1
|
Zhang X, Zhang Y, Du W. Alleviating role of ketamine in breast cancer cell-induced osteoclastogenesis and tumor bone metastasis-induced bone cancer pain through an SRC/EGR1/CST6 axis. BMC Cancer 2024; 24:1535. [PMID: 39695463 DOI: 10.1186/s12885-024-13290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The analgesic effect of ketamine in cancer pain remains controversial. This research investigates the role of ketamine in bone metastasis-induced cancer pain in breast cancer (BC) and its associated molecular network. METHODS BC cell lines MDA-MB-231 and ZR-75-1 were treated with ketamine and malignant behaviors were assessed through CCK-8, colony formation, and Transwell assays. To evaluate the pro-osteoclastic effect in vitro, BC cells were co-cultured with RAW 264.7 cells. Alterations in the expression of SRC proto-oncogene (SRC), early growth response 1 (EGR1), and cystatin E/M (CST6) were induced in BC cells using lentivirus. MDA-MB-231 cells were injected intracardially into nude mice to examine tumor bone metastasis in vivo. Molecular interactions between SRC and EGR1, as well as between EGR1 and CST6 were analyzed via immunoprecipitation and luciferase assays. RESULTS Ketamine treatment suppressed viability, proliferation, migration and invasiveness, epithelial-mesenchymal transition, and pro-osteoclastic effect in BC cells. Ketamine also reduced osteoclastogenesis and tumor bone metastasis burden and alleviated pain in nude mice. SRC was identified as a target of ketamine. Overexpression of SRC in BC cells blocked the effects of ketamine. SRC bound to the EGR1 promoter, suppressing EGR1 transcription, whereas EGR1 activated CST6 transcription. Either EGR1 or CST6 overexpression counteracted the function of SRC overexpression and decreased the viability of BC cells and their pro-osteoclastic effect in vitro and in vivo. CONCLUSION This study demonstrates that ketamine alleviates BC cell-induced osteoclastogenesis and tumor bone metastasis by suppressing SRC and restoring the EGR1/CST6 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yanmei Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
2
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. BST2 induces vascular smooth muscle cell plasticity and phenotype switching during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612298. [PMID: 39314286 PMCID: PMC11418980 DOI: 10.1101/2024.09.10.612298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.
Collapse
|
3
|
Souto EP, Gong P, Landua JD, Srinivasan RR, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. The interferon/STAT1 signaling axis is a common feature of tumor-initiating cells in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557958. [PMID: 37745510 PMCID: PMC10515955 DOI: 10.1101/2023.09.15.557958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC), or "cancer stem cells", are associated with therapeutic resistance, as well as both local and distant recurrence. Enriched populations of TIC are identified by markers including aldehyde dehydrogenase (ALDH1) activity, the cell surface marker combination CD44 + /CD24 - , or fluorescent reporters for signaling pathways that regulate TIC function. We showed previously that S ignal T ransducer and A ctivator of T ranscription (STAT)-mediated transcription allows enrichment for TIC in claudin-low models of human triple-negative breast cancer using a STAT-responsive reporter. However, the molecular phenotypes of STAT TIC are not well understood, and there is no existing method to lineage-trace TIC as they undergo cell state changes. Using a new STAT-responsive lineage-tracing (LT) system in conjunction with our original reporter, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, basal-like triple-negative breast cancer (TNBC) xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNAseq) of reporter-tagged xenografts and clinical samples identified a common interferon (IFN)/STAT1-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Surprisingly, most of the genes we identified are not present in previously published TIC signatures derived using bulk RNA sequencing. Finally, we demonstrated that bone marrow stromal cell antigen 2 (BST2), is a cell surface marker of this state, and that it functionally regulates TIC frequency. These results suggest TIC may exploit the IFN/STAT1 signaling axis to promote their activity, and that targeting this pathway may help eliminate TIC. Significance TIC differentially express interferon response genes, which were not previously reported in bulk RNA sequencing-derived TIC signatures, highlighting the importance of coupling single-cell transcriptomics with enrichment to derive TIC signatures.
Collapse
|
4
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
5
|
Li Y, Chen W, Zhu X, Mei H, Steinhoff M, Buddenkotte J, Wang J, Zhang W, Li Z, Dai X, Shan C, Wang J, Meng J. Neuronal BST2: A Pruritic Mediator alongside Protease-Activated Receptor 2 in the IL-27-Driven Itch Pathway. J Invest Dermatol 2024; 144:1829-1842.e4. [PMID: 38360199 DOI: 10.1016/j.jid.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease-activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuron-specific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.
Collapse
Affiliation(s)
- Yanqing Li
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Xingyun Zhu
- School of Life Sciences, Henan University, Henan, China
| | - Huiyuan Mei
- School of Life Sciences, Henan University, Henan, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar; Israel Englander Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jinhai Wang
- School of Life Sciences, Henan University, Henan, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
6
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Mohammadi E, Dashti S, Shafizade N, Jin H, Zhang C, Lam S, Tahmoorespur M, Mardinoglu A, Sekhavati MH. Drug repositioning for immunotherapy in breast cancer using single-cell analysis. NPJ Syst Biol Appl 2024; 10:37. [PMID: 38589404 PMCID: PMC11001976 DOI: 10.1038/s41540-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral properties, can play a role in stimulating or suppressing the immune system, especially in pathological conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of these peptides in malignant versus normal human breast epithelial cells. We corroborated our findings at the chromatin level using ATAC-seq. Additionally, we assessed the protein levels in various BC cell lines. Moreover, our in-house drug repositioning approach was employed to identify potential drugs that could positively impact the relapse-free survival of BC patients. Considering significantly deregulated therapeutic peptides and their role in BC pathology, our approach aims to downregulate B2M and SLPI, while upregulating PIGR, DEFB1, LTF, CLU, S100A7, and SCGB2A1 in BC epithelial cells through our drug repositioning pipeline. Leveraging the LINCS L1000 database, we propose BRD-A06641369 for B2M downregulation and ST-4070043 and BRD-K97926541 for SLPI downregulation without negatively affecting the MHC complex as a significantly correlated pathway with these two genes. Furthermore, we have compiled a comprehensive list of drugs for the upregulation of other selected immunomodulatory peptides. Employing an immunotherapeutic approach by integrating our drug repositioning pipeline with single-cell analysis, we proposed potential drugs and drug targets to fortify the immune system against BC.
Collapse
Affiliation(s)
- Elyas Mohammadi
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Samira Dashti
- Department of Internal Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Neda Shafizade
- Department of Internal Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Han Jin
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | |
Collapse
|
8
|
Bian J, Yan J, Chen C, Yin L, Liu P, Zhou Q, Yu J, Liang Q, He Q. Development of an immune-related diagnostic predictive model for oral lichen planus. Medicine (Baltimore) 2024; 103:e37469. [PMID: 38489725 PMCID: PMC10939522 DOI: 10.1097/md.0000000000037469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Oral lichen planus (OLP) was a chronic inflammatory disease of unknown etiology with a 1.4% chance of progressing to malignancy. However, it has been suggested in several studies that immune system disorders played a dominant role in the onset and progression of OLP. Therefore, this experiment aimed to develop a diagnostic prediction model for OLP based on immunopathogenesis to achieve early diagnosis and treatment and prevent cancer. In this study, 2 publicly available OLP datasets from the gene expression omnibus database were filtered. In the experimental group (GSE52130), the level of immune cell infiltration was assessed using MCPcounter and ssGSEA algorithms. Subsequently, differential expression analysis and gene set enrichment analysis were performed between the OLP and control groups. The resulting differentially expressed genes were intersected with immunologically relevant genes provided on the immunology database and analysis portal database (ImmPort) website to obtain differentially expressed immunologically relevant genes (DEIRGs). Furthermore, the gene ontology and kyoto encyclopedia of genes and genomes analyses were carried out. Finally, protein-protein interaction network and least absolute shrinkage and selection operator regression analyses constructed a model for OLP. Receiver operating characteristic curves for the experimental and validation datasets (GSE38616) were plotted separately to validate the model's credibility. In addition, real-time quantitative PCR experiment was performed to verify the expression level of the diagnostic genes. Immune cell infiltration analysis revealed a more significant degree of inflammatory infiltration in the OLP group compared to the control group. In addition, the gene set enrichment analysis results were mainly associated with keratinization, antibacterial and immune responses, etc. A total of 774 differentially expressed genes was obtained according to the screening criteria, of which 65 were differentially expressed immunologically relevant genes. Ultimately, an immune-related diagnostic prediction model for OLP, which was composed of 5 hub genes (BST2, RNASEL, PI3, DEFB4A, CX3CL1), was identified. The verification results showed that the model has good diagnostic ability. There was a significant correlation between the 5 hub diagnostic biomarkers and immune infiltrating cells. The development of this model gave a novel insight into the early diagnosis of OLP.
