1
|
Deng M, Ma F, Zhai L, Zhang X, Zhang N, Zheng Y, Chen W, Zhou W, Pang K, Zhou J, Sun Q, Sun J. The effector SJP3 interferes with pistil development by sustaining SHORT VEGETATIVE PHASE 3 expression in jujube. PLANT PHYSIOLOGY 2024; 196:1923-1938. [PMID: 39189604 DOI: 10.1093/plphys/kiae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024]
Abstract
Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stemlike structures within the leaflike ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.
Collapse
Affiliation(s)
- Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Xinyue Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
2
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
4
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
5
|
Jones DM, Hepworth J, Wells R, Pullen N, Trick M, Morris RJ. A transcriptomic time-series reveals differing trajectories during pre-floral development in the apex and leaf in winter and spring varieties of Brassica napus. Sci Rep 2024; 14:3538. [PMID: 38347020 PMCID: PMC10861513 DOI: 10.1038/s41598-024-53526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Oilseed rape (Brassica napus) is an important global oil crop, with spring and winter varieties grown commercially. To understand the transcriptomic differences between these varieties, we collected transcriptomes from apex and leaf tissue from a spring variety, Westar, and a winter variety, Tapidor, before, during, and after vernalisation treatment, until the plants flowered. Large transcriptomic differences were noted in both varieties during the vernalisation treatment because of temperature and day length changes. Transcriptomic alignment revealed that the apex transcriptome reflects developmental state, whereas the leaf transcriptome is more closely aligned to the age of the plant. Similar numbers of copies of genes were expressed in both varieties during the time series, although key flowering time genes exhibited expression pattern differences. BnaFLC copies on A2 and A10 are the best candidates for the increased vernalisation requirement of Tapidor. Other BnaFLC copies show tissue-dependent reactivation of expression post-cold, with these dynamics suggesting some copies have retained or acquired a perennial nature. BnaSOC1 genes, also related to the vernalisation pathway, have expression profiles which suggest tissue subfunctionalisation. This understanding may help to breed varieties with more consistent or robust vernalisation responses, of special importance due to the milder winters resulting from climate change.
Collapse
Affiliation(s)
- D Marc Jones
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Synthace, The WestWorks, 195 Wood Lane, 4th Floor, London, W12 7FQ, UK.
| | - Jo Hepworth
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Rachel Wells
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nick Pullen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J Morris
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, Kajita Y, Toyama H, Satake A. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. PLANT, CELL & ENVIRONMENT 2024; 47:174-186. [PMID: 37691326 DOI: 10.1111/pce.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Climate warming is causing shifts in key life-history events, including flowering time. To assess the impacts of increasing temperature on flowering phenology, it is crucial to understand the transcriptional changes of genes underlying the phenological shifts. Here, we conducted a comprehensive investigation of genes contributing to the flowering phenology shifts in response to increasing temperature by monitoring the seasonal expression dynamics of 293 flowering-time genes along latitudinal gradients in the perennial herb, Arabidopsis halleri. Through transplant experiments at northern, southern and subtropical study sites in Japan, we demonstrated that the flowering period was shortened as latitude decreased, ultimately resulting in the loss of flowering opportunity in subtropical climates. The key transcriptional changes underlying the shortening of the flowering period and the loss of flowering opportunity were the diminished expression of floral pathway integrator genes and genes in the gibberellin synthesis and aging pathways, all of which are suppressed by increased expression of FLOWERING LOCUS C, a central repressor of flowering. These results suggest that the upper-temperature limit of reproduction is governed by a relatively small number of genes that suppress reproduction in the absence of winter cold.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ai Nagahama
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yui Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hironori Toyama
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Modeling the Flowering Activation Motif during Vernalization in Legumes: A Case Study of M. trancatula. Life (Basel) 2023; 14:26. [PMID: 38255642 PMCID: PMC10817331 DOI: 10.3390/life14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In many plant species, flowering is promoted by the cold treatment or vernalization. The mechanism of vernalization-induced flowering has been extensively studied in Arabidopsis but remains largely unknown in legumes. The orthologs of the FLC gene, a major regulator of vernalization response in Arabidopsis, are absent or non-functional in the vernalization-sensitive legume species. Nevertheless, the legume integrator genes FT and SOC1 are involved in the transition of the vernalization signal to meristem identity genes, including PIM (AP1 ortholog). However, the regulatory contribution of these genes to PIM activation in legumes remains elusive. Here, we presented the theoretical and data-driven analyses of a feed-forward regulatory motif that includes a vernalization-responsive FT gene and several SOC1 genes, which independently activate PIM and thereby mediate floral transition. Our theoretical model showed that the multiple regulatory branches in this regulatory motif facilitated the elimination of no-sense signals and amplified useful signals from the upstream regulator. We further developed and analyzed four data-driven models of PIM activation in Medicago trancatula in vernalized and non-vernalized conditions in wild-type and fta1-1 mutants. The model with FTa1 providing both direct activation and indirect activation via three intermediate activators, SOC1a, SOC1b, and SOC1c, resulted in the most relevant PIM dynamics. In this model, the difference between regulatory inputs of SOC1 genes was nonessential. As a result, in the M. trancatula model, the cumulative action of SOC1a, SOC1b, and SOC1c was favored. Overall, in this study, we first presented the in silico analysis of vernalization-induced flowering in legumes. The considered vernalization network motif can be supplemented with additional regulatory branches as new experimental data become available.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
8
|
Jin Y, Luo X, Li Y, Peng X, Wu L, Yang G, Xu X, Pei Y, Li W, Zhang W. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:4. [PMID: 38085292 DOI: 10.1007/s00122-023-04503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two major QTLs for bolting time in radish were mapped to chromosome 02 and 07 in a 0.37 Mb and 0. 52 Mb interval, RsFLC1 and RsFLC2 is the critical genes. Radish (Raphanus sativus L.) is an important vegetable crop of Cruciferae. The premature bolting and flowering reduces the yield and quality of the fleshy root of radish. However, the molecular mechanism underlying bolting and flowering in radish remains unknown. In YZH (early bolting) × XHT (late bolting) F2 population, a high-density genetic linkage map was constructed with genetic distance of 2497.74 cM and an average interval of 2.31 cM. A total of nine QTLs for bolting time and two QTLs for flowering time were detected. Three QTLs associated with bolting time in radish were identified by QTL-seq using radish GDE (early bolting) × GDL (late bolting) F2 population. Fine mapping narrowed down qBT2 and qBT7.2 to an 0.37 Mb and 0.52 Mb region on chromosome 02 and 07, respectively. RNA-seq and qRT-PCR analysis showed that RsFLC1 and RsFLC2 were the candidate gene for qBT7.2 and qBT2 locus, respectively. Subcellular localization exhibited that RsFLC1 and RsFLC2 were mainly expressed in the nucleus. A 1856-bp insertion in the first intron of RsFLC1 was responsible for bolting time. Overexpression of RsFLC2 in Arabidopsis was significantly delayed flowering. These findings will provide new insights into the exploring the molecular mechanism of late bolting and promote the marker-assisted selection for breeding late-bolting varieties in radish.
