1
|
Wang X, Zhao L, Song X, Wu X, Krishnamurthy S, Semba T, Shao S, Knafl M, Coffer LW, Alexander A, Vines A, Bopparaju S, Woodward WA, Chu R, Zhang J, Yam C, Loo LWM, Nasrazadani A, Huong LP, Woodman SE, Futreal A, Tripathy D, Ueno NT. Genomic and transcriptomic analyses identify distinctive features of triple-negative inflammatory breast cancer. NPJ Precis Oncol 2024; 8:265. [PMID: 39558017 PMCID: PMC11574056 DOI: 10.1038/s41698-024-00729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
Triple-negative inflammatory breast cancer (TN-IBC) is the most aggressive type of breast cancer, yet its defining genomic, molecular, and immunological features remain largely unknown. In this study, we performed the largest and most comprehensive genomic and transcriptomic analyses of prospectively collected TN-IBC patient samples from a phase II clinical trial (ClinicalTrials.gov, NCT02876107, registered on August 22, 2016) and compared them to similarly analyzed stage III TN-non-IBC patient samples (ClinicalTrials.gov, NCT02276443, registered on October 21, 2014). We found that TN-IBC tumors have distinctive genomic, molecular, and immunological characteristics, including a lower tumor mutation load than TN-non-IBC, and an association of immunosuppressive tumor-infiltrating immune components with an unfavorable response to neoadjuvant chemotherapy. To our knowledge, this is the only study in which TN-IBC and TN-non-IBC samples were collected prospectively. Our analysis improves the understanding of the molecular landscape of the most aggressive subtype of breast cancer. Further studies are needed to discover novel prognostic biomarkers and druggable targets for TN-IBC.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larry W Coffer
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Vines
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Bopparaju
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Azadeh Nasrazadani
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le-Petross Huong
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
2
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Zhang R, Gui Z, Zhao J, Zhao L. BCL9 is a Risk Factor of Neck Lymph Nodes Metastasis and Correlated with Immune Cell Infiltration in Papillary Thyroid Carcinoma. Int J Gen Med 2024; 17:1451-1466. [PMID: 38645401 PMCID: PMC11032164 DOI: 10.2147/ijgm.s455846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, contributed to tumor progression and metastasis in various tumors, whereas, the role of BCL9 in papillary thyroid cancer (PTC) has not been investigated. Methods We acquired PTC gene expression data from The Cancer Genome Atlas (TCGA) database. Fifty-nine PTC tissues were applied to validate the clinical significance of BCL9. Cell experiments were applied to investigate the role of BCL9. Bioinformatics analysis was employed to investigate the biological functions of BCL9. Results We found that BCL9 was higher expressed (P < 0.05) and an independent risk factor for lymph node metastasis (OR = 3.770, P = 0.025), as well as associated with poorer progression-free survival (PFS) (P = 0.049) in PTC. BCL9 knockdown inhibited proliferation and invasion of PTC cells. BCL9 was positively associated with the key genes of Wnt/β-catenin and MAPK pathway by co-expression analysis. GO, KEGG and GSEA analysis showed BCL9 might participated in PPAR, cAMP, and focal adhesion pathway. CIBERSORT analysis found BCL9 was negatively associated with CD8+ T cells and NK cell infiltration and positively with PD-L1 expression. Conclusion Therefore, BCL9 was associated with lymph node metastasis and shorter PFS of PTC, due to promotion of PTC cell proliferation and invasion, activation of Wnt/β-catenin and MAPK pathway, inhibition of CD8+ T and NK cell infiltration, and promotion of PD-L1 expression.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Zhengwei Gui
- Department of Thyroid and Breast Surgery, Tongji Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, 430030, People’s Republic of China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
4
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Behbod F, Chen JH, Thompson A. Human Ductal Carcinoma In Situ: Advances and Future Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041319. [PMID: 36781223 PMCID: PMC10547390 DOI: 10.1101/cshperspect.a041319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS outcomes remain unclear. A large fraction of human DCIS (>50%) may not need the multimodality treatment options currently offered to all DCIS patients. More importantly, while we may be overtreating many, we cannot identify those most at risk of invasion or metastasis following a DCIS diagnosis. This review summarizes the studies that have furthered our understanding of DCIS pathology and mechanisms of invasive progression by using advanced technologies including spatial genomics, transcriptomics, and multiplex proteomics. This review also highlights a need for rethinking DCIS with a more focused view on epithelial states and programs and their cross talk with the microenvironment.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jennifer H Chen
- Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alastair Thompson
- Section of Breast Surgery, Baylor College of Medicine, Co-Director, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Hutten SJ, Jonkers J. MIND the translational gap: Preclinical models of ductal carcinoma in situ. Clin Transl Med 2023; 13:e1376. [PMID: 37620984 PMCID: PMC10449811 DOI: 10.1002/ctm2.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Affiliation(s)
- Stefan J. Hutten
- Division of Molecular PathologyOncode Institute, Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Jonkers
- Division of Molecular PathologyOncode Institute, Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
8
|
Turning a Targeting β-Catenin/Bcl9 Peptide Inhibitor into a GdOF@Au Core/Shell Nanoflower for Enhancing Immune Response to Cancer Therapy in Combination with Immune Checkpoint Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14061306. [PMID: 35745877 PMCID: PMC9228893 DOI: 10.3390/pharmaceutics14061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Combination administration is becoming a popular strategy in current cancer immunotherapy to enhance tumor response to ICIs. Recently, a peptide drug, a protein–protein interaction inhibitor (PPI), that disrupts the β-catenin/Bcl9 interaction in the tumoral Wnt/β-catenin pathway has become a promising candidate drug for immune enhancement and tumor growth inhibition. However, the peptide usually suffers from poor cell membrane permeability and proteolytic degradation, limiting its adequate accumulation in tumors and ultimately leading to side effects. Herein, a gadolinium–gold-based core/shell nanostructure drug delivery system was established, where Bcl9 was incorporated into a gadolinium–gold core–shell nanostructure and formed GdOFBAu via mercaptogenic self-assembly. After construction, GdOFBAu, when combined with anti-PD1 antibodies, could effectively inhibit tumor growth and enhance the response to immune therapy in MC38 tumor-bearing mice; it not only induced the apoptosis of cancer cells, but also promoted the tumor infiltration of Teff cells (CD8+) and decreased Treg cells (CD25+). More importantly, GdOFBAu maintained good biosafety and biocompatibility during treatment. Taken together, this study may offer a promising opportunity for sensitizing cancer immunotherapy via metal–peptide self-assembling nanostructured material with high effectiveness and safety.
