopher KB, Kristof AS. Toward Precision in Nutrition Therapy. Crit Care Med 2025; 53:e429-e440. [PMID: 39688452 PMCID: PMC11801434 DOI: 10.1097/ccm.0000000000006537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Precision in critical care nutrition is paramount, as it focuses nutrition interventions on those patients most likely to benefit, or those who might potentially be harmed. Critical care nutrition must therefore be tailored to individual metabolic needs as determined by factors that control the capacity for tissue homeostasis and anabolic responses. This ideally involves the accurate and timely assessment of macronutrient and micronutrient requirements, a careful evaluation of metabolic response mechanisms and the identification of circumstances that might interfere with the productive utilization of dietary substrates. Specific surrogate markers of metabolic response, such as blood glucose levels, urea levels, or nitrogen balance, might be used to evaluate the metabolic readiness for nutrition and to establish the timing, nature, and clinical effectiveness of nutrition interventions. Despite the pressing need to further develop more targeted approaches in critically ill patients, indices of immediate metabolic responses that correlate with favorable clinical outcomes are lacking. In addition, the development of precision approaches might address timely adjustments in protein, energy, or micronutrient supplementation based on evolving clinical conditions. Here, we review why precision tools are needed in critical care nutrition, our progress thus far, as well as promising approaches and technologies by which multidisciplinary healthcare teams can improve quality of care and clinical outcomes by individualizing nutrition interventions.
Collapse
Affiliation(s)
- Christian Stoppe
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Aileen Hill
- Department of Anesthesiology and Department of Operative Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Arnold S. Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canda
- Departments of Critical Care and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Luo S, Yin J, Zhang J, Li P, Wen T, Li K, Tang J, Wang X, Li A, Chen L. Genetically Predicted Leucine Level Mediates Association Between CD4/CD8br T Lymphocytes and Insomnia. Cell Mol Neurobiol 2025; 45:15. [PMID: 39841266 PMCID: PMC11754360 DOI: 10.1007/s10571-025-01533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database. Two-way Mendelian randomization was used to (1) detect the causal relationship between immune cells and insomnia and (2) identify potential mediating metabolites. Mendelian randomization analysis identified eight immune cell phenotypes with a causal relationship to insomnia, and two immune cell phenotypes were protective factors for insomnia, namely CD8br %T cells and CD80 on CD62L + myeloid dendritic cells. The other six immune cell phenotypes were risk factors for insomnia, i.e., CD4/CD8br, CD16-CD56 on NKT, CCR2 on myeloid dendritic cells, CD40 on monocytes, CD38 on CD3-CD19-, and CD25 on CD45RA + CD4 not Treg. Further Mendelian randomization revealed 11 metabolites that were causally related to insomnia. Five metabolites were protective factors for insomnia, i.e., 3-hydroxy-3-methylglutarate, cholate, dodecanedioate, N-formylmethionine, and x-26054. Six metabolites were risk factors for insomnia, 3-amino-2-piperidone, 6-oxopiperdine-2-carboxylate, caffeine to theophylline ratio, leucine, maltose, and x-24736. In addition, our analysis showed that leucine mediated the association between CD4/CD8br and insomnia. From genetic information, we confirmed the causal relationship between insomnia, eight immune cell phenotypes, and eleven metabolite levels. Notably, we found a relationship between leucine-mediated CD4/CD8br and insomnia, providing evidence supporting the causal relationship between immune cell and insomnia, with plasma metabolites serving as mediators.