Collapse
Affiliation(s)
- Jiamin Bian
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiayu Yan
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Chu Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Yin
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Panpan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianfeng Yu
- Department of Stomatology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liang
- Department of Stomatology, Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, Sichuan, China
| | - Qingmei He
- Department of Neurological, Chongqing Shi Yong Chuan Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
9
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
11
|
Li X, Guan S, Li H, Li D, Liu D, Wang J, Zhu W, Xing G, Yue L, Cai D, Zhang Q. Polysialic acid-functionalized liposomes for efficient honokiol delivery to inhibit breast cancer growth and metastasis. Drug Deliv 2023; 30:2181746. [PMID: 36803115 PMCID: PMC9946320 DOI: 10.1080/10717544.2023.2181746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
To improve the anti-metastasis effects of honokiol (HNK) on breast cancer, we designed cationic liposomes (Lip) in which HNK was encapsulated into Lip, and its surface was modified with negatively charged polysialic acid (PSA-Lip-HNK) for efficient treatment of breast cancer. PSA-Lip-HNK possessed a homogeneous spherical shape and high encapsulation efficiency. In vitro 4T1 cell experiments indicated that PSA-Lip-HNK increased cellular uptake and cytotoxicity via the endocytosis pathway mediated by PSA and selectin receptors. Furthermore, the significant antitumor metastasis impact of PSA-Lip-HNK was confirmed by wound healing and cell migration and invasion. Enhanced in vivo tumor accumulation of the PSA-Lip-HNK was observed in 4T1 tumor-bearing mice by living fluorescence imaging. For in vivo antitumor experiments using 4T1 tumor-bearing mice, PSA-Lip-HNK exhibited a higher tumor growth and metastasis inhibition compared with unmodified liposomes. Therefore, we believe that PSA-Lip-HNK well combined biocompatible PSA nano-delivery and chemotherapy, providing a promising drug delivery approach for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Henan Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dong Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, P.R. China
| | - Guihua Xing
- College of Pathology, Qiqihar Medical University, Qiqihar, P.R. China
| | - Liling Yue
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, P.R. China
| |
Collapse
|
12
|
Dolton G, Rius C, Wall A, Szomolay B, Bianchi V, Galloway SAE, Hasan MS, Morin T, Caillaud ME, Thomas HL, Theaker S, Tan LR, Fuller A, Topley K, Legut M, Attaf M, Hopkins JR, Behiry E, Zabkiewicz J, Alvares C, Lloyd A, Rogers A, Henley P, Fegan C, Ottmann O, Man S, Crowther MD, Donia M, Svane IM, Cole DK, Brown PE, Rizkallah P, Sewell AK. Targeting of multiple tumor-associated antigens by individual T cell receptors during successful cancer immunotherapy. Cell 2023; 186:3333-3349.e27. [PMID: 37490916 DOI: 10.1016/j.cell.2023.06.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Barbara Szomolay
- Systems Immunology Research Institute, Cardiff, Wales CF14 4XN, UK
| | - Valentina Bianchi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Sarah A E Galloway
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Marine E Caillaud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Hannah L Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Sarah Theaker
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Jade R Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Joanna Zabkiewicz
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Caroline Alvares
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Angharad Lloyd
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Amber Rogers
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Peter Henley
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Christopher Fegan
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Oliver Ottmann
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Stephen Man
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Michael D Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK; National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Paul E Brown
- The Zeeman Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Pierre Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK; Systems Immunology Research Institute, Cardiff, Wales CF14 4XN, UK.
| |
Collapse
|
13
|
Law AMK, Chen J, Colino‐Sanguino Y, de la Fuente LR, Fang G, Grimes SM, Lu H, Huang RJ, Boyle ST, Venhuizen J, Castillo L, Tavakoli J, Skhinas JN, Millar EKA, Beretov J, Rossello FJ, Tipper JL, Ormandy CJ, Samuel MS, Cox TR, Martelotto L, Jin D, Valdes‐Mora F, Ji HP, Gallego‐Ortega D. ALTEN: A High-Fidelity Primary Tissue-Engineering Platform to Assess Cellular Responses Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103332. [PMID: 35611998 PMCID: PMC9313544 DOI: 10.1002/advs.202103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
To fully investigate cellular responses to stimuli and perturbations within tissues, it is essential to replicate the complex molecular interactions within the local microenvironment of cellular niches. Here, the authors introduce Alginate-based tissue engineering (ALTEN), a biomimetic tissue platform that allows ex vivo analysis of explanted tissue biopsies. This method preserves the original characteristics of the source tissue's cellular milieu, allowing multiple and diverse cell types to be maintained over an extended period of time. As a result, ALTEN enables rapid and faithful characterization of perturbations across specific cell types within a tissue. Importantly, using single-cell genomics, this approach provides integrated cellular responses at the resolution of individual cells. ALTEN is a powerful tool for the analysis of cellular responses upon exposure to cytotoxic agents and immunomodulators. Additionally, ALTEN's scalability using automated microfluidic devices for tissue encapsulation and subsequent transport, to enable centralized high-throughput analysis of samples gathered by large-scale multicenter studies, is shown.
Collapse
Affiliation(s)
- Andrew M. K. Law
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
| | - Jiamin Chen
- Division of OncologyDepartment of MedicineStanford UniversityCalifornia94305USA
| | - Yolanda Colino‐Sanguino
- Cancer Epigenetic Biology and Therapeutics LaboratoryChildren's Cancer InstituteRandwickNSW2052Australia
- School of Women's and Children's Health, Faculty of MedicineUniversity of New South Wales SydneyNSW2052Australia
| | - Laura Rodriguez de la Fuente
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
- Cancer Epigenetic Biology and Therapeutics LaboratoryChildren's Cancer InstituteRandwickNSW2052Australia
| | - Guocheng Fang
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceThe University of Technology SydneyUltimoNSW2007Australia
| | - Susan M. Grimes
- Division of OncologyDepartment of MedicineStanford UniversityCalifornia94305USA
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceThe University of Technology SydneyUltimoNSW2007Australia
| | - Robert J. Huang
- Division of Gastroenterology and HepatologyDepartment of MedicineStanford UniversityCalifornia94305USA
| | - Sarah T. Boyle
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSA5000Australia
| | - Jeron Venhuizen
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
| | - Lesley Castillo
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
| | - Javad Tavakoli
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyNSW2007Australia
| | - Joanna N. Skhinas
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
| | - Ewan K. A. Millar
- Department of Anatomical PathologyNSW Health PathologySt George HospitalKogarahNSW2217Australia
- St George & Sutherland Clinical SchoolUNSW SydneyNSW2217Australia
| | - Julia Beretov
- Department of Anatomical PathologyNSW Health PathologySt George HospitalKogarahNSW2217Australia
- St George & Sutherland Clinical SchoolUNSW SydneyNSW2217Australia
| | | | - Joanne L. Tipper
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyNSW2007Australia
- School of Mechanical EngineeringUniversity of LeedsLS2 9JTUK
- Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleå97187Sweden
| | - Christopher J. Ormandy
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyNSW2010Australia
| | - Michael S. Samuel
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSA5000Australia
- Adelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaide5000Australia
| | - Thomas R. Cox
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyNSW2010Australia
| | - Luciano Martelotto
- Single Cell CoreSystems BiologyHarvard Medical SchoolHarvard UniversityMassachusetts02115USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceThe University of Technology SydneyUltimoNSW2007Australia
| | - Fatima Valdes‐Mora
- Cancer Epigenetic Biology and Therapeutics LaboratoryChildren's Cancer InstituteRandwickNSW2052Australia
- School of Women's and Children's Health, Faculty of MedicineUniversity of New South Wales SydneyNSW2052Australia
| | - Hanlee P. Ji
- Division of OncologyDepartment of MedicineStanford UniversityCalifornia94305USA
| | - David Gallego‐Ortega
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNSW2010Australia
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceThe University of Technology SydneyUltimoNSW2007Australia
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyNSW2007Australia
- St. Vincent's Clinical SchoolFaculty of MedicineUniversity of New South Wales SydneyNSW2010Australia
| |
Collapse
|
14
|
Briata P, Caputo L, Zapparoli E, Marcaccini E, Passalacqua M, Brondolo L, Bordo D, Rossi A, Nicoletti C, Bucci G, Puri PL, Inga A, Gherzi R. LncRNA EPR-induced METTL7A1 modulates target gene translation. Nucleic Acids Res 2022; 50:7608-7622. [PMID: 35748870 PMCID: PMC9303270 DOI: 10.1093/nar/gkac544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
EPR is a long non-coding RNA (lncRNA) that controls cell proliferation in mammary gland cells by regulating gene transcription. Here, we report on Mettl7a1 as a direct target of EPR. We show that EPR induces Mettl7a1 transcription by rewiring three-dimensional chromatin interactions at the Mettl7a1 locus. Our data indicate that METTL7A1 contributes to EPR-dependent inhibition of TGF-β signaling. METTL7A1 is absent in tumorigenic murine mammary gland cells and its human ortholog (METTL7A) is downregulated in breast cancers. Importantly, re-expression of METTL7A1 in 4T1 tumorigenic cells attenuates their transformation potential, with the putative methyltransferase activity of METTL7A1 being dispensable for its biological functions. We found that METTL7A1 localizes in the cytoplasm whereby it interacts with factors implicated in the early steps of mRNA translation, associates with ribosomes, and affects the levels of target proteins without altering mRNA abundance. Overall, our data indicates that METTL7A1-a transcriptional target of EPR-modulates translation of select transcripts.