Collapse
Affiliation(s)
- Yueyue Jin
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550003, Guizhou, China
| | - Yadong Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiao Peng
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Linjun Wu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Guangqian Yang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiuhong Xu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Yun Pei
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Guizhou Higher Education Facility Vegetable Engineering Reseach Centre, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wanping Zhang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China.
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China.
| |
Collapse
|
9
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Kumar R, Sharma VK, Rangari SK, Jha UC, Sahu A, Paul PJ, Gupta S, Gangurde SS, Kudapa H, Mir RR, Gaur PM, Varshney RK, Elango D, Thudi M. High confidence QTLs and key genes identified using Meta-QTL analysis for enhancing heat tolerance in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274759. [PMID: 37929162 PMCID: PMC10623133 DOI: 10.3389/fpls.2023.1274759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
The rising global temperatures seriously threaten sustainable crop production, particularly the productivity and production of heat-sensitive crops like chickpeas. Multiple QTLs have been identified to enhance the heat stress tolerance in chickpeas, but their successful use in breeding programs remains limited. Towards this direction, we constructed a high-density genetic map spanning 2233.5 cM with 1069 markers. Using 138 QTLs reported earlier, we identified six Meta-QTL regions for heat tolerance whose confidence interval was reduced by 2.7-folds compared to the reported QTLs. Meta-QTLs identified on CaLG01 and CaLG06 harbor QTLs for important traits, including days to 50% flowering, days to maturity, days to flower initiation, days to pod initiation, number of filled pods, visual score, seed yield per plant, biological yield per plant, chlorophyll content, and harvest index. In addition, key genes identified in Meta-QTL regions like Pollen receptor-like kinase 3 (CaPRK3), Flowering-promoting factor 1 (CaFPF1), Flowering Locus C (CaFLC), Heat stress transcription factor A-5 (CaHsfsA5), and Pollen-specific leucine-rich repeat extensins (CaLRXs) play an important role in regulating the flowering time, pollen germination, and growth. The consensus genomic regions, and the key genes reported in this study can be used in genomics-assisted breeding for enhancing heat tolerance and developing heat-resilient chickpea cultivars.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Kumar Sharma
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Sagar Krushnaji Rangari
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Uday Chand Jha
- Indian Council for Agricultural Research (ICAR)- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Aakash Sahu
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Pronob J Paul
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Rice Breeding Innovations, International Rice Research Institute (IRRI), South Asia-Hub, Patancheru, Telangana, India
| | - Shreshth Gupta
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Sunil S Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Himabindu Kudapa
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Pooran M Gaur
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
11
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
13
|
Käppel S, Rümpler F, Theißen G. Cracking the Floral Quartet Code: How Do Multimers of MIKC C-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Int J Mol Sci 2023; 24:8253. [PMID: 37175955 PMCID: PMC10178880 DOI: 10.3390/ijms24098253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.
Collapse
Affiliation(s)
| | | | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (F.R.)
| |
Collapse
|
14
|
Dong X, Zhang LP, Tang YH, Yu D, Cheng F, Dong YX, Jiang XD, Qian FM, Guo ZH, Hu JY. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. PLANT PHYSIOLOGY 2023; 192:154-169. [PMID: 36721922 PMCID: PMC10152661 DOI: 10.1093/plphys/kiad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Hua Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fang Cheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Xin Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fu-Ming Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| |
Collapse
|
15
|
Kinoshita Y, Motoki K, Hosokawa M. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:41. [PMID: 36897379 DOI: 10.1007/s00122-023-04311-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Tandem duplicated BoFLC1 genes (BoFLC1a and BoFLC1b), which were identified as the candidate causal genes for the non-flowering trait in the cabbage mutant 'nfc', were upregulated during winter in 'nfc'. The non-flowering natural cabbage mutant 'nfc' was discovered from the breeding line 'T15' with normal flowering characteristics. In this study, we investigated the molecular basis underlying the non-flowering trait of 'nfc'. First, 'nfc' was induced to flower using the grafting floral induction method, and three F2 populations were generated. The flowering phenotype of each F2 population was widely distributed with non-flowering individuals appearing in two populations. QTL-seq analysis detected a genomic region associated with flowering date at approximately 51 Mb on chromosome 9 in two of the three F2 populations. Subsequent validation and fine mapping of the candidate genomic region using QTL analysis identified the quantitative trait loci (QTL) at 50,177,696-51,474,818 bp on chromosome 9 covering 241 genes. Additionally, RNA-seq analysis in leaves and shoot apices of 'nfc' and 'T15' plants identified 19 and 15 differentially expressed genes related to flowering time, respectively. Based on these results, we identified tandem duplicated BoFLC1 genes, which are homologs of the floral repressor FLOWERING LOCUS C, as the candidate genes responsible for the non-flowering trait of 'nfc'. We designated the tandem duplicated BoFLC1 genes as BoFLC1a and BoFLC1b. Expression analysis revealed that the expression levels of BoFLC1a and BoFLC1b were downregulated during winter in 'T15' but were upregulated and maintained during winter in 'nfc'. Additionally, the expression level of the floral integrator BoFT was upregulated in the spring in 'T15' but hardly upregulated in 'nfc'. These results suggest that the upregulated levels of BoFLC1a and BoFLC1b contributed to the non-flowering trait of 'nfc'.