Collapse
|
9
|
Wang Z, Zhang M, Thompson HM, Ji H. New ZW4864 Derivatives as Small-Molecule Inhibitors for the β-Catenin/BCL9 Protein-Protein Interaction. ACS Med Chem Lett 2022; 13:865-870. [PMID: 35586435 PMCID: PMC9109161 DOI: 10.1021/acsmedchemlett.2c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
A series of 1-(3-(2-amino-2-oxoethoxy)phenyl)piperidine-3-carboxamide derivatives was reported as new small-molecule β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) inhibitors. Compounds 17-21 were discovered to inhibit the β-catenin/BCL9 PPI with K i = 0.85-2.7 μM. The effects of 21 on the β-catenin/BCL9 PPI in cellular context were demonstrated by β-catenin/BCL9 pull-down inhibition and dose-dependent suppression of Wnt/β-catenin signal transactivation. Notably, compound 21 is more potent than ZW4864, a previously reported analogue, in modulating transcription and expression of β-catenin target genes and suppressing survival of β-catenin-dependent cancer cells. The cellular on-target efficacy of 21 was demonstrated by β-catenin rescue experiments. Compound 21 represents a promising starting point for further optimization of β-catenin/BCL9 PPI inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Harriet M. Thompson
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
- Department of Chemistry, University of South Florida, Tampa, Florida 33620-9497, United States
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
10
|
Wnt/β-Catenin Signalling and Its Cofactor BCL9L Have an Oncogenic Effect in Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms23105319. [PMID: 35628130 PMCID: PMC9141496 DOI: 10.3390/ijms23105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is characterised by a high recurrence and progression rate. However, the molecular mechanisms of BC progression remain poorly understood. BCL9L, a coactivator of β-catenin was mutated in the 5′ and 3′ untranslated regions (UTRs). We assessed the influence of UTRs mutations on BCL9L, and the role of BCL9L and Wnt/β-catenin signalling in BC cells. UTR mutations were analysed by a luciferase reporter. BCL9L protein was assessed by immunohistochemistry in BC tissues. Cell proliferation was examined by crystal violet staining and by the spheroid model. Moreover, migration and invasion were analysed in real-time using the xCelligence RTCA system. The A > T mutation at 3′ UTR of BCL9L reduces the luciferase reporter mRNA expression and activity. BCL9L is predominantly increased in dysplastic urothelial cells and muscle-invasive BC. Knockdown of BCL9L and inhibition of Wnt/β-catenin signalling significantly repress the proliferation, migration and invasion of Cal29 and T24. In addition, BCL9L knockdown reduces mRNA level of Wnt/β-catenin target genes in Cal29 but not in T24 cells. BCL9L and Wnt/β-catenin signalling play an oncogenic role in bladder cancer cells and seems to be associated with BC progression. Nevertheless, the involvement of BCL9L in Wnt/β-catenin signalling is cell-line specific.
Collapse
|
11
|
Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, Saxena M, Valenta T, Hausmann G, Cantù C, Basler K, Christofori G. The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene 2021; 40:6195-6209. [PMID: 34545187 PMCID: PMC8553620 DOI: 10.1038/s41388-021-02016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Canonical Wnt/β-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of β-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with β-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of β-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the β-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFβ treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the “just-right” hypothesis of Wnt-driven tumor progression.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - David Buechel
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lorenzo Bazzani
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
12
|
Wang Z, Zhang M, Quereda V, Frydman SM, Ming Q, Luca VC, Duckett DR, Ji H. Discovery of an Orally Bioavailable Small-Molecule Inhibitor for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:12109-12131. [PMID: 34382808 PMCID: PMC8817233 DOI: 10.1021/acs.jmedchem.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is strongly associated with many diseases including cancer invasion and metastasis. Small-molecule targeting of the central signaling node of this pathway, β-catenin, is a biologically rational approach to abolish hyperactivation of β-catenin signaling but has been demonstrated to be a difficult task. Herein, we report a drug-like small molecule, ZW4864, that binds with β-catenin and selectively disrupts the protein-protein interaction (PPI) between B-cell lymphoma 9 (BCL9) and β-catenin while sparing the β-catenin/E-cadherin PPI. ZW4864 dose-dependently suppresses β-catenin signaling activation, downregulates oncogenic β-catenin target genes, and abrogates invasiveness of β-catenin-dependent cancer cells. More importantly, ZW4864 shows good pharmacokinetic properties and effectively suppresses β-catenin target gene expression in the patient-derived xenograft mouse model. This study offers a selective chemical probe to explore β-catenin-related biology and a drug-like small-molecule β-catenin/BCL9 disruptor for future drug development.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Victor Quereda
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Sylvia M Frydman
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Qianqian Ming
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Vincent C Luca
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Derek R Duckett
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| |
Collapse
|
13
|
Li Z, Zhang M, Teuscher KB, Ji H. Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:11195-11218. [PMID: 34270257 DOI: 10.1021/acs.jmedchem.1c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| |
Collapse
|
14
|
Liu D, Chen C, Cui M, Zhang H. miR-140-3p inhibits colorectal cancer progression and its liver metastasis by targeting BCL9 and BCL2. Cancer Med 2021; 10:3358-3372. [PMID: 33838016 PMCID: PMC8124101 DOI: 10.1002/cam4.3840] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Recent studies have identified microRNAs (miRNAs) as a compelling novel class of biomarker in colorectal cancer (CRC) development and metastasis. Here, we demonstrated that the level of plasma exosomal miR‐140‐3p in CRC patients was lower than that in healthy controls. The decreased miR‐140‐3p level was also observed in CRC patients with liver metastasis. The expression of miR‐140‐3p in CRC tissues were significantly lower than that in matched normal tissues. Functionally, miR‐140‐3p overexpression suppressed proliferation, migration, invasion, and β‐catenin nuclear translocation, as well as promoted apoptosis in LoVo cells, while inhibition of miR‐140‐3p reversed these cellular processes in HCT 116 cells. Notably, BCL9 and BCL2 were recognized as direct targets of miR‐140‐3p. BCL9 knockdown abrogated miR‐140‐3p inhibitor‐induced effects on HCT 116 cells with decreased proliferation, migration, and invasion. BCL2 knockdown increased apoptosis of miR‐140‐3p inhibitor‐transfected HCT 116 cells. In vivo experiments revealed that miR‐140‐3p overexpression inhibited tumor growth in LoVo xenograft model and diminished metastatic nodules in nude mice liver. Taken together, this work supports that miR‐140‐3p exerts as a tumor suppressor in CRC progression via targeting BCL9 and BCL2, and suggests miR‐140‐3p‐BCL9/BCL2 axis may be applied in miRNA‐based therapy and prognostication of CRC.