Collapse
Affiliation(s)
- Paola Briata
- Correspondence may also be addressed to Paola Briata. Tel: +39 010555540;
| | | | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale, San Raffaele, 20132 Milano, Italy
| | - Elisa Marcaccini
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (3R Center), 56122 Pisa, Italy
| | - Lorenzo Brondolo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gabriele Bucci
- Center for Omics Sciences, IRCCS Ospedale, San Raffaele, 20132 Milano, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Roberto Gherzi
- To whom correspondence should be addressed. Tel: +39 010555402; Emails: ;
| |
Collapse
|
15
|
Yim S, Hwang W, Han N, Lee D. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Front Immunol 2022; 13:884561. [PMID: 35651625 PMCID: PMC9149307 DOI: 10.3389/fimmu.2022.884561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy targets the interplay between immune and cancer cells. In particular, interactions between cytotoxic T lymphocytes (CTLs) and cancer cells, such as PD-1 (PDCD1) binding PD-L1 (CD274), are crucial for cancer cell clearance. However, immune checkpoint inhibitors targeting these interactions are effective only in a subset of patients, requiring the identification of novel immunotherapy targets. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening in either cancer or immune cells has been employed to discover regulators of immune cell function. However, CRISPR screens in a single cell type complicate the identification of essential intercellular interactions. Further, pooled screening is associated with high noise levels. Herein, we propose intercellular CRISPR screens, a computational approach for the analysis of genome-wide CRISPR screens in every interacting cell type for the discovery of intercellular interactions as immunotherapeutic targets. We used two publicly available genome-wide CRISPR screening datasets obtained while triple-negative breast cancer (TNBC) cells and CTLs were interacting. We analyzed 4825 interactions between 1391 ligands and receptors on TNBC cells and CTLs to evaluate their effects on CTL function. Intercellular CRISPR screens discovered targets of approved drugs, a few of which were not identifiable in single datasets. To evaluate the method's performance, we used data for cytokines and costimulatory molecules as they constitute the majority of immunotherapeutic targets. Combining both CRISPR datasets improved the recall of discovering these genes relative to using single CRISPR datasets over two-fold. Our results indicate that intercellular CRISPR screens can suggest novel immunotherapy targets that are not obtained through individual CRISPR screens. The pipeline can be extended to other cancer and immune cell types to discover important intercellular interactions as potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Soorin Yim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Bio-Synergy Research Center, Daejeon, South Korea
| | - Woochang Hwang
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Bio-Synergy Research Center, Daejeon, South Korea
| |
Collapse
|
16
|
Genetic and Molecular Characterization of the Immortalized Murine Hepatic Stellate Cell Line GRX. Cells 2022; 11:cells11091504. [PMID: 35563813 PMCID: PMC9102025 DOI: 10.3390/cells11091504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The murine cell line GRX has been introduced as an experimental tool to study aspects of hepatic stellate cell biology. It was established from livers of C3H/HeN mice that were infected with cercariae of Schistosoma mansoni. Although these cells display a myofibroblast phenotype, they can accumulate intracellular lipids and acquire a fat-storing lipocyte phenotype when treated with retinol, insulin, and indomethacin. We have performed genetic characterization of GRX and established a multi-loci short tandem repeat (STR) signature for this cell line that includes 18 mouse STR markers. Karyotyping further revealed that this cell line has a complex genotype with various chromosomal aberrations. Transmission electron microscopy revealed that GRX cells produce large quantities of viral particles belonging to the gammaretroviral genus of the Retroviridae family as assessed by next generation mRNA sequencing and Western blot analysis. Rolling-circle-enhanced-enzyme-activity detection (REEAD) revealed the absence of retroviral integrase activity in cell culture supernatants, most likely as a result of tetherin-mediated trapping of viral particles at the cell surface. Furthermore, staining against schistosome gut-associated circulating anodic antigens and cercarial O- and GSL-glycans showed that the cell line lacks S. mansoni-specific glycostructures. Our findings will now help to fulfill the recommendations for cellular authentications required by many granting agencies and scientific journals when working with GRX cells. Moreover, the definition of a characteristic STR profile will increase the value of GRX cells in research and provides an important benchmark to identify intra-laboratory cell line heterogeneity, discriminate between different mouse cell lines, and to avoid misinterpretation of experimental findings by usage of misidentified or cross-contaminated cells.
Collapse
|
17
|
Xu S, Liu Y, Ma H, Fang S, Wei S, Li X, Lu Z, Zheng Y, Liu T, Zhu X, Xu D, Pan Y. A Novel Signature Integrated of Immunoglobulin, Glycosylation and Anti-Viral Genes to Predict Prognosis for Breast Cancer. Front Genet 2022; 13:834731. [PMID: 35432482 PMCID: PMC9011196 DOI: 10.3389/fgene.2022.834731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Aberrant glycosylation is significantly related to the occurrence, progression, metastasis, and drug resistance of tumors. It is essential to identify glycosylation and related genes with prognostic value for breast cancer. Objective: We aimed to construct and validate a prognostic model based on glycosylation and related genes, and further investigate its prognosis values in validation set and external independent cohorts. Materials and Methods: The transcriptome and clinical data of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA, n = 1072), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1451), and GSE2741 (n = 120). Glycosylation-related genes were downloaded from the Genecards website. Differentially expressed glycosylation-related geneswere identified by comparing the tumor tissues with the adjacent tissues. The TCGA data were randomly divided into training set and validation set in a 1:1 ratio for further analysis. The glycosylation risk-scoring prognosis model was constructed by univariate and multivariate Cox regression analysis, followed by confirmation in TCGA validation, METABRIC, and GEO datasets. Gene set enrichment analysis (GSEA) and Gene ontology analysis for identifying the affected pathways in the high- and low-risk groups were performed. Results: We attained 1072 breast cancer samples from the TCGA database and 786 glycosylation genes from the Genecards website. A signature contains immunoglobulin, glycosylation and anti-viral related genes was constructed to separate BRCA patients into two risk groups. Low-risk patients had better overall survival than high-risk patients (p < 0.001). A nomogram was constructed with risk scores and clinical characteristics. The area under time-dependent ROC curve reached 0.764 at 1 year, 0.744 at 3 years, and 0.765 at 5 years in the training set. Subgroup analysis showed differences in OS between the high- and low-risk patients in different subgroups. Moreover, the risk score was confirmed as an independent prognostic indicator of BRCA patients and was potentially correlated with immunotherapy response and drug sensitivity. Conclusion: We identified a novel signature integrated of immunoglobulin (IGHA2), glycosylation-related (SLC35A2) and anti-viral gene (BST2) that was an independent prognostic indicator for BRCA patients. The risk-scoring model could be used for predicting prognosis and immunotherapy in BRCA, thus providing a powerful instrument for combating BRCA.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| | - Hansu Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shoupeng Wei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoping Li
- Department of Breast, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Tong Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Xiaojian Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongming Xu
- Department of Neurosurgery, The Country Hospital of Qianguo, Songyuan, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yuchen Liu, ; Dongming Xu, ; Yihang Pan,
| |
Collapse
|
18
|
Verma S, Kang AK, Pal R, Gupta SK. BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin. Cell Adh Migr 2021; 14:24-41. [PMID: 31957537 PMCID: PMC6973314 DOI: 10.1080/19336918.2019.1710024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanism by which interferon-gamma (IFN-γ) downregulates trophoblast invasion needs further investigation. Treatment of HTR-8/SVneo cells with IFN-γ led to a decrease in their invasion concomitant with an increased expression of BST2. Silencing of BST2 by siRNA showed a significant increase in their invasion and spreading after treatment with IFN-γ as well as downregulated expression of E-cadherin. Further, STAT1 silencing inhibited the IFN-γ-dependent increase in the expression of BST2 and E-cadherin. Treatment of HTR-8/SVneo cells with IFN-γ led to the activation of AKT, and its inhibition with PI3K inhibitor abrogated IFN-γ-mediated decrease in invasion/spreading and downregulated BST2 and E-cadherin expression. Collectively, IFN-γ decreases the invasion of HTR-8/SVneo cells by STAT1 and AKT activation via increased expression of BST2 and E-cadherin.