Collapse
Affiliation(s)
- Yu Kinoshita
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Kyoto 619-0218, Japan
| | - Munetaka Hosokawa
- Faculty of Agriculture, Kindai University, Nara, Nara 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute (ATIRI), Kindai University, Nara, Nara 631-8505, Japan.
| |
Collapse
|
16
|
Meng Q, Hou XF, Cheng H, Tan XM, Pu ZQ, Xu ZQ. IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs. PLANT CELL REPORTS 2023; 42:561-574. [PMID: 36609767 DOI: 10.1007/s00299-023-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
IiSVP of Isatis indigotica was cloned and its expression pattern was analyzed. Ectopic expression of IiSVP in Arabidopsis could delay the flowering time and reduce the size of the floral organs. SVP (SHORT VEGETATIVE PHASE) can negatively regulate the flowering time of Arabidopsis. In the present work, the cDNA of IiSVP, an orthologous gene of AtSVP in I. indigotica, was cloned. IiSVP was highly expressed in rosette leaves, inflorescences and petals, but weakly expressed in sepals, pistils and young silicles. The results of subcellular localization showed that IiSVP was localized in nucleus. Bioinformatics analysis indicated that this protein was a MADS-box transcription factor. Constitutive expression of IiSVP in Arabidopsis thaliana resulted in decrease of the number of petals and stamens, and curly sepals were formed. In IiSVP transgenic Arabidopsis plants, obvious phenotypic variations in flowers could be observed, especially the size of the floral organs. In comparison with the wild-type plants, the size of petals, stamens and pistil in IiSVP transgenic Arabidopsis plants was decreased significantly. In some transgenic plants, the petals were wrapped by the sepals. Yeast two-hybrid experiments showed that IiSVP could form higher-order complexes with other MADS proteins, including IiSEP1, IiSEP3, IiAP1 and IiSEP4, but could not interact with IiSEP2. In this work, it was proved that the flowering process and the floral development in Arabidopsis could be affected by IiSVP from I. indigotica Fortune.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
17
|
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, Logachev A, Bankin M, Nuzhdin S, Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci 2023; 24:ijms24032692. [PMID: 36769014 PMCID: PMC9916832 DOI: 10.3390/ijms24032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.
Collapse
Affiliation(s)
- Maria Gretsova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey Shcherbakov
- Laboratory of Microbial Technology, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Sergey Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
18
|
Johansson M, Steffen A, Lewinski M, Kobi N, Staiger D. HDF1, a novel flowering time regulator identified in a mutant suppressing sensitivity to red light reduced 1 early flowering. Sci Rep 2023; 13:1404. [PMID: 36697433 PMCID: PMC9876914 DOI: 10.1038/s41598-023-28049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Arabidopsis SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) delays the transition from vegetative to reproductive development in noninductive conditions. A second-site suppressor screen for novel genes that overcome early flowering of srr1-1 identified a range of suppressor of srr1-1 mutants flowering later than srr1-1 in short photoperiods. Here, we focus on mutants flowering with leaf numbers intermediate between srr1-1 and Col. Ssm67 overcomes srr1-1 early flowering independently of day-length and ambient temperature. Full-genome sequencing and linkage mapping identified a causative SNP in a gene encoding a Haloacid dehalogenase superfamily protein, named HAD-FAMILY REGULATOR OF DEVELOPMENT AND FLOWERING 1 (HDF1). Both, ssm67 and hdf1-1 show increased levels of FLC, indicating that HDF1 is a novel regulator of this floral repressor. HDF1 regulates flowering largely independent of SRR1, as the effect is visible in srr1-1 and in Col, but full activity on FLC may require SRR1. Furthermore, srr1-1 has a delayed leaf initiation rate that is dependent on HDF1, suggesting that SRR1 and HDF1 act together in leaf initiation. Another mutant flowering intermediate between srr1-1 and wt, ssm15, was identified as a new allele of ARABIDOPSIS SUMO PROTEASE 1, previously implicated in the regulation of FLC stability.
Collapse
Affiliation(s)
- Mikael Johansson
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Natalie Kobi
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
19
|
Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat Commun 2023; 14:405. [PMID: 36697417 PMCID: PMC9876972 DOI: 10.1038/s41467-023-36116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Kim Jee Goh
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Rodrigo Grandy
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Osnato
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
20
|
Susila H, Purwestri YA. PEBP Signaling Network in Tubers and Tuberous Root Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:264. [PMID: 36678976 PMCID: PMC9865765 DOI: 10.3390/plants12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Tubers and tuberous root crops are essential carbohydrate sources and staple foods for humans, second only to cereals. The developmental phase transition, including floral initiation and underground storage organ formation, is controlled by complex signaling processes involving the integration of environmental and endogenous cues. FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1/CENTRORADIALIS (TFL1/CEN), members of the phosphatidylethanolamine-binding protein (PEBP) gene family, play a central role in this developmental phase transition process. FT and FT-like proteins have a function to promote developmental phase transition, while TFL1/CEN act oppositely. The balance between FT and TFL1/CEN is critical to ensure a successful plant life cycle. Here, we present a summarized review of the role and signaling network of PEBP in floral initiation and underground storage organ formation, specifically in tubers and tuberous root crops. Lastly, we point out several questions that need to be answered in order to have a more complete understanding of the PEBP signaling network, which is crucial for the agronomical improvement of tubers and tuberous crops.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
21
|
Overexpression of <italic>PvSVP1</italic>, an <italic>SVP</italic>-like gene of bamboo, causes early flowering and abnormal floral organs in <italic>Arabidopsis</italic> and rice. Acta Biochim Biophys Sin (Shanghai) 2023; 55:237-249. [PMID: 36647724 PMCID: PMC10160235 DOI: 10.3724/abbs.2022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