Collapse
Affiliation(s)
- Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chunsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
BCL9/BCL9L promotes tumorigenicity through immune-dependent and independent mechanisms in triple negative breast cancer. Oncogene 2021; 40:2982-2997. [PMID: 33767438 DOI: 10.1038/s41388-021-01756-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to a lack of well-defined molecular targets. The Wnt/β-catenin pathway is known to be activated in many TNBC patients and BCL9 and BCL9L are important transcriptional co-activators of β-catenin, but whether inhibition of BCL9/BCL9L can suppress TNBC growth and the underlying mechanism are not fully understood. Here we demonstrate that the expression of BCL9 and BCL9L is directly correlated with malignancy in TNBC patient tumors and that BCL9 and BCL9L promote tumor cell growth, cell migration and metastasis in TNBC models. Mechanistically, we found that BCL9/BCL9L promotes tumorigenicity through both the Wnt and TGF-β pathways. Besides, BCL9/BCL9L expression inversely correlates with CD8+ T cell infiltration in TNBC and BCL9/BCL9L inhibits the infiltration of CD8+ T cells in the tumor microenvironment. hsBCL9CT-24, an inhibitor of BCL9/β-catenin peptides, promotes intratumoral infiltration of cytotoxic T cells, reducing regulatory T cells (Treg) and increasing dendritic cells (DCs). Inhibition of BCL9/BCL9L and TGF-β suppresses activity of Treg. TGF-β signaling increases tumor infiltration of cytotoxic CD8+ T cells. In accordance, genetic or pharmacological inhibition of BCL9/BCL9L synergizes with PD-1/L1 antibodies to inhibit tumor growth. In summary, these results suggest that targeting BCL9/BCL9L has a direct anti-tumor effect and also unleashes an anti-cancer immune response through inhibition of both Wnt and TGF-β signaling, suggesting a viable therapeutic approach for TNBC treatment.
Collapse
|
16
|
Privitera AP, Barresi V, Condorelli DF. Aberrations of Chromosomes 1 and 16 in Breast Cancer: A Framework for Cooperation of Transcriptionally Dysregulated Genes. Cancers (Basel) 2021; 13:1585. [PMID: 33808143 PMCID: PMC8037453 DOI: 10.3390/cancers13071585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Derivative chromosome der(1;16), isochromosome 1q, and deleted 16q-producing arm-level 1q-gain and/or 16q-loss-are recurrent cytogenetic abnormalities in breast cancer, but their exact role in determining the malignant phenotype is still largely unknown. We exploited The Cancer Genome Atlas (TCGA) data to generate and analyze groups of breast invasive carcinomas, called 1,16-chromogroups, that are characterized by a pattern of arm-level somatic copy number aberrations congruent with known cytogenetic aberrations of chromosome 1 and 16. Substantial differences were found among 1,16-chromogroups in terms of other chromosomal aberrations, aneuploidy scores, transcriptomic data, single-point mutations, histotypes, and molecular subtypes. Breast cancers with a co-occurrence of 1q-gain and 16q-loss can be distinguished in a "low aneuploidy score" group, congruent to der(1;16), and a "high aneuploidy score" group, congruent to the co-occurrence of isochromosome 1q and deleted 16q. Another three groups are formed by cancers showing separately 1q-gain or 16q-loss or no aberrations of 1q and 16q. Transcriptome comparisons among the 1,16-chromogroups, integrated with functional pathway analysis, suggested the cooperation of overexpressed 1q genes and underexpressed 16q genes in the genesis of both ductal and lobular carcinomas, thus highlighting the putative role of genes encoding gamma-secretase subunits (APH1A, PSEN2, and NCSTN) and Wnt enhanceosome components (BCL9 and PYGO2) in 1q, and the glycoprotein E-cadherin (CDH1), the E3 ubiquitin-protein ligase WWP2, the deubiquitinating enzyme CYLD, and the transcription factor CBFB in 16q. The analysis of 1,16-chromogroups is a strategy with far-reaching implications for the selection of cancer cell models and novel experimental therapies.
Collapse
Affiliation(s)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 89-97, 95123 Catania, Italy;
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via S. Sofia 89-97, 95123 Catania, Italy;
| |
Collapse
|
17
|
Chatziandreou I, Psaraki A, Paschidis K, Lazaris AC, Saetta AA. Evidence for frequent concurrent DCUN1D1, FGFR1, BCL9 gene copy number amplification in squamous cell lung cancer. Pathol Res Pract 2021; 221:153412. [PMID: 33862557 DOI: 10.1016/j.prp.2021.153412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) targeted therapies are mostly based on activating mutations and rearrangements which are rare events in Lung Squamous Cell Carcinomas (LUSC). Recently advances in immunotherapy have improved the therapeutic repository for LUSC, but there is still an urgent need for novel targets and biomarkers. We examined 73 cases of LUSC for relative copy number amplification of DCUN1D1, BCL9, FGFR1 and ERBB2 genes and searched for correlations with molecular alterations and clinicopathological characteristics. In our cohort BCL9 gene was amplified in 57.5 % of the cases, followed by DCUN1D1 in 37 %, FGFR1 in 19 % whereas none of the cases were amplified in ERBB2 gene. The majority of the samples exhibited amplification in at least one gene while half of them displayed concurrent amplification of two/three genes. Interestingly, 93 % of the FGFR1 amplified cases were also found co amplified with DCUN1D1 and/or BCL9 genes. Linear correlations were found between BCL9 and DCUN1D1 as well as BCL9 and FGFR1 gene amplification. BCL9 and DCUN1D1 genes' amplification was correlated with poorly differentiated tumors (p = 0.035 and p = 0.056 respectively), implying their possible role in tumor aggressiveness. This is the first study, to the best of our knowledge that examines the correlation of DCUN1D1 and BCL9 genes relative copy number amplification with molecular alterations and clinicopathologic characteristics of squamous cell lung cancer tissue samples. Our findings show concurrent amplification of genes in different chromosomes, with possible involvement in tumor aggressiveness. These results support the complexity of LUSC tumorigenesis and imply the necessity of multiple biomarkers / targets for a more effective therapeutic result in LUSC.