Collapse
Affiliation(s)
- Sonam Verma
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amandeep Kaur Kang
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
19
|
Presle A, Frémont S, Salles A, Commere PH, Sassoon N, Berlioz-Torrent C, Gupta-Rossi N, Echard A. The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface. Curr Biol 2021; 31:2203-2213.e5. [PMID: 33711249 DOI: 10.1016/j.cub.2021.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
The midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis.1-5 Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo.6-12 Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.13-16 Yet the mechanisms by which the MBR is captured by either a daughter cell or a distant cell are poorly described.10,14 Here, we report that BST2/tetherin, a well-established restriction factor that blocks the release of numerous enveloped viruses from the surface of infected cells,17-20 plays an analogous role in retaining midbody remnants. We found that BST2 is enriched at the midbody during cytokinesis and localizes at the surface of MBRs in a variety of cells. Knocking out BST2 induces the detachment of MBRs from the cell surface, their accumulation in the extracellular medium, and their transfer to distant cells. Mechanistically, the localization of BST2 at the MBR membrane is both necessary and sufficient for the interaction between MBRs and the cell surface. We thus propose that BST2 tethers post-cytokinetic midbody remnants to the cell surface. This finding reveals new parallels between cytokinesis and viral biology21-26 that unexpectedly extend beyond the ESCRT-dependent abscission step.
Collapse
Affiliation(s)
- Adrien Presle
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- UTechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Pierre-Henri Commere
- UTechS CB, Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Nathalie Sassoon
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | | | - Neetu Gupta-Rossi
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
20
|
Tada T, Zhang Y, Fujita H, Tokunaga K. MARCH8: the tie that binds to viruses. FEBS J 2021; 289:3642-3654. [PMID: 33993615 DOI: 10.1111/febs.16017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, NYU School of Medicine, NY, USA
| | - Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
21
|
Bian S, Zhao Y, Li F, Lu S, He Z, Wang S, Bai X, Zhao D, Liu M, Wang J. Total ginsenosides induce autophagic cell death in cervical cancer cells accompanied by downregulation of bone marrow stromal antigen-2. Exp Ther Med 2021; 22:667. [PMID: 33986832 PMCID: PMC8112150 DOI: 10.3892/etm.2021.10099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides are important active components in Panax ginseng. In the present study, total ginsenosides (TGNs) were demonstrated to enhance autophagy by promoting acidic vacuole organelle formation, recruitment of enhanced green fluorescent protein-microtubule-associated protein light chain 3 and expression of autophagy-related factors in cervical cancer cell lines. TGN markedly increased the expression of p62 at the transcriptional level, but decreased p62 protein expression in the presence of actinomycin D. The autophagic regulatory effect was reversible. TGN (≤120 µg/ml) did not affect the proliferation of cervical cancer cells under normal culture conditions, but markedly inhibited the growth of serum-deprived cells. Treatment with an inhibitor of autophagy (3-methyladenine) impaired TGN-induced cell death. This suggested that TGN caused autophagic cell death. In addition, western blot analysis demonstrated that the protein level of bone marrow stromal antigen-2 (BST-2) was downregulated by TGN. Upregulation of BST-2 reduced cell death. The results of the combined actions of various monomeric ginsenosides in TGN provide the molecular basis to develop TGN as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Fangyu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shuyan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ziyan He
- College of Chemistry, Jilin University, Changchun, Jilin 13012, P.R. China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
22
|
Zhang J, Zheng B, Zhou X, Zheng T, Wang H, Wang Y, Zhang W. Increased BST-2 expression by HBV infection promotes HBV-associated HCC tumorigenesis. J Gastrointest Oncol 2021; 12:694-710. [PMID: 34012659 DOI: 10.21037/jgo-20-356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The majority of hepatocellular carcinoma (HCC) is closely associated with hepatitis B virus (HBV) infection, while the mechanism of HCC induced by HBV is debatable. Bone marrow stromal cell antigen 2 (BST-2), an N-glycoprotein, has been characterized as an oncogenic factor in several types of cancer. However, whether BST-2 plays an important role in HCC tumorigenesis remains unknown. Methods A total of 182 HCC tumorous and adjacent nontumor liver tissues were collected. HepG2, Huh7, L02, HepAD38, and HEK293T cell lines were adopted in this study. Tumor proliferation was detected by CCK8, transwell, wound healing, colony formation assays in vitro, and in vivo tumorigenesis was measured by mouse xenografts. NF-κB activation was determined by luciferase assay and Western blot. Protein expression was detected by Western blot, ELISA, or qPCR. Immunoprecipitation was used to confirm the interaction between BST-2 and Syk. Results Here, we observed the higher BST-2 expression in HBV-infected HCC than their paired adjacent tissues and HBV-uninfected HCC tissues, particularly more aberrant non-N-glycosylated BST-2 in HBV-infected HCC tumors. We also observed the increased ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3), which is trimming of N-linked glycans by sequential removal of mannose residues, might result in more non-N-glycosylated form of BST-2. Moreover, we demonstrated that BST-2 and non-N-glycosylated BST-2 N65/92A mutant, not only enhanced the tumor characteristics of hepatoma cell lines in vitro, but also enhanced the growth of mouse xenografts in vivo. Mechanically, N65/92A mutant has stronger ability to promote HCC than BST-2 via NF-κB/ERK1/2 but not NF-κB/anti-apoptotic factors pathway. NF-κB inhibitor attenuated BST-2-mediated tumorigenesis of HCC. Conclusions Our findings illuminate the novel function of BST-2 as an oncogene of HBV-associated HCC, and highlight the novel relationship of N-glycosylation of BST-2 in regulating HCC tumorigenesis in vitro.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Xiaolei Zhou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, the First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Liu W, Li Y, Feng S, Guan Y, Cao Y. MicroRNA-760 inhibits cell viability and migration through down-regulating BST2 in gastric cancer. J Biochem 2021; 168:159-170. [PMID: 32167539 DOI: 10.1093/jb/mvaa031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common types of carcinoma with a threat to global health. MicroRNA-760 (miR-760) was significantly down-regulated in the primary tumour of patients with advanced gastric cancer. However, the role of miR-760 in gastric cancer is still unclear. Herein, miR-760 was down-regulated in gastric cancer tissues. Moreover, miR-760 overexpression and knockdown were conducted in gastric cancer cells (MGC-803 and SGC-7901) in vitro. The in vitro functional assays proved that miR-760 overexpression reduced cell viability, cell cycle, migration and invasion, promoted apoptosis and suppressed MMP activity in MGC-803 cells. Conversely, miR-760 knockdown led to the opposite in SGC-7901 cells. Notably, bone marrow stromal antigen 2 (BST2) was verified as a target gene of miR-760. MiR-760 mimics down-regulated BST2 level in gastric cancer tissues and in MGC-803 cells, whereas miR-760 inhibitor up-regulated its level in SGC-7901 cells. MiR-760-regulated cell properties through reduction of BST2. In addition, miR-760 inhibited tumourigenesis in a nude mouse xenograft model in vivo. In conclusion, our results demonstrated that miR-760 exhibited a suppressive role in gastric cancer via inhibiting BST2, indicating that miR-760/BST2 axis may provide promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Weiyu Liu
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Yan Li
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Shuting Feng
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
24
|
Siddiqui SS, Vaill M, Do R, Khan N, Verhagen AL, Zhang W, Lenz HJ, Johnson-Pais TL, Leach RJ, Fraser G, Wang C, Feng GS, Varki N, Varki A. Human-specific polymorphic pseudogenization of SIGLEC12 protects against advanced cancer progression. FASEB Bioadv 2020; 3:69-82. [PMID: 33615152 PMCID: PMC7876704 DOI: 10.1096/fba.2020-00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Compared with our closest living evolutionary cousins, humans appear unusually prone to develop carcinomas (cancers arising from epithelia). The SIGLEC12 gene, which encodes the Siglec-XII protein expressed on epithelial cells, has several uniquely human features: a fixed homozygous missense mutation inactivating its natural ligand recognition property; a polymorphic frameshift mutation eliminating full-length protein expression in ~60%-70% of worldwide human populations; and, genomic features suggesting a negative selective sweep favoring the pseudogene state. Despite the loss of canonical sialic acid binding, Siglec-XII still recruits Shp2 and accelerates tumor growth in a mouse model. We hypothesized that dysfunctional Siglec-XII facilitates human carcinoma progression, correlating with known tumorigenic signatures of Shp2-dependent cancers. Immunohistochemistry was used to detect Siglec-XII expression on tissue microarrays. PC-3 prostate cancer cells were transfected with Siglec-XII and transcription of genes enriched with Siglec-XII was determined. Genomic SIGLEC12 status was determined for four different cancer cohorts. Finally, a dot blot analysis of human urinary epithelial cells was established to determine the Siglec-XII expressors versus non-expressors. Forced expression in a SIGLEC12 null carcinoma cell line enriched transcription of genes associated with cancer progression. While Siglec-XII was detected as expected in ~30%-40% of normal epithelia, ~80% of advanced carcinomas showed strong expression. Notably, >80% of late-stage colorectal cancers had a functional SIGLEC12 allele, correlating with overall increased mortality. Thus, advanced carcinomas are much more likely to occur in individuals whose genomes have an intact SIGLEC12 gene, likely because the encoded Siglec-XII protein recruits Shp2-related oncogenic pathways. The finding has prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Shoib S Siddiqui