Collapse
Affiliation(s)
- Sumei Luo
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jianyin Yin
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jie Zhang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Pan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Tao Wen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Ke Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jing Tang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Xiaohong Wang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Liang Chen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
5
|
Zhuang X, Zhang X, Yin Q, Yang R, Man X, Wang R, Shi Y, Wang H, Jiang S. Causal pathways in Lymphoma: The role of serum metabolites and immune cells determined by Mendelian randomization. Int Immunopharmacol 2025; 144:113593. [PMID: 39591822 DOI: 10.1016/j.intimp.2024.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prior research has demonstrated significant roles of metabolites and immune cells in the progression of lymphoma. Mendelian randomization studies have been conducted to assess the causal relationships among serum metabolites, immune cells, and lymphoma, further exploring the mediating role of serum metabolites. METHODS Using summary-level data from genome-wide association studies (GWAS), we applied two-sample Mendelian randomization (TSMR) techniques, including Inverse Variance Weighted (IVW), Weighted Median, MR-Egger, Simple Mode, and Weighted Mode. These methods were employed to examine the causal links between genetically determined serum metabolites, immune cells, and six types of lymphoma. Additionally, reverse MR analysis investigated reverse causality, and two-step MR quantified the proportion of lymphoma effects mediated by immune cells through serum metabolites. MR-Egger regression and leave-one-out sensitivity tests evaluated the stability and reliability of our findings. RESULTS The study pinpointed specific serum metabolites and immune cell types causally related to six lymphoma variants. Serum metabolites were identified as mediators in the relationship between immune cells and lymphoma. The two-step Mendelian randomization confirmed this mediated causal relationship, with sensitivity analyses supporting the results' reliability and lack of pleiotropy. CONCLUSION The study establishes a causal connection between immune cells and lymphoma, partially mediated by serum metabolites, although the majority of the influence remains undefined. Future research should explore additional potential mediators. Clinically, there should be an increased focus on immune cells biomarkers for lymphoma patients. These results offer valuable insights for identifying lymphoma biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xia Zhang
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Qingning Yin
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Qinghai Province Women and Children's Hospital, Xining, Qinghai, China; Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China.
| | - Hailin Wang
- Qinghai Province Women and Children's Hospital, Xining, Qinghai, China.
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Tian Q, Yao S, Marron MM, Greig EE, Shore S, Ferrucci L, Shah R, Murthy VL, Newman AB. Shared plasma metabolomic profiles of cognitive and mobility decline predict future dementia. GeroScience 2024; 46:4883-4894. [PMID: 38829458 PMCID: PMC11336156 DOI: 10.1007/s11357-024-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Experiencing decline in both cognition and mobility is associated with a substantially higher dementia risk than cognitive decline only. Metabolites associated with both cognitive and mobility declines may be early predictors of dementia and reveal specific pathways to dementia. We analyzed data from 2450 participants initially free of dementia who had 613 metabolites measured in plasma in 1998-1999 (mean age = 75.2 ± 2.9 years old, 37.8% Black, 50% women) from the Health, Aging and Body Composition study. Dementia diagnosis was determined by race-specific decline in 3MS scores, medication use, and hospital records through 2014. Cognition and mobility were repeatedly measured using 3MS and a 20-m walking test up to 10 years, respectively. We examined metabolite associations with changes in 3MS (n = 2046) and gait speed (n = 2019) using multivariable linear regression adjusted for age, sex, race, and baseline performance and examined metabolite associations with dementia risk using Cox regression. During a mean follow-up of 9.3 years, 534 (21.8%) participants developed dementia. On average, 3MS declined 0.47/year and gait declined 0.04 m/sec/year. After covariate adjustment, 75 metabolites were associated with cognitive decline, and 111 metabolites were associated with gait decline (FDR-adjusted p < 0.05). Twenty-six metabolites were associated with both cognitive and gait declines. Eighteen of 26 metabolites were associated with dementia risk (p < 0.05), notably amino acids, glycerophospholipids (lysoPCs, PCs, PEs), and sphingolipids. Results remained similar after adjusting for cardiovascular disease or apolipoprotein E ɛ4 carrier status. During aging, metabolomic profiles of cognitive decline and mobility decline show distinct and shared signatures. Shared metabolomic profiles suggest that inflammation and deficits in mitochondria and the urea cycle in addition to the central nervous system may play key roles in both cognitive and mobility declines and predict dementia. Future studies are warranted to investigate longitudinal metabolite changes and metabolomic markers with dementia pathologies.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd M04B332, Baltimore, MD, 21224, USA.