Collapse
Affiliation(s)
- Ilenia Chatziandreou
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Adriana Psaraki
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Konstantinos Paschidis
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Andreas C Lazaris
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| | - Angelica A Saetta
- 1(st) Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527, Goudi, Athens, Greece.
| |
Collapse
|
18
|
Wei Z, Feng M, Wu Z, Shen S, Zhu D. Bcl9 Depletion Modulates Endothelial Cell in Tumor Immune Microenvironment in Colorectal Cancer Tumor. Front Oncol 2021; 10:603702. [PMID: 33552975 PMCID: PMC7856347 DOI: 10.3389/fonc.2020.603702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor endothelial cells are an important part of the tumor microenvironment, and angiogenesis inhibitory therapy has shown potential in tumor treatment. However, which subtypes of tumor endothelial cells are distributed in tumors, what are the differences between tumor endothelial cells and normal endothelial cells, and what is the mechanism of angiogenesis inhibitory therapy at the histological level, are all need to be resolved urgently. Using single-cell mRNA sequencing, we analyzed 12 CT26 colon cancer samples from mice, and found that knockdown of the downstream factor BCL9 in the Wnt signaling pathway or inhibitor-mediated functional inhibition can modulate tumor endothelial cells at a relatively primitive stage, inhibiting their differentiation into further extracellular matrix construction and angiogenesis functions. Furthermore, we propose a BCL9-endo-Score based on the differential expression of cells related to different states of BCL9 functions. Using published data sets with normal endothelial cells, we found that this score can characterize endothelial cells at different stages of differentiation. Finally, in the The Cancer Genome Atlas (TCGA) pan-cancer database, we found that BCL9-endo-Score can well predict the prognosis of diseases including colon cancer, kidney cancer and breast cancer, and identified the markers of these tumor subtypes, provide a basis for the prognosis prediction of patients with such types of tumor. Our data also contributed knowledge for tumor precision treatment with angiogenesis inhibitory therapy by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhuang Wei
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongen Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Shuru Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Department of Pharmacology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China.,Yangtze Delta Drug Advanced Research Institute, Nantong, China
| |
Collapse
|
19
|
Castagnoli L, Tagliabue E, Pupa SM. Inhibition of the Wnt Signalling Pathway: An Avenue to Control Breast Cancer Aggressiveness. Int J Mol Sci 2020; 21:E9069. [PMID: 33260642 PMCID: PMC7730964 DOI: 10.3390/ijms21239069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common tumour in women. Although the introduction of novel therapeutic approaches in clinical practice has dramatically improved the clinical outcome of BC patients, this malignant disease remains the second leading cause of cancer-related death worldwide. The wingless/integrated (Wnt) signalling pathway represents a crucial molecular node relevantly implicated in the regulation of normal somatic stem cells as well as cancer stem cell (CSC) traits and the epithelial-mesenchymal transition cell program. Accordingly, Wnt signalling is heavily dysregulated in BC, and the altered expression of different Wnt genes is significantly associated with cancer-related aggressive behaviours. For all these reasons, Wnt signalling represents a promising therapeutic target currently under clinical investigation to achieve cancer eradication by eliminating CSCs, considered by most to be responsible for tumour initiation, relapse, and drug resistance. In this review, we summarized the current knowledge on the Wnt signalling pathway in BC and have presented evidence implicating the suitability of Wnt targeting in an attempt to improve the outcome of patients without affecting the normal somatic stem cell population.
Collapse
Affiliation(s)
| | | | - Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133 Milan, Italy; (L.C.); (E.T.)
| |
Collapse
|
20
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
21
|
Kuang XW, Liu JH, Sun ZH, Sukumar S, Sun SR, Chen C. Intraductal Therapy in Breast Cancer: Current Status and Future Prospective. J Mammary Gland Biol Neoplasia 2020; 25:133-143. [PMID: 32577880 DOI: 10.1007/s10911-020-09453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
With our improved understanding of the biological behavior of breast cancer, minimally invasive intervention is urgently needed for personalized treatment of early disease. Intraductal therapy is one such minimally invasive approach. With the help of appropriate tools, technologies using the intraductal means of entering the ducts may be used both to diagnose and treat lesions in the mammary duct system with less trauma and at the same time avoid systemic toxicity. Traditional agents such as those targeting pathways, endocrine therapy, immunotherapy, or gene therapy can be used alone or combined with other new technologies, such as nanomaterials, through the intraductal route. Additionally, relevant mammary tumor models in rodents which reflect changes in the tumor microenvironment will help deepen our understanding of their biological behavior and heterogeneity. This article reviews the current status and future prospects of intraductal therapy in breast cancer, with emphasis on ductal carcinoma in situ.