<p indent="0mm">Bamboo is a nontimber woody plant featuring a long vegetative stage and uncertain flowering time. Therefore, the genes belonging to flowering repressors might be essential in regulating the transition from the vegetative to reproductive stage in bamboo. The <italic>Short Vegetative Phase</italic> ( <italic>SVP</italic>) gene plays a pivotal role in floral transition and development. However, little is known about the bamboo <italic>SVP</italic> homologues. In this study, <italic>Phyllostachys violascens</italic> <italic>PvSVP1</italic> is isolated by analysis of the <italic>P</italic>. <italic>edulis</italic> transcriptome database. Phylogenetic analysis shows that <italic>PvSVP1</italic> is closely related to <italic>OsMADS55</italic> (rice <italic>SVP</italic> homolog). <italic>PvSVP1</italic> is ubiquitously expressed in various tissues, predominantly in vegetative tissues. To investigate the function of <italic>PvSVP1</italic>, <italic>PvSVP1</italic> is overexpressed in <italic>Arabidopsis</italic> and rice under the influence of the 35S promoter. Overexpression of <italic>PvSVP1</italic> in <italic>Arabidopsis</italic> causes early flowering and produces abnormal petals and sepals. Quantitative real-time PCR reveals that overexpression in <italic>Arabidopsis</italic> produces an early flowering phenotype by downregulating <italic>FLC</italic> and upregulating <italic>FT</italic> and produces abnormal floral organs by upregulating <italic>AP1</italic>, <italic>AP3</italic> and <italic>PI</italic> expressions. Simultaneously, overexpression of <italic>PvSVP1</italic> in rice alters the expressions of flowering-related genes such as <italic>Hd3a</italic>, <italic>RFT1</italic>, <italic>OsMADS56</italic> and <italic>Ghd7</italic> and promotes flowering under field conditions. In addition, PvSVP1 may be a nuclear protein which interacts with PvVRN1 and PvMADS56 on the yeast two-hybrid and BiFC systems. Our study suggests that <italic>PvSVP1</italic> may play a vital role in flowering time and development by interacting with PvVRN1 and PvMADS56 in the nucleus. Furthermore, this study paves the way toward understanding the complex flowering process of bamboo. </p>.
Collapse
|
22
|
Zhao K, Zhou Y, Zheng Y, Zheng RY, Hu M, Tong Y, Luo X, Zhang Y, Shen ML. The collaborative mode by PmSVPs and PmDAMs reveals neofunctionalization in the switch of the flower bud development and dormancy for Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:1023628. [PMID: 36561463 PMCID: PMC9763448 DOI: 10.3389/fpls.2022.1023628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Prunus mume (Rosaceae, Prunoideae) serves as an excellent ornamental woody plant with a large-temperature-range cultivation scope. Its flower buds require a certain low temperature to achieve flowering circulation. Thus, it is important to delve into the processes of flower bud differentiation and dormancy, which affected its continuous flowering. These processes are generally considered as regulation by the MADS-box homologs, SHORT VEGETATIVE PHASE (SVP), and DORMANCY-ASSOCIATED MADS-BOX (DAM). However, a precise model on their interdependence and specific function, when acting as a complex in the flower development of P. mume, is needed. Therefore, this study highlighted the integral roles of PmDAMs and PmSVPs in flower organ development and dormancy cycle. The segregation of PmDAMs and PmSVPs in a different cluster suggested distinct functions and neofunctionalization. The expression pattern and yeast two-hybrid assays jointly revealed that eight genes were involved in the floral organ development stages, with PmDAM1 and PmDAM5 specifically related to prolificated flower formation. PmSVP1-2 mingled in the protein complex in bud dormancy stages with PmDAMs. Finally, we proposed the hypothesis that PmSVP1 and PmSVP2 could combine with PmDAM1 to have an effect on flower organogenesis and interact with PmDAM5 and PmDAM6 to regulate flower bud dormancy. These findings could help expand the current molecular mechanism based on MADS-box genes during flower bud development and dormancy.
Collapse
Affiliation(s)
- Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuzhen Zhou
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Zheng
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui-yue Zheng
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijuan Hu
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Tong
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yangting Zhang
- College of Landscape Architecture, Ornamental Plant Germplasm Resources Innovation and Engineering Application Research Center at College of Landscape Architecture, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-li Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
23
|
Zhang D, Chen Q, Zhang X, Lin L, Cai M, Cai W, Liu Y, Xiang L, Sun M, Yu X, Li Y. Effects of low temperature on flowering and the expression of related genes in Loropetalum chinense var. rubrum. FRONTIERS IN PLANT SCIENCE 2022; 13:1000160. [PMID: 36457526 PMCID: PMC9705732 DOI: 10.3389/fpls.2022.1000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Loropetalum chinense var. rubrum blooms 2-3 times a year, among which the autumn flowering period has great potential for exploitation, but the number of flowers in the autumn flowering period is much smaller than that in the spring flowering period. METHODS Using 'Hei Zhenzhu' and 'Xiangnong Xiangyun' as experimental materials, the winter growth environment of L. chinense var. rubrum in Changsha, Hunan Province was simulated by setting a low temperature of 6-10°C in an artificial climate chamber to investigate the effect of winter low temperature on the flowering traits and related gene expression of L. chinense var. rubrum. RESULTS The results showed that after 45 days of low temperature culture and a subsequent period of 25°C greenhouse culture, flower buds and flowers started to appear on days 24 and 33 of 25°C greenhouse culture for 'Hei Zhenzhu', and flower buds and flowers started to appear on days 21 and 33 of 25°C greenhouse culture for 'Xiangnong Xiangyun'. The absolute growth rate of buds showed a 'Up-Down' pattern during the 7-28 days of low temperature culture; the chlorophyll fluorescence decay rate (Rfd) of both materials showed a 'Down-Up-Down' pattern during this period. The non-photochemical quenching coefficient (NPQ) showed the same trend as Rfd, and the photochemical quenching coefficient (QP) fluctuated above and below 0.05. The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually increased after the beginning of low temperature culture, reaching the highest expression on day 14 and day 28, respectively, and the expression of both in the experimental group was higher than that in the control group. The expressions of FLC, SVP and TFL1 similar genes all decreased gradually with low temperature culture, among which the expressions of FLC similar genes and TFL1 similar genes in the experimental group were extremely significantly lower than those in the control group; in the experimental group, the expressions of GA3 similar genes were all extremely significantly higher than those in the control group, and the expressions all increased with the increase of low temperature culture time. DISCUSSION We found that the high expression of gibberellin genes may play an important role in the process of low temperature promotion of L. chinense var. rubrum flowering, and in the future, it may be possible to regulate L. chinense var. rubrum flowering by simply spraying exogenous gibberellin instead of the promotion effect of low temperature.