| | - Shanshan Yao
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan M Marron
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin E Greig
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd M04B332, Baltimore, MD, 21224, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd M04B332, Baltimore, MD, 21224, USA
| | - Ravi Shah
- University of Michigan, Ann Arbor, MI, USA
| | | | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-resolution plasma metabolomics and thiamine status in critically Ill adult patients. Metabolomics 2024; 20:83. [PMID: 39066851 PMCID: PMC11283406 DOI: 10.1007/s11306-024-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Thiamine (Vitamin B1) is an essential micronutrient and is classically considered a co-factor in energy metabolism. The association between thiamine status and whole-body metabolism in critical illness has not been studied. OBJECTIVES To determine association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites and connected metabolic pathways using high resolution metabolomics (HRM) in critically ill patients. METHODS Cross-sectional study performed at Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were critically ill adults with an expected length of intensive care unit stay longer than 48 h and receiving chronic furosemide therapy. A total of 76 participants were included. Mean age was 69 years (range 33-92 years); 65% were female. Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP was measured by HPLC and plasma HRM was performed using liquid chromatography/mass spectrometry. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies (MWAS). MWAS using the highest and lowest TPP concentration tertiles was performed as a secondary analysis. RESULTS Specific metabolic pathways associated with whole blood TPP levels in regression and tertile analysis included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. CONCLUSIONS Plasma HRM revealed that thiamine status, determined by whole blood TPP concentrations, was significantly associated with metabolites and metabolic pathways related to metabolism of energy, carbohydrates, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
Affiliation(s)
- Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey.
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey.
| | - Mary M Nellis
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Nurhayat T Ozer
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Serap S Ergul
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Gulsah G Sahin
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Sahin Temel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Recep C Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
| | - Sami Teeny
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Murat Sungur
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Melikgazi, 38039, Kayseri, Turkey
- Division of Clinical Nutrition, Erciyes University Health Sciences Institute, Kayseri, Turkey
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory Center for Clinical and Molecular Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Xu Z, Mou C, Ji R, Chen H, Ding Y, Jiang X, Meng F, He F, Luo B, Yu J. Alterations in metabolome and lipidome in patients with in-stent restenosis. CNS Neurosci Ther 2024; 30:e14832. [PMID: 39009504 PMCID: PMC11249805 DOI: 10.1111/cns.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
CONTEXT In-stent restenosis (ISR) can lead to blood flow obstruction, insufficient blood supply to the brain, and may even result in serious complications such as stroke. Endothelial cell hyperproliferation and thrombosis are the primary etiologies, frequently resulting in alterations in intravascular metabolism. However, the metabolic changes related to this process are still undermined. OBJECTIVE We tried to characterize the serum metabolome of patients with ISR and those with non-restenosis (NR) using metabolomics and lipidomics, exploring the key metabolic pathways of this pathological phenomenon. RESULTS We observed that the cysteine and methionine pathways, which are associated with cell growth and oxidative homeostasis, showed the greatest increase in the ISR group compared to the NR group. Within this pathway, the levels of N-formyl-l-methionine and L-methionine significantly increased in the ISR group, along with elevated levels of downstream metabolites such as 2-ketobutyric acid, pyruvate, and taurocholate. Additionally, an increase in phosphatidylcholine (PC) and phosphatidylserine (PS), as well as a decrease in triacylglycerol in the ISR group, indicated active lipid metabolism in these patients, which could be a significant factor contributing to the recurrence of blood clots after stent placement. Importantly, phenol sulfate and PS(38:4) were identified as potential biomarkers for distinguishing ISR, with an area under the curve of more than 0.85. CONCLUSIONS Our study revealed significant metabolic alterations in patients with ISR, particularly in the cysteine and methionine pathways, with phenol sulfate and PS(38:4) showing promise for ISR identification.
Collapse
Affiliation(s)
- Ziqi Xu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chenye Mou
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Renjie Ji
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hanfen Chen
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuge Ding
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaoyi Jiang
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Wang X, Zhou S, Hu X, Ye C, Nie Q, Wang K, Yan S, Lin J, Xu F, Li M, Wu Q, Sun L, Liu B, Zhang Y, Yun C, Wang X, Liu H, Yin WB, Zhao D, Hang J, Zhang S, Jiang C, Pang Y. Candida albicans accelerates atherosclerosis by activating intestinal hypoxia-inducible factor2α signaling. Cell Host Microbe 2024; 32:964-979.e7. [PMID: 38754418 DOI: 10.1016/j.chom.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chuan Ye
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qixing Nie
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jun Lin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Xu
- Clinical Pharmacology and Pharmacometrics, Janssen China Research & Development, Beijing, China
| | - Meng Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qing Wu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongyu Zhao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