Collapse
Affiliation(s)
- Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
22
|
Elsarraj HS, Hong Y, Limback D, Zhao R, Berger J, Bishop SC, Sabbagh A, Oppenheimer L, Harper HE, Tsimelzon A, Huang S, Hilsenbeck SG, Edwards DP, Fontes J, Fan F, Madan R, Fangman B, Ellis A, Tawfik O, Persons DL, Fields T, Godwin AK, Hagan CR, Swenson-Fields K, Coarfa C, Thompson J, Behbod F. BCL9/STAT3 regulation of transcriptional enhancer networks promote DCIS progression. NPJ Breast Cancer 2020; 6:12. [PMID: 32352029 PMCID: PMC7181646 DOI: 10.1038/s41523-020-0157-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The molecular processes by which some human ductal carcinoma in situ (DCIS) lesions advance to the more aggressive form, while others remain indolent, are largely unknown. Experiments utilizing a patient-derived (PDX) DCIS Mouse INtraDuctal (MIND) animal model combined with ChIP-exo and RNA sequencing revealed that the formation of protein complexes between B Cell Lymphoma-9 (BCL9), phosphoserine 727 STAT3 (PS-727-STAT3) and non-STAT3 transcription factors on chromatin enhancers lead to subsequent transcription of key drivers of DCIS malignancy. Downregulation of two such targets, integrin β3 and its associated metalloproteinase, MMP16, resulted in a significant inhibition of DCIS invasive progression. Finally, in vivo targeting of BCL9, using rosemary extract, resulted in significant inhibition of DCIS malignancy in both cell line and PDX DCIS MIND animal models. As such, our studies provide compelling evidence for future testing of rosemary extract as a chemopreventive agent in breast cancer.
Collapse
Affiliation(s)
- Hanan S. Elsarraj
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Darlene Limback
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ruonan Zhao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Jenna Berger
- Warren Alpert Medical School of Brown University, Providence, RI 02912 USA
| | - Stephanie C. Bishop
- Department of Pharmaceutical Sciences, South University, 709 Mall Blvd, Savannah, GA 31406 USA
| | - Aria Sabbagh
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030 USA
| | - Linzi Oppenheimer
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Haleigh E. Harper
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Anna Tsimelzon
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX C30 USA
| | - Dean P. Edwards
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Joseph Fontes
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ben Fangman
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ashley Ellis
- University of Kansas School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Ossama Tawfik
- MAWD Pathology Group, St Luke’s Health System of Kansas City, 2750 Clay Edwards Dr, Kansas City, MO 64116 USA
| | - Diane L. Persons
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Timothy Fields
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Christy R. Hagan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Katherine Swenson-Fields
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center and Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jeffrey Thompson
- Department of Biostatistics, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS 66160 USA
| |
Collapse
|
23
|
DeVaux RS, Ropri AS, Grimm SL, Hall PA, Herrera EO, Chittur SV, Smith WP, Coarfa C, Behbod F, Herschkowitz JI. Long noncoding RNA BHLHE40-AS1 promotes early breast cancer progression through modulating IL-6/STAT3 signaling. J Cell Biochem 2020; 121:3465-3478. [PMID: 31907974 DOI: 10.1002/jcb.29621] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a nonobligate precursor to invasive breast cancer. Only a small percentage of DCIS cases are predicted to progress; however, there is no method to determine which DCIS lesions will remain innocuous from those that will become invasive disease. Therefore, DCIS is treated aggressively creating a current state of overdiagnosis and overtreatment. There is a critical need to identify functional determinants of progression of DCIS to invasive ductal carcinoma (IDC). Interrogating biopsies from five patients with contiguous DCIS and IDC lesions, we have shown that expression of the long noncoding RNA BHLHE40-AS1 increases with disease progression. BHLHE40-AS1 expression supports DCIS cell proliferation, motility, and invasive potential. Mechanistically, BHLHE40-AS1 modulates interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3) activity and a proinflammatory cytokine signature, in part through interaction with interleukin enhancer-binding factor 3. These data suggest that BHLHE40-AS1 supports early breast cancer progression by engaging STAT3 signaling, creating an immune-permissive microenvironment.
Collapse
Affiliation(s)
- Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-SUNY, Rensselaer, New York
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-SUNY, Rensselaer, New York
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter A Hall
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, New York
| | - William P Smith
- Department of Radiology, Hays Medical Center, University of Kansas Health System, Kansas City, Kansas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Fariba Behbod
- Division of Cancer and Developmental Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-SUNY, Rensselaer, New York
| |
Collapse
|
24
|
Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes. Int J Mol Sci 2019; 20:ijms20174269. [PMID: 31480430 PMCID: PMC6747348 DOI: 10.3390/ijms20174269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is regarded worldwide as a severe human disease. Various genetic variations, including hereditary and somatic mutations, contribute to the initiation and progression of this disease. The diagnostic parameters of breast cancer are not limited to the conventional protein content and can include newly discovered genetic variants and even genetic modification patterns such as methylation and microRNA. In addition, breast cancer detection extends to detailed breast cancer stratifications to provide subtype-specific indications for further personalized treatment. One genome-wide expression–methylation quantitative trait loci analysis confirmed that different breast cancer subtypes have various methylation patterns. However, recognizing clinically applied (methylation) biomarkers is difficult due to the large number of differentially methylated genes. In this study, we attempted to re-screen a small group of functional biomarkers for the identification and distinction of different breast cancer subtypes with advanced machine learning methods. The findings may contribute to biomarker identification for different breast cancer subtypes and provide a new perspective for differential pathogenesis in breast cancer subtypes.
Collapse
|
25
|
Shang Z, Zhao J, Zhang Q, Cao C, Tian S, Zhang K, Liu L, Shi L, Yu N, Yang S. USP9X-mediated deubiquitination of B-cell CLL/lymphoma 9 potentiates Wnt signaling and promotes breast carcinogenesis. J Biol Chem 2019; 294:9844-9857. [PMID: 31073027 DOI: 10.1074/jbc.ra119.007655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of the canonical Wnt-signaling pathway is a prominent feature of a number of human malignancies. Transcriptional activation of this signaling cascade depends on the formation of the β-catenin-B-cell CLL/lymphoma 9 (BCL9)-pygopus (PYGO) family plant homeodomain finger 1 complex, yet how the assembly of this complex is regulated remains to be investigated. Here, using MCF-7, HeLa, HEK293T, MDA-MB-231, and Sf9 cells, along with immunoblotting and immunofluorescence, nano-HPLC-MS/MS, deubiquitination, immunoprecipitation, and chromatin immunoprecipitation (ChIP) assays, we report that BCL9 physically associates with a protein deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), and that USP9X removes Lys-63-linked polyubiquitin on Lys-212 of BCL9. Importantly, the USP9X-mediated BCL9 deubiquitination facilitated the formation of the β-catenin-BCL9-PYGO complex, thereby potentiating the transcriptional activation of Wnt/β-catenin target genes. We also show that USP9X-mediated BCL9 deubiquitination promotes the proliferation and invasion of breast cancer cells. Together, these results uncover USP9X as a deubiquitinase of BCL9, implicating USP9X in Wnt/β-catenin signaling and breast carcinogenesis.