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA.,Present address: Department of Biotechnology American University of Ras Al Khaimah (AURAK American University of Ras Al Khaimah Road Al Burairat Area Ras Al Khaimah UAE
| | - Michael Vaill
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Raymond Do
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Naazneen Khan
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Andrea L Verhagen
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Wu Zhang
- University of Southern California Norris Comprehensive Cancer Center Los Angeles CA USA
| | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center Los Angeles CA USA
| | | | - Robin J Leach
- Department of Urology University of TX Health Science Center San Antonio TX USA.,Departments of Cell Systems and Anatomy University of TX Health Science Center San Antonio TX USA
| | - Gary Fraser
- School of Public Health Loma Linda University Loma Linda CA USA
| | - Charles Wang
- School of Public Health Loma Linda University Loma Linda CA USA
| | - Gen-Sheng Feng
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Nissi Varki
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| | - Ajit Varki
- Departments of Medicine, Cellular and Molecular Medicine, and Pathology, Glycobiology Research and Training Cente and Center for Academic Research and Training in Anthropogeny University of California San Diego CA USA
| |
Collapse
|
25
|
Li X, Gou J, Li H, Yang X. Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci Rep 2020; 10:17739. [PMID: 33082469 PMCID: PMC7576141 DOI: 10.1038/s41598-020-74792-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Chromobox (CBX) family proteins control chromatin structure and gene expression. However, the functions of CBXs in cancer progression, especially breast cancer, are inadequately studied. We assessed the significance of eight CBX proteins in breast cancer. We performed immunohistochemistry and bioinformatic analysis of data from Oncomine, GEPIA Dataset, bcGenExMiner, Kaplan–Meier Plotter, and cBioPortal. We compared mRNA and protein expression levels of eight CBX proteins between breast tumor and normal tissue. The expression difference of CBX7 was the greatest, and CBX7 was downregulated in breast cancer tissues compared with normal breast tissues. The expression of CBX2 was strongly associated with tumor stage. We further analyzed the association between the eight CBX proteins and the following clinicopathological features: menopause age, estrogen receptor (ER), progesterone receptor (PR) and HER-2 receptor status, nodal status, P53 status, triple-negative status, and the Scarff–Bloom–Richardson grade (SBR) and Nottingham prognostic index (NPI). Survival analysis in the Kaplan–Meier Plotter database showed that the eight CBX proteins were significantly associated with prognosis. Moreover, CBX genes in breast cancer patients had a high net alteration frequency of 57%. There were significant co-expression correlations between the following CBX protein pairs: CBX4 positively with CBX8, CBX6 positively with CBX7, and CBX2 negatively with CBX7. We also analyzed the Gene Ontology enrichment of the CBX proteins, including biological processes, cellular components, and molecular functions. CBX 1/2/3/5/8 may be oncogenes for breast cancer, whereas CBX 6 and 7 may be tumor suppressors for breast cancer. All eight CBX proteins may be predictive for prognosis. Clinical trials are needed to confirm the significance of the eight CBX proteins in breast cancer.
Collapse
Affiliation(s)
- Xiaomin Li
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongjiang Li
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Xiaoqin Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
26
|
Shi H, Luo K, Huang W. Bone Marrow Stromal Antigen 2 is a Potential Unfavorable Prognostic Factor for High-Grade Glioma. Onco Targets Ther 2020; 13:8723-8734. [PMID: 32943880 PMCID: PMC7468947 DOI: 10.2147/ott.s258631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bone marrow stromal antigen 2 (BST2) is considered as a transmembrane glycoprotein and plays essential roles in innate immunity. It has been recently reported that up-regulation of BST2 was associated with the development of breast carcinoma. However, the clinical significance of BST2 in glioma has not been identified. The purpose of the present study is to explore the expression pattern and the role of BST2 in the progression of high-grade glioma. METHODS Expression levels of BST2 were tested in glioma tissues by analyzing the GEO database and immunohistochemistry staining. The prognostic role of BST2 in glioma was evaluated through univariate and multivariate analyses. In vitro and in vivo assays were conducted to confirm the role of BST2 on promoting glioma proliferation. RESULTS The mRNA level of BST2 was higher in glioma tissues than that in nontumorous brain tissues. High protein level of BST2 was correlated with larger tumor size and advanced WHO grade. Glioma patients with a high BST2 level had worse overall survival. In addition, BST2 was defined as an independent risk factor for glioma prognosis. Cellular and xenograft studies revealed that BST2 can significantly promote glioma proliferation. CONCLUSION Our study revealed that a high BST2 expression level was closely related to the unfavorable clinical features and poor prognosis of high-grade glioma patients. BST2 may serve as an invaluable prognostic indicator and novel therapeutic target for glioma treatment considering its membrane localization.
Collapse
Affiliation(s)
- Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| | - Ke Luo
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| | - Wei Huang
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, People’s Republic of China
| |
Collapse
|
27
|
Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proc Natl Acad Sci U S A 2020; 117:15852-15861. [PMID: 32576693 PMCID: PMC7355036 DOI: 10.1073/pnas.1920776117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The syndrome of cytotrophoblast invasion beyond the normal boundary (in the superficial myometrium) is collectively termed placenta accreta spectrum. The incidence of this condition is rising. However, little is known about the underlying molecular changes. Global transcriptomic profiling of cytotrophoblasts isolated from these cases, as compared to gestational age-matched controls, revealed numerous changes in gene expression involving diverse pathways, including cell signaling, migration, and immune functions. DOCK4 was the most highly up-regulated mRNA in the cases. Mutations in this gene are mechanistically linked to cancer progression. Overexpression of DOCK4 in primary cytotrophoblasts increased their invasiveness. This study provides molecular insights into the pathways driving placenta accreta spectrum and suggests numerous future directions. In humans, a subset of placental cytotrophoblasts (CTBs) invades the uterus and its vasculature, anchoring the pregnancy and ensuring adequate blood flow to the fetus. Appropriate depth is critical. Shallow invasion increases the risk of pregnancy complications, e.g., severe preeclampsia. Overly deep invasion, the hallmark of placenta accreta spectrum (PAS), increases the risk of preterm delivery, hemorrhage, and death. Previously a rare condition, the incidence of PAS has increased to 1:731 pregnancies, likely due to the rise in uterine surgeries (e.g., Cesarean sections). CTBs track along scars deep into the myometrium and beyond. Here we compared the global gene expression patterns of CTBs from PAS cases to gestational age-matched control cells that invaded to the normal depth from preterm birth (PTB) deliveries. The messenger RNA (mRNA) encoding the guanine nucleotide exchange factor, DOCK4, mutations of which promote cancer cell invasion and angiogenesis, was the most highly up-regulated molecule in PAS samples. Overexpression of DOCK4 increased CTB invasiveness, consistent with the PAS phenotype. Also, this analysis identified other genes with significantly altered expression in this disorder, potential biomarkers. These data suggest that CTBs from PAS cases up-regulate a cancer-like proinvasion mechanism, suggesting molecular as well as phenotypic similarities in the two pathologies.
Collapse
|
28
|
Development and Characterization of the Shortest Anti-Adhesion Peptide Analogue of B49Mod1. Molecules 2020; 25:molecules25051188. [PMID: 32155736 PMCID: PMC7179399 DOI: 10.3390/molecules25051188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibition of cancer cell adhesion is an effective approach to killing adherent cancer cells. B49 and its analog B49Mod1 peptides, derived from the extracellular domain (ECD) of bone marrow stromal antigen 2 (BST-2), display anti-adhesion activity on breast cancer cells. However, the minimal sequence required for this anti-adhesion activity is unknown. Here, we further characterized the anti-adhesion activity of B49Mod1. We show that the anti-adhesion activity of B49Mod1 may require cysteine-linked disulfide bond and that the peptide is susceptible to proteolytic deactivation. Using structure-activity relationship studies, we identified an 18-Mer sequence (B18) as the minimal peptide sequence mediating the anti-adhesion activity of B49Mod1. Atomistic molecular dynamic (MD) simulations reveal that B18 forms a stable complex with the ECD of BST-2 in aqueous solution. MD simulations further reveal that B18 may cause membrane defects that facilitates peptide translocation across the bilayer. Placement of four B18 chains as a transmembrane bundle results in water channel formation, indicating that B18 may impair membrane integrity and form pores. We hereby identify B18 as the minimal peptide sequence required for the anti-adhesion activity of B49Mod1 and provide atomistic insight into the interaction of B18 with BST-2 and the cell membrane.