Collapse
Affiliation(s)
- Damao Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Qianru Chen
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xia Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wenqi Cai
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yang Liu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Lili Xiang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaoying Yu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yanlin Li
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
- Kunpeng Institute of Modern Agriculture, Foshan, China
| |
Collapse
|
24
|
Mou Z, Wang H, Chen S, Reiter RJ, Zhao D. Molecular mechanisms and evolutionary history of phytomelatonin in flowering. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5840-5850. [PMID: 35443058 DOI: 10.1093/jxb/erac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Flowering is a critical stage in plant life history, which is coordinated by environmental signals and endogenous cues. Phytomelatonin is a widely distributed indoleamine present in all living organisms and plays pleiotropic roles in plant growth and development. Recent evidence has established that phytomelatonin could modulate flowering in many species, probably in a concentration-dependent manner. Phytomelatonin seems to associate with floral meristem identification and floral organ formation, and the fluctuation of phytomelatonin might be important for flowering. Regarding the underlying mechanisms, phytomelatonin interacts with the central components of floral gene regulatory networks directly or indirectly, including the MADS-box gene family, phytohormones, and reactive oxygen species (ROS). From an evolutionary point of view, the actions of phytomelatonin in flowering probably evolved during the period of the diversification of flowering plants and could be regarded as a functional extension of its primary activities. The presumed evolutionary history of phytomelatonin-modulated flowering is proposed, presented in the chronological order of the appearance of phytomelatonin and core flowering regulators, namely DELLA proteins, ROS, and phytohormones. Further efforts are needed to address some intriguing aspects, such as the exploration of the association between phytomelatonin and photoperiodic flowering, phytomelatonin-related floral MADS-box genes, the crosstalk between phytomelatonin and phytohormones, as well as its potential applications in agriculture.
Collapse
Affiliation(s)
- Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| |
Collapse
|
25
|
Winter warming post floral initiation delays flowering via bud dormancy activation and affects yield in a winter annual crop. Proc Natl Acad Sci U S A 2022; 119:e2204355119. [PMID: 36122201 PMCID: PMC9522361 DOI: 10.1073/pnas.2204355119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In temperate climates many plant species use long-term detection of winter chilling as a seasonal cue. Previously the timing of flowering in winter annual plants has been shown to be controlled by the promotion of the floral transition by chilling, known as vernalization. In contrast, many temperate perennial species produce flower buds prior to winter and require winter chilling to break bud dormancy to enable bud break and flowering in the following spring. Here we show that flowering time in winter annuals can be controlled by bud dormancy and that in winter oilseed rape–reduced chilling during flower bud dormancy is associated with yield declines. Winter annual life history is conferred by the requirement for vernalization to promote the floral transition and control the timing of flowering. Here we show using winter oilseed rape that flowering time is controlled by inflorescence bud dormancy in addition to vernalization. Winter warming treatments given to plants in the laboratory and field increase flower bud abscisic acid levels and delay flowering in spring. We show that the promotive effect of chilling reproductive tissues on flowering time is associated with the activity of two FLC genes specifically silenced in response to winter temperatures in developing inflorescences, coupled with activation of a BRANCHED1-dependent bud dormancy transcriptional module. We show that adequate winter chilling is required for normal inflorescence development and high yields in addition to the control of flowering time. Because warming during winter flower development is associated with yield losses at the landscape scale, our work suggests that bud dormancy activation may be important for effects of climate change on winter arable crop yields.
Collapse
|
26
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
27
|
Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection. Genome Biol 2022; 23:119. [PMID: 35606795 PMCID: PMC9128273 DOI: 10.1186/s13059-022-02686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background The analysis of chromatin binding patterns of proteins in different biological states is a main application of chromatin immunoprecipitation followed by sequencing (ChIP-seq). A large number of algorithms and computational tools for quantitative comparison of ChIP-seq datasets exist, but their performance is strongly dependent on the parameters of the biological system under investigation. Thus, a systematic assessment of available computational tools for differential ChIP-seq analysis is required to guide the optimal selection of analysis tools based on the present biological scenario. Results We created standardized reference datasets by in silico simulation and sub-sampling of genuine ChIP-seq data to represent different biological scenarios and binding profiles. Using these data, we evaluated the performance of 33 computational tools and approaches for differential ChIP-seq analysis. Tool performance was strongly dependent on peak size and shape as well as on the scenario of biological regulation. Conclusions Our analysis provides unbiased guidelines for the optimized choice of software tools in differential ChIP-seq analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02686-y.
Collapse
|
28
|
Márquez Gutiérrez R, Cherubino Ribeiro TH, de Oliveira RR, Benedito VA, Chalfun-Junior A. Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091237. [PMID: 35567239 PMCID: PMC9100628 DOI: 10.3390/plants11091237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 β, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.
Collapse
Affiliation(s)
- Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Vagner Augusto Benedito
- Laboratory of Plant Functional Genetics, Plant and Soil Sciences Division, 3425 Agricultural Sciences Building, West Virginia University, Morgantown, WV 26506-6108, USA
- Correspondence: (V.A.B.); (A.C.-J.)