Collapse
Affiliation(s)
- Zesen Shang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Jiao Zhao
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Qi Zhang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Cheng Cao
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Shanshan Tian
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Kai Zhang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Ling Liu
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Lei Shi
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Na Yu
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Shangda Yang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and .,the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 300020 Tianjin, China
| |
Collapse
|
26
|
Mieszczanek J, van Tienen LM, Ibrahim AEK, Winton DJ, Bienz M. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nat Commun 2019; 10:724. [PMID: 30760710 PMCID: PMC6374407 DOI: 10.1038/s41467-018-08164-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Bcl9 and Pygo are Wnt enhanceosome components that effect β-catenin-dependent transcription. Whether they mediate β-catenin-dependent neoplasia is unclear. Here we assess their roles in intestinal tumourigenesis initiated by Apc loss-of-function (ApcMin), or by Apc1322T encoding a partially-functional Apc truncation commonly found in colorectal carcinomas. Intestinal deletion of Bcl9 extends disease-free survival in both models, and essentially cures Apc1322T mice of their neoplasia. Loss-of-Bcl9 synergises with loss-of-Pygo to shift gene expression within Apc-mutant adenomas from stem cell-like to differentiation along Notch-regulated secretory lineages. Bcl9 loss also promotes tumour retention in ApcMin mice, apparently via relocating nuclear β-catenin to the cell surface, but this undesirable effect is not seen in Apc1322T mice whose Apc truncation retains partial function in regulating β-catenin. Our results demonstrate a key role of the Wnt enhanceosome in β-catenin-dependent intestinal tumourigenesis and reveal the potential of BCL9 as a therapeutic target during early stages of colorectal cancer.
Collapse
Affiliation(s)
- Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Laurens M van Tienen
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ashraf E K Ibrahim
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre,, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
27
|
Sinha VC, Piwnica-Worms H. Intratumoral Heterogeneity in Ductal Carcinoma In Situ: Chaos and Consequence. J Mammary Gland Biol Neoplasia 2018; 23:191-205. [PMID: 30194658 PMCID: PMC6934090 DOI: 10.1007/s10911-018-9410-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive proliferative growth in the breast that serves as a non-obligate precursor to invasive ductal carcinoma. The widespread adoption of screening mammography has led to a steep increase in the detection of DCIS, which now comprises approximately 20% of new breast cancer diagnoses in the United States. Interestingly, the intratumoral heterogeneity (ITH) that has been observed in invasive breast cancers may have been established early in tumorigenesis, given the vast and varied ITH that has been detected in DCIS. This review will discuss the intratumoral heterogeneity of DCIS, focusing on the phenotypic and genomic heterogeneity of tumor cells, as well as the compositional heterogeneity of the tumor microenvironment. In addition, we will assess the spatial heterogeneity that is now being appreciated in these lesions, and summarize new approaches to evaluate heterogeneity of tumor and stromal cells in the context of their spatial organization. Importantly, we will discuss how a growing understanding of ITH has led to a more holistic appreciation of the complex biology of DCIS, specifically its evolution and natural history. Finally, we will consider ways in which our knowledge of DCIS ITH might be translated in the future to guide clinical care for DCIS patients.
Collapse
Affiliation(s)
- Vidya C Sinha
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Behbod F, Gomes AM, Machado HL. Modeling Human Ductal Carcinoma In Situ in the Mouse. J Mammary Gland Biol Neoplasia 2018; 23:269-278. [PMID: 30145750 PMCID: PMC6244883 DOI: 10.1007/s10911-018-9408-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer development is a multi-step process in which genetic and molecular heterogeneity occurs at multiple stages. Ductal carcinoma arises from pre-invasive lesions such as atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS), which progress to invasive and metastatic cancer. The feasibility of obtaining tissue samples from all stages of progression from the same patient is low, and thus molecular studies dissecting the mechanisms that mediate the transition from pre-invasive DCIS to invasive carcinoma have been hampered. In the past 25 years, numerous mouse models have been developed that partly recapitulate the histological and biological properties of early stage lesions. In this review, we discuss in vivo model systems of breast cancer progression from syngeneic mouse models to human xenografts, with particular focus on how accurately these models mimic human disease.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Angelica M Gomes
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, USA.