Collapse
|
29
|
Tiwari R, de la Torre JC, McGavern DB, Nayak D. Beyond Tethering the Viral Particles: Immunomodulatory Functions of Tetherin ( BST-2). DNA Cell Biol 2019; 38:1170-1177. [PMID: 31502877 DOI: 10.1089/dna.2019.4777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host response to viral infection is a highly regulated process involving engagement of various host factors, cytokines, chemokines, and stimulatory signals that pave the way for an antiviral immune response. The response is manifested in terms of viral sequestration, phagocytosis, and inhibition of genome replication, and, finally, if required, lymphocyte-mediated clearance of virally infected cells. During this process, cross-talk between viral and host factors can shape disease outcomes and immunopathology. Bone marrow stromal antigen 2 (BST-2), also know as tetherin, is induced by type I interferon produced in response to viral infections, as well as in certain cancers. BST-2 has been shown to be a host restriction factor of virus multiplication through its ability to physically tether budding virions and restrict viral spread. However, BST-2 has other roles in the host antiviral response. This review focuses on the diverse functions of BST-2 and its downstream signaling pathways in regulating host immune responses.
Collapse
Affiliation(s)
- Ritudhwaj Tiwari
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Juan C de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
30
|
Human Immunodeficiency Virus (HIV) Infection and Use of Illicit Substances Promote Secretion of Semen Exosomes that Enhance Monocyte Adhesion and Induce Actin Reorganization and Chemotactic Migration. Cells 2019; 8:cells8091027. [PMID: 31484431 PMCID: PMC6770851 DOI: 10.3390/cells8091027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Semen exosomes (SE) from HIV-uninfected (HIV−) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV− and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV−Drug−, HIV−Drug+, HIV+Drug−, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV−Drug− SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances.
Collapse
|
31
|
Bego MG, Miguet N, Laliberté A, Aschman N, Gerard F, Merakos AA, Weissenhorn W, Cohen ÉA. Activation of the ILT7 receptor and plasmacytoid dendritic cell responses are governed by structurally-distinct BST2 determinants. J Biol Chem 2019; 294:10503-10518. [PMID: 31118237 DOI: 10.1074/jbc.ra119.008481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.
Collapse
Affiliation(s)
- Mariana G Bego
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nolwenn Miguet
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Alexandre Laliberté
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nicolas Aschman
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Francine Gerard
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Angelique A Merakos
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Winfried Weissenhorn
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Éric A Cohen
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada, .,the Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
32
|
Sun T, Song Y, Yu H, Luo X. Identification of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis's proliferates and anti-apoptotic effect on breast cancer using co-expression network analysis. Cancer Biol Ther 2019; 20:760-773. [PMID: 30810442 PMCID: PMC6605980 DOI: 10.1080/15384047.2018.1564563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies occurring in women worldwide. Weighted gene co-expression network analysis (WGCNA) has not been widely utilized in uncovering the biomarkers which played pivotal roles in BC treatment. This study aimed to verify the proliferative and anti-apoptotic effect of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis on BC based on WGCNA. WGCNA was applied for determining hub genes using gene expression data gained from breast cancer and adjacent tissues which were downloaded from the Cancer Genome Atlas (TCGA) database. The correlative curves showed the correlation between OS/DFS of BC patients and TRPM2-AS expression or PYCR1 expression based on the data of survival rate of BC patients obtained from the TCGA database. QRT-PCR was employed in detecting the expression levels of TRPM2-AS, miR-140-3p and PYCR1, and western blot analysis was adopted for determination of protein expression level of PYCR1. Dual luciferase assay was applied to verify the targeting relationship between TRPM2-AS and miR-140-3p, as well as miR-140-3p and PYCR1. The roles of TRPM2-AS, miR-140-3p, and PYCR1 in proliferation, migration, and apoptosis of BC cell were identified by CCK-8 assay, cell migration assay and flow cytometry. Hub genes were also gained from WGCNA test. The prognostic study showed a significant negative correlation between the high expression of PYCR1 and TRPM2-AS and the BC survival. QRT-PCR demonstrated that PYCR1 and TRPM2-AS were both overexpressed, while miR-140-3p was greatly down-regulated in BC cell. In addition, it was validated by dual luciferase assay that miR-140-3p directly targeted both TRPM2-AS and PYCR1. Furthermore, down-regulation of TRPM2-AS and PYCR1 inhibited proliferation yet promoted apoptosis of BC cell, and up-regulation of miR-140-3p in BC cell showed the same tendency. Taken together, TRPM2-AS could promote proliferation and inhibit apoptosis of BC cell through TRPM2-AS/miR-140-3p/PYCR1 axis.
Collapse
Affiliation(s)
- Tong Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Yu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
34
|
Chen Y, Hei N, Zhao J, Peng S, Yang K, Chen H, Cui Z, Jin L, Sun R, Guo J. A two‐CpG‐based prognostic signature for oral squamous cell carcinoma overall survival. J Cell Biochem 2018; 120:9082-9090. [PMID: 30548666 DOI: 10.1002/jcb.28182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yanping Chen
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Naiheng Hei
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Jianguang Zhao
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Shixiong Peng
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Kaicheng Yang
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - He Chen
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Zifeng Cui
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Linyu Jin
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Ran Sun
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Jingxin Guo
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| |
Collapse
|
35
|
BST-2 promotes survival in circulation and pulmonary metastatic seeding of breast cancer cells. Sci Rep 2018; 8:17608. [PMID: 30514852 PMCID: PMC6279795 DOI: 10.1038/s41598-018-35710-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Bone marrow stromal antigen 2 (BST-2) mediates various facets of cancer progression and metastasis. Here, we show that BST-2 is linked to poor survival in invasive breast cancer patients as its expression positively correlates with disease severity. However, the mechanisms that drive the pro‐metastatic functions of BST-2 are not fully understood. Correlation of BST-2 expression and tumor aggressiveness was analyzed in human tissue samples. Migration, invasion, and competitive experimental metastasis assays were used to measure the cellular responses after silencing BST-2 expression. Using a mouse model of breast cancer, we show that BST-2 promotes metastasis independent of the primary tumor. Additional experiments show that suppression of BST-2 renders non-adherent cancer cells non-viable by sensitizing cells to anoikis. Embedment of cancer cells in basement membrane matrix reveals that silencing BTS-2 expression inhibits invadopodia formation, extracellular matrix degradation, and subsequent cell invasion. Competitive experimental pulmonary metastasis shows that silencing BST-2 reduces the numbers of viable circulating tumor cells (CTCs) and decreases the efficiency of lung colonization. Our data define a previously unknown function for BST-2 in the i) formation of invadopodia, ii) degradation of extracellular matrix, and iii) protection of CTCs from hemodynamic stress. We believe that physical (tractional forces) and biochemical (ECM type/composition) cues may control BST-2’s role in cell survival and invadopodia formation. Collectively, our findings highlight BST-2 as a key factor that allows cancer cells to invade, survive in circulation, and at the metastatic site.
Collapse
|
36
|
Zhang H, Cai Y, Zheng L, Zhang Z, Lin X, Jiang N. LncRNA BISPR promotes the progression of thyroid papillary carcinoma by regulating miR-21-5p. Int J Immunopathol Pharmacol 2018; 32:2058738418772652. [PMID: 29856242 PMCID: PMC5985546 DOI: 10.1177/2058738418772652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our study attempted to verify the effect of lncRNA BST2 interferon-stimulated
positive regulator (BISPR) on cell viability, propagation and invasiveness of
thyroid papillary carcinoma (TPC) and the interactive relationship between BISPR
and miR-21-5p. Microarray analyzed the aberrant expression lncRNA BISPR in TPC.
BISPR and miR-21-5p as well as B-cell lymphoma-2 (Bcl-2) expressions in TPC
cells were determined by quantitative polymerase chain reaction (qRT-PCR) and
Western blot. Cell counting kit-8 (CCK-8) assay, dual luciferase reporter assay,
and transwell assay were conducted to manifest cell viability, propagation, and
invasiveness of TPC cells. Flow cytometry was performed to determine the
apoptosis and cell cycle of TPC cells. Mouse xenograft model was built to
testify the effect of BISPR on tumor growth. BISPR in TPC tissues was
over-expressed. BISPR knockdown restrained the propagation and invasiveness and
enhanced the iodine uptake of TPC cells. The tumor-forming rate reduced after
BISPR knockdown. In addition, miR-21-5p was lowly expressed in cancer tissues.
BISPR promoted the development of TPC cells by inhibiting miR-21-5p expression.
Bcl-2 was suppressed by miR-21-5p and sh-BISPR. BISPR, which was over-expressed
in TPC, improved TPC cell viability, propagation, and invasiveness. MiR-21-5p
was lowly expressed in TPC which inhibited Bcl-2 expression. BISPR stimulated
propagation and invasiveness of TPC cells by depressing miR-21-5p.