10
|
Hu Y, Xiong Z, Huang P, He W, Zhong M, Zhang D, Tang G. Association of mental disorders with sepsis: a bidirectional Mendelian randomization study. Front Public Health 2024; 12:1327315. [PMID: 38827616 PMCID: PMC11140049 DOI: 10.3389/fpubh.2024.1327315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Substantial research evidence supports the correlation between mental disorders and sepsis. Nevertheless, the causal connection between a particular psychological disorder and sepsis remains unclear. Methods For investigating the causal relationships between mental disorders and sepsis, genetic variants correlated with mental disorders, including anorexia nervosa (AN), attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), panic disorder (PD), posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and tourette syndrome (TS), were all extracted from the Psychiatric Genomics Consortium (PGC). The causal estimates and direction between these mental disorders and sepsis were evaluated employing a two-sample bidirectional MR strategy. The inverse variance weighted (IVW) method was the primary approach utilized. Various sensitivity analyses were performed to confirm the validity of the causal effect. Meta-analysis, multivariable MR, and mediation MR were conducted to ensure the credibility and depth of this research. Results The presence of AN was in relation to a greater likelihood of sepsis (OR 1.08, 95% CI 1.02-1.14; p = 0.013). A meta-analysis including validation cohorts supported this observation (OR 1.06, 95% CI 1.02-1.09). None of the investigated mental disorders appeared to be impacted when sepsis was set as the exposure factor. Even after adjusting for confounding factors, AN remained statistically significant (OR 1.08, 95% CI 1.02-1.15; p = 0.013). Mediation analysis indicated N-formylmethionine levels (with a mediated proportion of 7.47%), cystatin D levels (2.97%), ketogluconate Metabolism (17.41%) and N10-formyl-tetrahydrofolate biosynthesis (20.06%) might serve as mediators in the pathogenesis of AN-sepsis. Conclusion At the gene prediction level, two-sample bidirectional MR analysis revealed that mental disorder AN had a causal association with an increased likelihood of sepsis. In addition, N-formylmethionine levels, cystatin D levels, ketogluconate metabolism and N10-formyl-tetrahydrofolate biosynthesis may function as potential mediators in the pathophysiology of AN-sepsis. Our research may contribute to the investigation of novel therapeutic strategies for mental illness and sepsis.
Collapse
Affiliation(s)
- Yuanzhi Hu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihui Xiong
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pinge Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wan He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minlin Zhong
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Danqi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghua Tang
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
11
|
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, Gupta R, Durham TJ, Shaughnessy KB, Mayers JR, Hibbert KA, Baron RM, Thompson BT, Mootha VK. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 2024; 20:36. [PMID: 38446263 PMCID: PMC10917846 DOI: 10.1007/s11306-024-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
| | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik B Shah
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Rahul Gupta
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Timothy J Durham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Kelsey B Shaughnessy
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Jared R Mayers
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
12
|
Sun W, Xu C, Zhang Y, Zhu X, Yu F, Shi L, Zhang H. Association between serum TSH levels and all-cause mortality in critically ill patients. Heliyon 2024; 10:e26168. [PMID: 38390171 PMCID: PMC10881361 DOI: 10.1016/j.heliyon.2024.e26168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Thyroid dysfunction is common in critical illness and may influence prognosis. However, the value of TSH in patients with severe diseases remains unclear. The aim of this study was to investigate the association between TSH and the clinical prognosis of critically ill patients. Methods: This retrospective study identified patients who were admitted to the ICU in the Medical Information Mart for Intensive Care (MIMIC-IV) database (version 2.2). A total of 6432 patients were divided into four groups based on TSH quartiles (Q1, <0.92 mIU/L; Q2, 0.92-1.07 mIU/L; Q3, 1.07-3.10 mIU/L; Q4, >3.10 mIU/L). The clinical outcomes were defined as all-cause 7-, 30-, and 90-year mortality after ICU admission. Restricted cubic splines (RCSs) for nonlinear associations were generated to visualize the relationship between TSH levels and clinical outcomes. The survival differences among the four groups were also analyzed using Kaplan‒Meier curves and log rank tests. Univariable and multivariable Cox proportional hazards regression were further used to assess the association between TSH levels and clinical outcomes. Results: After multivariate adjustment, a U-shaped relationship was observed between TSH levels and all-cause 7-, 30-, and 90- mortality among patients with severe disease (all P < 0.05 for nonlinearity). The plot showed a risk reduction in the low range of TSH, which reached the lowest risk at approximately 2.9 μIU/mL and then increased thereafter. Compared with patients with Q3 TSH levels, those with Q1, Q2, and Q4 TSH levels had a significantly higher risk of all-cause 30-day mortality (Q1: hazard ratio, 1.28; 95% CI, 1.06-1.54; Q2: hazard ratio, 1.22; 95% CI, 1.01-1.48; Q4: hazard ratio, 1.25; 95% CI, 1.04-1.50). For all-cause 90-day mortality, only the Q4 group had a significantly higher mortality risk than the Q3 group (hazard ratio, 1.24; 95% CI, 1.07-1.44). In subgroup analyses, we found that Q1 TSH levels were associated with higher mortality risk in men and older (≥65 years) patients, while Q4 TSH had a greater risk in men and younger (<65 years) patients. Conclusions: TSH was significantly associated with all-cause 7-, 30-, and 90-day mortality in critically ill patients after admission to the ICU. TSH may serve as a valuable biomarker for risk stratification in critically ill patients.