| |
Collapse
|
29
|
Villanueva H, Grimm S, Dhamne S, Rajapakshe K, Visbal A, Davis CM, Ehli EA, Hartig SM, Coarfa C, Edwards DP. The Emerging Roles of Steroid Hormone Receptors in Ductal Carcinoma in Situ (DCIS) of the Breast. J Mammary Gland Biol Neoplasia 2018; 23:237-248. [PMID: 30338425 PMCID: PMC6244884 DOI: 10.1007/s10911-018-9416-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor to most types of invasive breast cancer (IBC). Although it is estimated only one third of untreated patients with DCIS will progress to IBC, standard of care for treatment is surgery and radiation. This therapeutic approach combined with a lack of reliable biomarker panels to predict DCIS progression is a major clinical problem. DCIS shares the same molecular subtypes as IBC including estrogen receptor (ER) and progesterone receptor (PR) positive luminal subtypes, which encompass the majority (60-70%) of DCIS. Compared to the established roles of ER and PR in luminal IBC, much less is known about the roles and mechanism of action of estrogen (E2) and progesterone (P4) and their cognate receptors in the development and progression of DCIS. This is an underexplored area of research due in part to a paucity of suitable experimental models of ER+/PR + DCIS. This review summarizes information from clinical and observational studies on steroid hormones as breast cancer risk factors and ER and PR as biomarkers in DCIS. Lastly, we discuss emerging experimental models of ER+/PR+ DCIS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Clinical Trials as Topic
- Disease Models, Animal
- Disease Progression
- Estrogens/metabolism
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Observational Studies as Topic
- Predictive Value of Tests
- Progesterone/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sagar Dhamne
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Adriana Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Brown TC, Nicolson NG, Korah R, Carling T. BCL9 Upregulation in Adrenocortical Carcinoma: A Novel Wnt/β-Catenin Activating Event Driving Adrenocortical Malignancy. J Am Coll Surg 2018; 226:988-995. [PMID: 29428231 DOI: 10.1016/j.jamcollsurg.2018.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND B-Cell CLL/Lymphoma 9 (BCL9) is a recently described oncogene that promotes tumorigenesis via activation of the Wnt/β-Catenin signaling cascade. Though constitutively active Wnt/β-Catenin signaling is a molecular hallmark of adrenocortical carcinoma (ACC), a potential role for BCL9 to promote Wnt/β-Catenin pathway dysregulation in adrenocortical tumorigenesis remains to be elucidated. STUDY DESIGN This study involved a retrospective analysis at a tertiary academic referral center of 27 patients with adrenocortical tumors, including in vitro investigation of BCL9. The Wnt signaling pathway polymerase chain reaction (PCR) array analysis queried comparative mRNA expression profiles of canonical Wnt pathway components including BCL9. Real-time quantitative PCR determined BCL9 mRNA expression levels in tumor samples. Expression levels of BCL9 mRNA were evaluated for correlation with tumor characteristics. RNA interference (RNAi) gene silencing was performed in ACC cell lines SW-13 and NCI-H295R to test the role of BCL9 on clonal cell growth. RESULTS Expression levels of the BCL9 gene were found to be significantly elevated in ACC compared with normal adrenal tissue (p < 0.05). Furthermore, a significant correlation was observed between BCL9 mRNA levels and the malignant status of adrenocortical tumors (p < 0.05). RNAi gene silencing of BCL9 inhibited clonal cell growth of SW-13 cells (p < 0.05), but not NCI-H295R cells, which carry a constitutively active β-Catenin mutation. CONCLUSIONS The gene BCL9 is overexpressed in malignant adrenocortical tumors and promotes clonal ACC cell growth. These findings suggest that BCL9 overexpression may serve as an alternative driver of constitutive Wnt/β-Catenin activation in ACC and could represent a potential molecular and diagnostic marker of tumor malignancy.
Collapse
Affiliation(s)
- Taylor C Brown
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Norman G Nicolson
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Reju Korah
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT
| | - Tobias Carling
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
31
|
Wang H, Liu L, Liu X, Zhang M, Li X. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken. Poult Sci 2018; 97:485-493. [DOI: 10.3382/ps/pex343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022] Open
|
32
|
Fan R, He H, Yao W, Zhu Y, Zhou X, Gui M, Lu J, Xi H, Deng Z, Fan M. SOX7 Suppresses Wnt Signaling by Disrupting β-Catenin/BCL9 Interaction. DNA Cell Biol 2017; 37:126-132. [PMID: 29271667 DOI: 10.1089/dna.2017.3866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Wnt signaling is involved in angiogenesis and tumor development. β-catenin is the core component of the Wnt pathway, which mediates oncogenic transcription and regulated by a series of proteins. Sex-determining region Y-box 7 (SOX7) is a member of high-mobility-group transcription factor family, which inhibits oncogenic Wnt signaling in lots of tumor cells with unknown mechanism. By coimmunoprecipitation (co-IP) and super Topflash reporter assay, SOX7 can bind β-catenin and inhibit β-catenin/T cell factor (TCF)-mediated transcription. Meanwhile, B cell lymphoma 9 (BCL9) drives Wnt signaling path through direct binding-mediated β-catenin. Finally, we found that SOX7 inhibits oncogenic β-catenin-mediated transcription by disrupting the β-catenin/BCL9 interaction. Mechanistically, SOX7 compete with BCL9 to bind β-catenin. Our results show SOX7 inhibited Wnt signaling as suppressor and could be an important target for anticancer therapy.
Collapse
Affiliation(s)
- Rong Fan
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - HaiYan He
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Wang Yao
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - YanFeng Zhu
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - XunJie Zhou
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - MingTai Gui
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Jing Lu
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Hao Xi
- 2 Department of Hematology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - ZhongLong Deng
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Min Fan
- 1 Department of Cardiology, Yueyang Hospital Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| |
Collapse
|
33
|
Kwon YJ, Leibovitch BA, Bansal N, Pereira L, Chung CY, Ariztia EV, Zelent A, Farias EF, Waxman S. Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells. Oncotarget 2017; 8:88421-88436. [PMID: 29179446 PMCID: PMC5687616 DOI: 10.18632/oncotarget.11381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poorer survival in triple negative breast cancer (TNBC) patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need in the treatment of cancer. We reported that the selective inhibition of the PAH2 domain of SIN3A protein function markedly suppressed metastatic dissemination to the lungs in TNBC xenograft bearing mice. Here, we show that TNBC cell lines treated with Sin3 interaction domain (SID) decoy peptides that bind to PAH2 display a strong in vitro inhibition of transwell invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin deposition and downregulation of known Wnt target genes that are associated with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Wnt pathway inhibition by SID decoy peptide was confirmed by decreased Wnt reporter activity and altered cytoplasmic localization of nuclear β-catenin. TGIF1, a transcription factor that modulates Wnt signaling and known to interact with the PAH2 domain of SIN3A, can be dissociated from the SIN3A complex by SID decoys. TGIF1 knockdown inhibits WNT target genes and in vitro cell invasion suggesting that TGIF1 might be a key target of the SID decoys to block tumor invasion. Taken together, targeting SIN3 function using SID decoys is a novel strategy to reverse invasion and the EMT program in TNBC translating into the inhibition of metastasis dissemination and eradication of residual disease.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Boris A. Leibovitch
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Nidhi Bansal
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Lutecia Pereira
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Chi-Yeh Chung
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Edgardo V. Ariztia
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Arthur Zelent
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Eduardo F. Farias