Collapse
Affiliation(s)
- Hong Zhang
- 1 Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.,2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuechang Cai
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Zheng
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanlei Zhang
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningyi Jiang
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
38
|
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 2018; 92:JVI.00093-18. [PMID: 29875238 DOI: 10.1128/jvi.00093-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Collapse
|
39
|
Bhattacharya R, Panda CK, Nandi S, Mukhopadhyay A. An insight into metastasis: Random or evolving paradigms? Pathol Res Pract 2018; 214:1064-1073. [PMID: 30078401 DOI: 10.1016/j.prp.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Mechanical or fostered molecular events define metastatic cascade. Three distinct sets of molecular events characterize metastasis, viz invasion of extracellular matrix; angiogenesis, vascular dissemination and anoikis resistance; tumor homing and relocation of tumor cells to selective organ. Invasion of extracellular matrix requires epithelial to mesenchymal transition through disrupted lamellopodia formation and contraction of actin cytoskeleton; aberration of Focal adhesion complex formation involving integrins and the extracellular matrix; degradation of extracellular matrix by matrix metalloproteases; faulty immune surveillance in tumor microenvironment and an upregulated proton efflux pump NHE1 in tumors. Vascular dissemination and anoikis resistance depend upon upregulation of integrins, phosphorylation of CDCP1, attenuated apoptotic pathways and upregulation of angiogenesis. Tumor homing depends on recruitment of mesenchymal stem cells, expression on chemokines and growth factors, upregulated stem cell renewal pathways. Despite of many potential challenges in curbing metastasis, future targeted therapies involving immunotherapy, stem cell engineered and oncolytic virus based therapy, pharmacological activation of circadian clock are held promising. To sum up, metastasis is a complex cascade of events and warrants detailed molecular understanding for development of therapeutic strategies.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P Mukherjee Road, Kolkata, 700026, India.
| | - Sourav Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Ashis Mukhopadhyay
- Department of Haemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| |
Collapse
|
40
|
Liu W, Cao Y, Guan Y, Zheng C. BST2 promotes cell proliferation, migration and induces NF-κB activation in gastric cancer. Biotechnol Lett 2018; 40:1015-1027. [PMID: 29774441 DOI: 10.1007/s10529-018-2562-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients. RESULTS BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling. CONCLUSION BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Weiyu Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang, 110013, People's Republic of China
| | - Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China.
| |
Collapse
|
41
|
Abstract
Bone marrow stromal antigen 2 (BST-2) also known as Tetherin has been implicated in the growth and progression of many cancers. BST-2 employs its pro-tumor effects through the formation of BST-2:BST-2 dimers which ultimately promotes cell to cell and cell to matrix adhesion, cell motility, survival, and growth. The aim of this study was to evaluate the effect of a novel BST-2-based peptide-B49 on adhesion and growth of breast cancer cells. Homotypic/heterotypic adhesion, three-dimensional spheroid formation, and anchorage-independent growth were used to assess the effect of B49 on cell adhesion and growth. Additionally, we provide evidence of the anti-tumor effect of B49 in a preclinical mouse model of breast cancer. Results show that breast cancer cell adhesion to other cancer cells or components of the tumor microenvironment were inhibited by B49. Most well-known evaluation indexes of cancer cell growth, including spheroid formation, anchorage-independent, and primary tumor growth were significantly inhibited by B49. These data affirm that i) BST-2 plays a key role in mediating breast cancer cell adhesion and growth, and ii) B49 and its analog B49Mod1 significantly inhibits BST-2-mediated cancer cell adhesion and growth. Therefore, B49 and its analogs offer a promising anti-adhesion and therapeutic lead for BST-2-dependent cancers.
Collapse
|
42
|
Structural determinant of BST-2-mediated regulation of breast cancer cell motility: a role for cytoplasmic tail tyrosine residues. Oncotarget 2017; 8:110221-110233. [PMID: 29299143 PMCID: PMC5746378 DOI: 10.18632/oncotarget.22753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/09/2017] [Indexed: 01/25/2023] Open
Abstract
There is now irrefutable evidence that overexpression of the innate immunity protein―BST-2, in breast cancer cells is implicated in tumor growth and progression. The cellular mechanisms that control BST-2-mediated effect in tumor progression involve enhancement of cancer cell motility―migration/invasion. However, the distinct structural elements of BST-2 that mediate breast cancer cell motility remain unknown. Here, we used various motility assays and different variants of BST-2 to examine the cellular and structural mechanisms controlling BST-2-mediated cell motility. We show that BST-2 silencing in various cancer cell lines inhibits cell motility. Restoration of BST-2 expression using construct expressing wild type BST-2 rescues cell motility. Mutational analysis identifies the cytoplasmic tail of BST-2 as a novel regulator of cancer cell motility, because cell motility was significantly abrogated by substitution of the BST-2 cytoplasmic tail tyrosine residues to alanine residues. Furthermore, in a spheroid invasion model, BST-2-expressing tumor spheroids are highly invasive inside 3D Matrigel matrices. In this model, the spreading distance of BST-2-expressing spheroids was significantly higher than that of BST-2-suppressed spheroids. Collectively, our data reveal that i) BST-2-expressing breast cancer cells in spheroids are more motile than their BST-2-supressed counterparts; ii) BST-2 cytoplasmic tail regulates non-proteolytic (migration) and proteolytic (invasion) mechanisms of breast cancer cell motility; and iii) replacement of the tyrosine residues at positions 6 and 8 in the cytoplasmic tail of BST-2 with alanine residues inhibits cell motility.
Collapse
|
43
|
Tang XL, Ding BX, Hua Y, Chen H, Wu T, Chen ZQ, Yuan CH. HOXC10 Promotes the Metastasis of Human Lung Adenocarcinoma and Indicates Poor Survival Outcome. Front Physiol 2017; 8:557. [PMID: 28824453 PMCID: PMC5539290 DOI: 10.3389/fphys.2017.00557] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
Abstract
Background: As master regulator of embryonic morphogenesis, homeodomain-containing gene 10 (HOXC10) has been found to promote progression of human cancers and indicates poor survival outcome. However, the role of HOXC10 in lung adenocarcinoma still unclear. Methods: HOXC10 expression was evaluated in 63 primary lung adenocarcinoma tissues from our local hospital, and further systematically confirmed in lung cancer tissues from six GEO datasets (GSE19188, GSE31210, GSE10072, GSE7670, GSE32863, GSE30219), and Kaplan-Meier plotter database. The role of HOXC10 in lung cancer metastasis was further validated by cellular and molecular studies. Results: The expression of HOXC10 was significantly increased in human lung adenocarcinoma samples from Wuhu No.2 People's Hospital, about 4.219 times compared with normal tissues, and significantly correlated with TNM stage, lymph node, and distal metastasis. Upregulation of HOXC10 indicated a poor overall/relapse free survival of lung cancer patients from Wuhu No.2 People's Hospital, GEO datasets, and Kaplan-Meier plotter database, especially in patients with lung adenocarcinoma. Knockdown or ectopic expression assays confirmed that HOXC10 enhanced the phosphorylation of PI3K, regulated the expression of epithelial-to-mesenchymal transition (EMT) markers: MMP2/9, VCAM-1, vimentin and E-cadherin. Cellular study further confirmed that HOXC10 was required for migration, invasion and adhesion of lung cancer cells. Conclusion: These findings suggest that HOXC10 plays a pivotal role in the metastasis of human lung cancer and highlight its usefulness as a potential prognostic marker or therapeutic target in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Lei Tang
- Department of Laboratory and Nuclear Medicine, People's HospitalAnhui, China
| | - Bang-Xian Ding
- Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and TechnologyWuhan, China
| | - Ying Hua
- Chemical and Biological Engineer, Vocational and Technical College of FuyangAnhui, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Tao Wu
- Department of Laboratory and Nuclear Medicine, People's HospitalAnhui, China
| | - Zhang-Quan Chen
- Key Laboratory for Medical Molecular Diagnostic of Guangdong Province, Guangdong Medical UniversityDongguan, China
| | - Chun-Hui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
44
|
BST2 confers cisplatin resistance via NF-κB signaling in nasopharyngeal cancer. Cell Death Dis 2017; 8:e2874. [PMID: 28617432 PMCID: PMC5520926 DOI: 10.1038/cddis.2017.271] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Concurrent/adjuvant cisplatin-based chemoradiotherapy is regarded as the standard of treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, patients who do not respond to cisplatin suffer, rather than benefit, from chemotherapy treatment. The goal of this study was to identify molecules involved in cisplatin resistance and to clarify their molecular mechanisms, which would help in the discovery of potential therapeutic targets and in developing a personalized and precise treatment approach for NPC patients. We previously generated a cisplatin-sensitive NPC cell line, S16, from CNE2 cells and found that eIF3a, ASNS and MMP19 are upregulated in S16 cells, which contributes to their cisplatin sensitivity. In this study, we found that BST2 is downregulated in cisplatin-sensitive S16 cells compared with CNE2 cells. Knockdown of BST2 in NPC cells sensitized their response to cisplatin and promoted cisplatin-induced apoptosis, whereas exogenous overexpression of BST2 increased their cisplatin resistance and inhibited cisplatin-induced apoptosis. Further investigation demonstrated that BST2-mediated cisplatin resistance depended on the activation of the NF-κB signaling pathway and consequent upregulation of anti-apoptotic genes, such as Bcl-XL and livin. Moreover, an analysis of clinical data revealed that a high BST2 level might serve as an independent indicator of poor prognosis in patients with locally advanced NPC treated with platinum-based chemoradiotherapy. These findings suggest that BST2 likely mediates platinum resistance in NPC, offering guidance for personalized and precise treatment strategies for patients with NPC.