Collapse
Affiliation(s)
- Wenwen Sun
- Department of Intensive Care Unit, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yulian Zhang
- Department of Thyroid and Breast Surgery, First People's Hospital of Shangqiu, Shangqiu, China
| | - Xiao Zhu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Kuley R, Duvvuri B, Wallin JJ, Bui N, Adona MV, O’Connor NG, Sahi SK, Stanaway IB, Wurfel MM, Morrell ED, Liles WC, Bhatraju PK, Lood C. Mitochondrial N-formyl methionine peptides contribute to exaggerated neutrophil activation in patients with COVID-19. Virulence 2023; 14:2218077. [PMID: 37248708 PMCID: PMC10231045 DOI: 10.1080/21505594.2023.2218077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023] Open
Abstract
Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Life Sciences, Mahindra University, Hyderabad, India
| | - Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | | | - Nam Bui
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Mary Vic Adona
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Nicholas G. O’Connor
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Sharon K. Sahi
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ian B. Stanaway
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Mark M. Wurfel
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Eric D. Morrell
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Pavan K. Bhatraju
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Gundogan K, Nellis MM, Ozer NT, Ergul SS, Sahin GG, Temel S, Yuksel RC, Teeny S, Alvarez JA, Sungur M, Jones DP, Ziegler TR. High-Resolution Plasma Metabolomics and Thiamine Status in Critically Ill Adult Patients. RESEARCH SQUARE 2023:rs.3.rs-3597052. [PMID: 38014088 PMCID: PMC10680934 DOI: 10.21203/rs.3.rs-3597052/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Thiamine (Vitamin B1) is an essential micronutrient and a co-factor for metabolic functions related to energy metabolism. We determined the association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites using high resolution metabolomics in critically ill patients. Methods Cross-sectional study performed in Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were ≥ 18 years of age, with an expected length of ICU stay longer than 48 hours, receiving furosemide therapy for at least 6 months before ICU admission. Results Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP concentrations were measured using high-performance liquid chromatography (HPLC). Liquid chromatography/mass spectrometry was used for plasma high-resolution metabolomics. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies. We also compared metabolomic features from patients in the highest TPP concentration tertile to patients in the lowest TPP tertile as a secondary analysis. We enrolled 76 participants with a median age of 69 (range, 62.5-79.5) years. Specific metabolic pathways associated with whole blood TPP levels, using both regression and tertile analysis, included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. Conclusions Plasma high-resolution metabolomics analysis showed that whole blood TPP concentrations are significantly associated with metabolites and metabolic pathways linked to the metabolism of energy, amino acids, lipids, and the gut microbiome in adult critically ill patients.
Collapse
|
15
|
Cruz-Pereira JS, Moloney GM, Bastiaanssen TFS, Boscaini S, Fitzgerald P, Clarke G, Cryan JF. Age-associated deficits in social behaviour are microbiota-dependent. Brain Behav Immun 2023; 110:119-124. [PMID: 36791892 DOI: 10.1016/j.bbi.2023.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system. Indeed, microbiota depletion in aged mice eliminated the age-dependent deficits in social recognition. We further demonstrate that although age and gut microbiota depletion differently shape the peripheral immune response, aging induces an accumulation of T cells in the choroid plexus, that is partially blunted following microbiota depletion. Moreover, an untargeted metabolomic analysis revealed age-dependent alterations of cecal metabolites that are reshaped by gut microbiota depletion. Together, our results suggest that the aged gut microbiota can be specifically targeted to affect social deficits. These studies propel the need for future investigations of other non-antibiotic microbiota targeted interventions on age-related social deficits both in animal models and humans.
Collapse
Affiliation(s)
- Joana S Cruz-Pereira
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick Fitzgerald
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|