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Samuel Waxman
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
34
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
35
|
Pan S, An L, Meng X, Li L, Ren F, Guan Y. MgCl 2 and ZnCl 2 promote human umbilical vein endothelial cell migration and invasion and stimulate epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Exp Ther Med 2017; 14:4663-4670. [PMID: 29201165 PMCID: PMC5704337 DOI: 10.3892/etm.2017.5144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that magnesium and zinc ions promote the migration and epithelial-mesenchymal transition (EMT) of cancer/endothelial cells. However, the impact of MgCl2 and ZnCl2 on the migration, invasion and EMT of human umbilical vein endothelial cells (HUVECs) and the involved mechanisms remain unclear. In the present study, HUVECs were incubated with various doses of MgCl2 and ZnCl2. The optimum concentrations of MgCl2 and ZnCl2 were selected by MTT assay. The migration and invasion capabilities of HUVECs were analyzed by Transwell assays. Subsequently, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA. MMP-2 and MMP-9 activities were measured by gelatin zymography. Immunofluorescence staining was performed to investigate cytoskeletal dynamics using Acti-stain™ 488 Fluorescent Phalloidin. Subsequently, the expression of EMT-related markers at the mRNA and protein levels and the activation of Wnt/β-catenin signaling were analyzed. The results identified increases in MMP-2 and MMP-9 expression and activity, indicating that MgCl2 and ZnCl2 promoted HUVEC migration and invasion. In addition, MgCl2 and ZnCl2 treatment induced cytoskeleton remodeling and stimulated EMT via activation of the Wnt/β-catenin signaling pathway, characterized by a decrease in E-cadherin and increases in N-cadherin, vimentin and Snail. These results suggest that MgCl2 and ZnCl2 may enhance the migration and invasion capabilities of HUVECs and promote EMT through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liwen An
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liming Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Fu Ren
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
36
|
Valdez KE, Elsarraj HS, Hong Y, Grimm SL, Ricci LR, Fan F, Tawfik O, May L, Cusick T, Inciardi M, Redick M, Gatewood J, Winblad O, Hilsenbeck S, Edwards DP, Hagan C, Godwin AK, Fabian C, Behbod F. NEMO, a Transcriptional Target of Estrogen and Progesterone, Is Linked to Tumor Suppressor PML in Breast Cancer. Cancer Res 2017; 77:3802-3813. [PMID: 28515148 PMCID: PMC8236416 DOI: 10.1158/0008-5472.can-16-2794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/08/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
Abstract
The beneficial versus detrimental roles of estrogen plus progesterone (E+P) in breast cancer remains controversial. Here we report a beneficial mechanism of E+P treatment in breast cancer cells driven by transcriptional upregulation of the NFκB modulator NEMO, which in turn promotes expression of the tumor suppressor protein promyelocytic leukemia (PML). E+P treatment of patient-derived epithelial cells derived from ductal carcinoma in situ (DCIS) increased secretion of the proinflammatory cytokine IL6. Mechanistic investigations indicated that IL6 upregulation occurred as a result of transcriptional upregulation of NEMO, the gene that harbored estrogen receptor (ER) binding sites within its promoter. Accordingly, E+P treatment of breast cancer cells increased ER binding to the NEMO promoter, thereby increasing NEMO expression, NFκB activation, and IL6 secretion. In two mouse xenograft models of DCIS, we found that RNAi-mediated silencing of NEMO increased tumor invasion and progression. This seemingly paradoxical result was linked to NEMO-mediated regulation of NFκB and IL6 secretion, increased phosphorylation of STAT3 on Ser727, and increased expression of PML, a STAT3 transcriptional target. In identifying NEMO as a pivotal transcriptional target of E+P signaling in breast cancer cells, our work offers a mechanistic explanation for the paradoxical antitumorigenic roles of E+P in breast cancer by showing how it upregulates the tumor suppressor protein PML. Cancer Res; 77(14); 3802-13. ©2017 AACR.
Collapse
Affiliation(s)
- Kelli E. Valdez
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Hanan S. Elsarraj
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Sandra L. Grimm
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Lawrence R. Ricci
- Department of Radiology, Truman Medical Center, 2301 Holmes Street, Kansas City, MO 64108
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Lisa May
- Department of Radiology, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Therese Cusick
- Department of Surgery, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Marc Inciardi
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Mark Redick
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Jason Gatewood
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Onalisa Winblad
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Susan Hilsenbeck
- Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Dean P. Edwards
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Christy Hagan
- Department of Biochemistry, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Carol Fabian
- Department of Medicine, Breast Cancer Survivorship Center, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Fariba Behbod
- Corresponding author and requests for reprints: Fariba Behbod, Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS, 66160, Tel: (913) 945-6642, Fax: (913) 945-6838,
| |
Collapse
|
37
|
Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study. Int J Genomics 2016; 2016:4503840. [PMID: 27965971 PMCID: PMC5124670 DOI: 10.1155/2016/4503840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The recent advantage obtained by next generation sequencing allows a depth investigation of a new “old” kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert.
Collapse
|
38
|
Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240:315-328. [PMID: 27512948 PMCID: PMC5082563 DOI: 10.1002/path.4778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Class I Phosphatidylinositol 3-Kinases
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Disease Progression
- Exome/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Biological
- Mutation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Sequence Analysis, DNA
- Spheroids, Cellular
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah L Maguire
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Barrie Peck
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Patty T Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Holly Barker
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Paul Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gillian Farnie
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
39
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
40
|
Wisniewski JA, Yin J, Teuscher KB, Zhang M, Ji H. Structure-Based Design of 1,4-Dibenzoylpiperazines as β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction Inhibitors. ACS Med Chem Lett 2016; 7:508-13. [PMID: 27190602 DOI: 10.1021/acsmedchemlett.5b00284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
A small-molecule inhibitor with a 1,4-dibenzoylpiperazine scaffold was designed to match the critical binding elements in the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction interface. Inhibitor optimization led to a potent inhibitor that can disrupt the β-catenin/BCL9 interaction and exhibit 98-fold selectivity over the β-catenin/cadherin interaction. The binding mode of new inhibitors was characterized by structure-activity relationships and site-directed mutagenesis studies. Cell-based studies demonstrated that this series of inhibitors can selectively suppress canonical Wnt signaling and inhibit growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- John A. Wisniewski
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Jinya Yin
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Kevin B. Teuscher
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Min Zhang
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
41
|
Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:211-26. [PMID: 26968398 PMCID: PMC4819564 DOI: 10.1007/s10549-016-3746-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Collapse
Affiliation(s)
- Maria Cristina Rangel
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Daniel Bertolette
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Malgorzata Klauzinska
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Frank Cuttitta
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|