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
- Correspondence: (V.A.B.); (A.C.-J.)
| |
Collapse
|
29
|
Zhou E, Zhang Y, Wang H, Jia Z, Wang X, Wen J, Shen J, Fu T, Yi B. Identification and Characterization of the MIKC-Type MADS-Box Gene Family in Brassica napus and Its Role in Floral Transition. Int J Mol Sci 2022; 23:ijms23084289. [PMID: 35457106 PMCID: PMC9026197 DOI: 10.3390/ijms23084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing rapeseed yield has always been a primary goal of rapeseed research and breeding. However, flowering time is a prerequisite for stable rapeseed yield and determines its adaptability to ecological regions. MIKC-type MADS-box (MICK) genes are a class of transcription factors that are involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide screening was conducted with Brassica napus (B. napus), which revealed 172 members. Using previous data from a genome-wide association analysis of flowering traits, BnaSVP and BnaSEP1 were identified as candidate flowering genes. Therefore, we used the CRISPR/Cas9 system to verify the function of BnaSVP and BnaSEP1 in B. napus. T0 plants were edited efficiently at the BnaSVP and BnaSEP1 target sites to generate homozygous and heterozygous mutants with most mutations stably inherited by the next generation. Notably, the mutant only showed the early flowering phenotype when all homologous copies of BnaSVP were edited, indicating functional redundancy between homologous copies. However, no changes in flowering were observed in the BnaSEP1 mutant. Quantitative analysis of the pathway-related genes in the BnaSVP mutant revealed the upregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) genes, which promoted early flowering in the mutant. In summary, our study created early flowering mutants, which provided valuable resources for early maturing breeding, and provided a new method for improving polyploid crops.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Yin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Correspondence: ; Tel.: +86-27-8728-1676; Fax: +86-27-8728-0009
| |
Collapse
|
30
|
Yamaguchi N. The epigenetic mechanisms regulating floral hub genes and their potential for manipulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1277-1287. [PMID: 34752611 DOI: 10.1093/jxb/erab490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Gene regulatory networks formed by transcription factors play essential roles in the regulation of gene expression during plant reproductive development. These networks integrate endogenous, phytohormonal, and environmental cues. Molecular genetic, biochemical, and chemical analyses performed mainly in Arabidopsis have identified network hub genes and revealed the contributions of individual components to these networks. Here, I outline current understanding of key epigenetic regulatory circuits identified by research on plant reproduction, and highlight significant recent examples of genetic engineering and chemical applications to modulate the epigenetic regulation of gene expression. Furthermore, I discuss future prospects for applying basic plant science to engineer useful floral traits in a predictable manner as well as the potential side effects.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
31
|
Nasim Z, Susila H, Jin S, Youn G, Ahn JH. Polymerase II-Associated Factor 1 Complex-Regulated FLOWERING LOCUS C-Clade Genes Repress Flowering in Response to Chilling. FRONTIERS IN PLANT SCIENCE 2022; 13:817356. [PMID: 35222476 PMCID: PMC8863679 DOI: 10.3389/fpls.2022.817356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
RNA polymerase II-associated factor 1 complex (PAF1C) regulates the transition from the vegetative to the reproductive phase primarily by modulating the expression of FLOWERING LOCUS C (FLC) and FLOWERING LOCUS M [FLM, also known as MADS AFFECTING FLOWERING1 (MAF1)] at standard growth temperatures. However, the role of PAF1C in the regulation of flowering time at chilling temperatures (i.e., cold temperatures that are above freezing) and whether PAF1C affects other FLC-clade genes (MAF2-MAF5) remains unknown. Here, we showed that Arabidopsis thaliana mutants of any of the six known genes that encode components of PAF1C [CELL DIVISION CYCLE73/PLANT HOMOLOGOUS TO PARAFIBROMIN, VERNALIZATION INDEPENDENCE2 (VIP2)/EARLY FLOWERING7 (ELF7), VIP3, VIP4, VIP5, and VIP6/ELF8] showed temperature-insensitive early flowering across a broad temperature range (10°C-27°C). Flowering of PAF1C-deficient mutants at 10°C was even earlier than that in flc, flm, and flc flm mutants, suggesting that PAF1C regulates additional factors. Indeed, RNA sequencing (RNA-Seq) of PAF1C-deficient mutants revealed downregulation of MAF2-MAF5 in addition to FLC and FLM at both 10 and 23°C. Consistent with the reduced expression of FLC and the FLC-clade members FLM/MAF1 and MAF2-MAF5, chromatin immunoprecipitation (ChIP)-quantitative PCR assays showed reduced levels of the permissive epigenetic modification H3K4me3/H3K36me3 and increased levels of the repressive modification H3K27me3 at their chromatin. Knocking down MAF2-MAF5 using artificial microRNAs (amiRNAs) in the flc flm background (35S::amiR-MAF2-5 flc flm) resulted in significantly earlier flowering than flc flm mutants and even earlier than short vegetative phase (svp) mutants at 10°C. Wild-type seedlings showed higher accumulation of FLC and FLC-clade gene transcripts at 10°C compared to 23°C. Our yeast two-hybrid assays and in vivo co-immunoprecipitation (Co-IP) analyses revealed that MAF2-MAF5 directly interact with the prominent floral repressor SVP. Late flowering caused by SVP overexpression was almost completely suppressed by the elf7 and vip4 mutations, suggesting that SVP-mediated floral repression required a functional PAF1C. Taken together, our results showed that PAF1C regulates the transcription of FLC and FLC-clade genes to modulate temperature-responsive flowering at a broad range of temperatures and that the interaction between SVP and these FLC-clade proteins is important for floral repression.
Collapse
Affiliation(s)
| | | | | | | | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
32
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
33
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
34
|
Chávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER. The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:852047. [PMID: 36017258 PMCID: PMC9396034 DOI: 10.3389/fpls.2022.852047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 05/08/2023]
Abstract
Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.