Collapse
|
45
|
Effect of prolonged freezing of semen on exosome recovery and biologic activity. Sci Rep 2017; 7:45034. [PMID: 28338013 PMCID: PMC5364471 DOI: 10.1038/srep45034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Exosomes are important vehicles of intercellular communication that shape host responses to physiologic, tumorigenic, and pathogenic conditions. The composition and function of exosomes are dynamic and depends on the state and condition of the cellular source. In prior work, we found that semen exosomes (SE) from healthy donors who do not use illicit drugs potently inhibit HIV-1. Following semen donation, specimens are either used immediately or frozen for use at a later time. It has been shown that short-term freezing of semen has no effect on SE-mediated HIV-1 inhibition. However, the effect of illicit drugs and prolonged freezing on SE bioactivity is unknown. Here, we show preservation of SE physical properties, (morphology, concentration, intensity/size) irrespective of illicit drug use or duration of semen freezing. Interestingly, illicit drugs and prolonged freezing decreased the levels of SE-bound CD63/CD9 and acetylcholinesterase activity respectively. Furthermore, we show differential effects of illicit drug use and prolonged freezing on SE-mediated HIV-1 inhibition. Our results highlight the importance of the source of SE and condition of semen storage on SE content and function. In-depth evaluation of donor drug-use and duration of semen storage on SE cargo and bioactivity will advance our understanding of SE composition and function.
Collapse
|
46
|
Mahauad-Fernandez WD, Okeoma CM. Cysteine-linked dimerization of BST-2 confers anoikis resistance to breast cancer cells by negating proapoptotic activities to promote tumor cell survival and growth. Cell Death Dis 2017; 8:e2687. [PMID: 28300825 PMCID: PMC5386562 DOI: 10.1038/cddis.2017.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
Almost all breast tumors express the antiviral protein BST-2 with 67%, 25% and 8.2% containing high, medium or low levels of BST-2, respectively. Breast tumor cells and tissues that contain elevated levels of BST-2 are highly aggressive. Suppression of BST-2 expression reprograms tumorigenic properties of cancer cells and diminishes cancer cell aggressiveness. Using structure/function studies, we report that dimerization of BST-2 through cysteine residues located in the BST-2 extracellular domain (ECD), leads to anoikis resistance and cell survival through proteasome-mediated degradation of BIM—a key proapoptotic factor. Importantly, BST-2 dimerization promotes tumor growth in preclinical breast cancer models in vitro and in vivo. Furthermore, we demonstrate that restoration of the ECD cysteine residues is sufficient to rescue cell survival and tumor growth via a previously unreported pathway—BST-2/GRB2/ERK/BIM/Cas3. These findings suggest that disruption of BST-2 dimerization offers a potential therapeutic approach for breast cancer.
Collapse
Affiliation(s)
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB), University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Li X, Zhang G, Chen Q, Lin Y, Li J, Ruan Q, Chen Y, Yu G, Wan X. CD317 Promotes the survival of cancer cells through apoptosis-inducing factor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:117. [PMID: 27444183 PMCID: PMC4957287 DOI: 10.1186/s13046-016-0391-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/07/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Low nutrient environment is a major obstacle to solid tumor growth. However, many tumors have developed adaptive mechanisms to circumvent the requirement for exogenous growth factors. METHODS Here we used siRNA interference or plasmid transfection techniques to knockdown or enhance CD317 expression respectively, in mammalian cancer cells, and subjected these CD317-manipulated cells to serum deprivation to study the role of CD317 on stress-induced apoptosis and the underlying mechanism. RESULTS We report that CD317, an innate immune gene overexpressed in human cancers, protected cancer cells against serum deprivation-induced apoptosis. In tumor cells, loss of CD317 markedly enhanced their susceptibility to serum deprivation-induced apoptosis with no effect on autophagy or caspase activation, indicating an autophagy- and caspase-independent mechanism of CD317 function. Importantly, CD317 knockdown in serum-deprived tumor cells impaired mitochondria function and subsequently promoted apoptosis-inducing factor (AIF) release and nuclear translocation but had little effect on mitochondrial and cytoplasmic distributions of cytochrome C, a pro-apoptotic factor released from mitochondria that initiates caspase processing in response to death stimuli. Furthermore, overexpression of CD317 in HEK293T cells inhibits serum deprivation-induced apoptosis as well as the release and nuclear accumulation of AIF. CONCLUSION Our data suggest that CD317 functions as an anti-apoptotic factor through the mitochondria-AIF axis in malnourished condition and may serve as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Division of Immunology, School of Fundamental Medicine, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Guizhong Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qian Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yingxue Lin
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Junxin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qingguo Ruan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Youhai Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guang Yu
- Division of Immunology, School of Fundamental Medicine, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Xiaochun Wan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China. .,Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen University Town, 1068 Xueyuan Avenue, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
48
|
Woodman N, Pinder SE, Tajadura V, Le Bourhis X, Gillett C, Delannoy P, Burchell JM, Julien S. Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer. Int J Oncol 2016; 49:265-75. [PMID: 27176937 DOI: 10.3892/ijo.2016.3521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.
Collapse
Affiliation(s)
- Natalie Woodman
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Sarah E Pinder
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Virginia Tajadura
- Breast Cancer Biology, Research Oncology, King's College London, Guy's Hospital, London, UK
| | - Xuefen Le Bourhis
- University of Lille, INSERM, U908 - CPAC, Cell Plasticity and Cancer, Lille, Villeneuve d'Ascq, France
| | - Cheryl Gillett
- Breast Research Pathology, King's College London, Guy's Hospital, London, UK
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576 - UGSF, Unit of Structural and Functional Glycobiology, Lille, Villeneuve d'Ascq, France
| | - Joy M Burchell
- Breast Cancer Biology, Research Oncology, King's College London, Guy's Hospital, London, UK
| | - Sylvain Julien
- University of Lille, INSERM, U908 - CPAC, Cell Plasticity and Cancer, Lille, Villeneuve d'Ascq, France
| |
Collapse
|
49
|
Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 2016; 48:1933-42. [PMID: 26934961 DOI: 10.3892/ijo.2016.3406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
Abstract
Paternally expressed imprinted gene 10 (PEG10), derived from the Ty3/Gypsy family of retrotransposons, has been implicated as a genetic imprinted gene. Accumulating evidence suggests that PEG10 plays an important role in tumor growth in various cancers, including hepatocellular carcinoma, lung cancer and prostate cancer. However, the correlation between PEG10 and breast cancer remains unclear. In the present study, we evaluated and characterized the role of PEG10 in human breast cancer proliferation, cell cycle, clone formation, migration and invasion. The expression level of PEG10 was significantly elevated in breast cancer tissues and associated with distant metastasis and poor clinical outcome. Gene set enrichment analysis indicated that high expression of PEG10 could enrich cell cycle-related processes in breast cancer tissues. Ectopic overexpression of PEG10 in breast cancer cells enhanced cell proliferation, cell cycle, clone formation along with migration and invasion. Cell-to-cell junction molecule E-cadherin was downregulated and matrix degradation proteases MMP-1, MMP-2, MMP-9 were up-regulated after PEG10 overexpression. Our results demonstrated that PEG10 is a crucial oncogene and has prognostic value for breast cancer, which could be applied in breast cancer diagnosis and targeting therapy in future.
Collapse
Affiliation(s)
- Xinran Li
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kingsley Tembo
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ling Hao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Meng Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiangyong Yang
- Hubei University of Technology Engineering and Technology College, Wuhan, Hubei 430068, P.R. China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
50
|
Mahauad-Fernandez WD, Okeoma CM. BST-2: at the crossroads of viral pathogenesis and oncogenesis. Future Virol 2016. [DOI: 10.2217/fvl.15.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BST-2 is a moonlight protein with several protective and deleterious functions. Regulation of virus restriction and tumor aggressiveness are the most studied aspects of BST-2 function and thus, the main focus of this perspective. Virus inhibition roles of BST-2 have therapeutic potential that, if properly harnessed, could result in near broad spectrum antiviral. However, the involvement of BST-2 in cancer calls for additional studies on BST-2 biology and re-evaluation of the overall role of BST-2 in host protection, as it appears that BST-2 has pleiotropic effects in the host. Here, we analyze the antiviral and protumor roles of BST-2. We also discuss potential therapeutic options for BST-2 against viral infection and cancer.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Chioma M Okeoma
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Molecular & Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|