Collapse
Affiliation(s)
- Elva C. Chávez-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stella Quiroz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Berenice García-Ponce,
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Elena R. Álvarez-Buylla,
| |
Collapse
|
35
|
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, Hugouvieux V, Revers LF, Zubieta C, Coupland G, Costes E, Andrés F. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. THE NEW PHYTOLOGIST 2021; 232:2071-2088. [PMID: 34480759 PMCID: PMC9292984 DOI: 10.1111/nph.17710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Edouard Severing
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - Joan Estevan
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Isabelle Farrera
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | | | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - George Coupland
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Evelyne Costes
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Fernando Andrés
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
36
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight R, Poole AM, Jameson PE. A novel TFL1 gene induces flowering in the mast seeding alpine snow tussock, Chionochloa pallens (Poaceae). Mol Ecol 2021; 31:822-838. [PMID: 34779078 DOI: 10.1111/mec.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Masting, the synchronous, highly variable flowering across years by a population of perennial plants, has been reported to be precipitated by various factors including nitrogen levels, drought conditions, and spring and summer temperatures. However, the molecular mechanism leading to the initiation of flowering in masting plants in particular years remains largely unknown, despite the potential impact of climate change on masting phenology. We studied genes controlling flowering in the alpine snow tussock Chionochloa pallens (Poaceae), a strongly masting perennial grass. We used a range of in situ and manipulated plants to obtain leaf samples from tillers (shoots) which subsequently remained vegetative or flowered. Here, we show that a novel orthologue of TERMINAL FLOWER 1 (TFL1; normally a repressor of flowering in other species) promotes the induction of flowering in C. pallens (hence Anti-TFL1), a conclusion supported by structural, functional and expression analyses. Global transcriptomic analysis indicated differential expression of CpTPS1, CpGA20ox1, CpREF6 and CpHDA6, emphasizing the role of endogenous cues and epigenetic regulation in terms of responsiveness of plants to initiate flowering. Our molecular-based study provides insights into the cellular mechanism of flowering in masting plants and will supplement ecological and statistical models to predict how masting will respond to global climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
37
|
Nasim Z, Fahim M, Hwang H, Susila H, Jin S, Youn G, Ahn JH. Nonsense-mediated mRNA decay modulates Arabidopsis flowering time via the SET DOMAIN GROUP 40-FLOWERING LOCUS C module. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7049-7066. [PMID: 34270724 DOI: 10.1093/jxb/erab331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The nonsense-mediated mRNA decay (NMD) surveillance system clears aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. Although loss of the core NMD proteins UP-FRAMESHIFT1 (UPF1) and UPF3 leads to late flowering in Arabidopsis, the underlying mechanism remains elusive. Here, we showed that mutations in UPF1 and UPF3 cause temperature- and photoperiod-independent late flowering. Expression analyses revealed high FLOWERING LOCUS C (FLC) mRNA levels in upf mutants; in agreement with this, the flc mutation strongly suppressed the late flowering of upf mutants. Vernalization accelerated flowering of upf mutants in a temperature-independent manner. FLC transcript levels rose in wild-type plants upon NMD inhibition. In upf mutants, we observed increased enrichment of H3K4me3 and reduced enrichment of H3K27me3 in FLC chromatin. Transcriptome analyses showed that SET DOMAIN GROUP 40 (SDG40) mRNA levels increased in upf mutants, and the SDG40 transcript underwent NMD-coupled alternative splicing, suggesting that SDG40 affects flowering time in upf mutants. Furthermore, NMD directly regulated SDG40 transcript stability. The sdg40 mutants showed decreased H3K4me3 and increased H3K27me3 levels in FLC chromatin, flowered early, and rescued the late flowering of upf mutants. Taken together, these results suggest that NMD epigenetically regulates FLC through SDG40 to modulate flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College Peshawar, Pakistan
| | - Hocheol Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
38
|
Liu X, Wan Y, An J, Zhang X, Cao Y, Li Z, Liu X, Ma H. Morphological, Physiological, and Molecular Responses of Sweetly Fragrant Luculia gratissima During the Floral Transition Stage Induced by Short-Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2021; 12:715683. [PMID: 34456954 PMCID: PMC8385556 DOI: 10.3389/fpls.2021.715683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.
Collapse
Affiliation(s)
- Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Jing An
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Yurong Cao
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiuxian Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
39
|
Jarończyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Małecka E, Siwirykow N, Stachula P, Iwanicka-Nowicka R, Koblowska M, Jerzmanowski A, Archacki R. Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100174. [PMID: 34327319 PMCID: PMC8299063 DOI: 10.1016/j.xplc.2021.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the Arabidopsis bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a brd triple mutation (brdx3) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The brdx3 phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of swi/snf mutants. Furthermore, the BRM protein level and occupancy at the direct target loci SCL3, ABI5, and SVP were reduced in the brdx3 mutant background. Finally, a brdx3 brm-3 quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.
Collapse
Affiliation(s)
- Kamila Jarończyk
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | - Adam Zaborowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Ewelina Małecka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nina Siwirykow
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Paulina Stachula
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| |
Collapse
|
40
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
41
|
Tian H, Li Y, Wang C, Xu X, Zhang Y, Zeb Q, Zicola J, Fu Y, Turck F, Li L, Lu Z, Liu L. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. THE PLANT CELL 2021; 33:475-491. [PMID: 33955490 PMCID: PMC8136901 DOI: 10.1093/plcell/koaa043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.
Collapse
Affiliation(s)
| | | | | | | | - Yajie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qudsia Zeb
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Johan Zicola
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Yongfu Fu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefu Lu
- Author for correspondence: (L.L) and (Z.L.)
| | | |
Collapse
|
42
|
Zhang M, Li P, Yan X, Wang J, Cheng T, Zhang Q. Genome-wide characterization of PEBP family genes in nine Rosaceae tree species and their expression analysis in P. mume. BMC Ecol Evol 2021; 21:32. [PMID: 33622244 PMCID: PMC7901119 DOI: 10.1186/s12862-021-01762-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Phosphatidylethanolamine-binding proteins (PEBPs) constitute a common gene family found among animals, plants and microbes. Plant PEBP proteins play an important role in regulating flowering time, plant architecture as well as seed dormancy. Though PEBP family genes have been well studied in Arabidopsis and other model species, less is known about these genes in perennial trees. RESULTS To understand the evolution of PEBP genes and their functional roles in flowering control, we identified 56 PEBP members belonging to three gene clades (MFT-like, FT-like, and TFL1-like) and five lineages (FT, BFT, CEN, TFL1, and MFT) across nine Rosaceae perennial species. Structural analysis revealed highly conserved gene structure and protein motifs among Rosaceae PEBP proteins. Codon usage analysis showed slightly biased codon usage across five gene lineages. With selection pressure analysis, we detected strong purifying selection constraining divergence within most lineages, while positive selection driving the divergence of FT-like and TFL1-like genes from the MFT-like gene clade. Spatial and temporal expression analyses revealed the essential role of FT in regulating floral bud breaking and blooming in P. mume. By employing a weighted gene co-expression network approach, we inferred a putative FT regulatory module required for dormancy release and blooming in P. mume. CONCLUSIONS We have characterized the PEBP family genes in nine Rosaceae species and examined their phylogeny, genomic syntenic relationship, duplication pattern, and expression profiles during flowering process. These results revealed the evolutionary history of PEBP genes and their functions in regulating floral bud development and blooming among Rosaceae tree species.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolan Yan
- Mei Germplasm Research Center, Wuhan, 430073, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
43
|
Madrid E, Chandler JW, Coupland G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4-14. [PMID: 32369593 PMCID: PMC7816851 DOI: 10.1093/jxb/eraa216] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.
Collapse
Affiliation(s)
- Eva Madrid
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - John W Chandler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
- Correspondence:
| |
Collapse
|
44
|
CRISPR/Cas9-Mediated Knockout of HOS1 Reveals Its Role in the Regulation of Secondary Metabolism in Arabidopsis thaliana. PLANTS 2021; 10:plants10010104. [PMID: 33419060 PMCID: PMC7825447 DOI: 10.3390/plants10010104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Collapse
|
45
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
46
|
Zhang Y, Chen Y, Zhou Y, Zhang J, Bai H, Zheng C. Comparative Transcriptome Reveals the Genes' Adaption to Herkogamy of Lumnitzera littorea (Jack) Voigt. Front Genet 2020; 11:584817. [PMID: 33363568 PMCID: PMC7753066 DOI: 10.3389/fgene.2020.584817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Lumnitzera littorea (Jack) Voigt is among the most endangered mangrove species in China. The morphology and evolution of L. littorea flowers have received substantial attention for their crucial reproductive functions. However, little is known about the genomic regulation of flower development in L. littorea. In this study, we characterized the morphology of two kinds of L. littorea flowers and performed comparative analyses of transcriptome profiles of the two different flowers. Morphological observation showed that some flowers have a column embedded in the petals while others produce a stretched flower style during petal unfolding in flowering. By using RNA-seq, we obtained 138,857 transcripts that were assembled into 82,833 unigenes with a mean length of 1055.48 bp. 82,834 and 34,997 unigenes were assigned to 52 gene ontology (GO) functional groups and 364 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 4,267 differentially expressed genes (DEGs), including 1,794 transcription factors (TFs), were identified between two types of flowers. These TFs are mainly involved in bHLH, B3, bZIP, MYB-related, and NAC family members. We further validated that 12 MADS-box genes, including 4 MIKC-type and 8 M-type TFs, were associated with the pollinate of L. littorea by herkogamy. Our current results provide valuable information for genetic analysis of L. littorea flowering and may be useful for illuminating its adaptive evolutionary mechanisms.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences and Technology, Lingnan Normal University, Zhanjiang, China.,National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yukai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yan Zhou
- School of Life Sciences and Technology, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - He Bai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Chunfang Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
47
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
48
|
Li Z, Liu N, Zhang W, Wu C, Jiang Y, Ma J, Li M, Sui S. Integrated transcriptome and proteome analysis provides insight into chilling-induced dormancy breaking in Chimonanthus praecox. HORTICULTURE RESEARCH 2020; 7:198. [PMID: 33328461 PMCID: PMC7704649 DOI: 10.1038/s41438-020-00421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Chilling has a critical role in the growth and development of perennial plants. The chilling requirement (CR) for dormancy breaking largely depends on the species. However, global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants. Here, we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions. We determined the minimum CR (570 chill units, CU) needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds (FBs, anther and ovary differentiation completed) with different CRs. The concentrations of ABA and GA3 in the FBs were also determined using HPLC. The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS T (FT) homologs at the transcript level in FBs when the accumulated CR reached 570 CU (IB570) compared to FBs in November (FB.Nov, CK) and nF16 (non-flowering FBs after treatment at 16 °C for -300 CU), which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module. Overexpression in Arabidopsis was used to confirm the function of candidate genes, and early flowering was induced in 35S::CpFT1 transgenic lines. Our data provide insight into the minimum CR (570 CU) needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C. praecox, which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.
Collapse
Affiliation(s)
- Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Ning Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Chunyu Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Yingjie Jiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Jing Ma
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Mingyang Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Shunzhao Sui
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
49
|
Wang Y, Severing EI, Koornneef M, Aarts MGM. FLC and SVP Are Key Regulators of Flowering Time in the Biennial/Perennial Species Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2020; 11:582577. [PMID: 33262778 PMCID: PMC7686048 DOI: 10.3389/fpls.2020.582577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/19/2020] [Indexed: 05/25/2023]
Abstract
The appropriate timing of flowering is crucial for plant reproductive success. Studies of the molecular mechanism of flower induction in the model plant Arabidopsis thaliana showed long days and vernalization as major environmental promotive factors. Noccaea caerulescens has an obligate vernalization requirement that has not been studied at the molecular genetics level. Here, we characterize the vernalization requirement and response of four geographically diverse biennial/perennial N. caerulescens accessions: Ganges (GA), Lellingen (LE), La Calamine (LC), and St. Felix de Pallières (SF). Differences in vernalization responsiveness among accessions suggest that natural variation for this trait exists within N. caerulescens. Mutants which fully abolish the vernalization requirement were identified and were shown to contain mutations in the FLOWERING LOCUS C (NcFLC) and SHORT VEGETATIVE PHASE (NcSVP) genes, two key floral repressors in this species. At high temperatures, the non-vernalization requiring flc-1 mutant reverts from flowering to vegetative growth, which is accompanied with a reduced expression of LFY and AP1. This suggested there is "crosstalk" between vernalization and ambient temperature, which might be a strategy to cope with fluctuations in temperature or adopt a more perennial flowering attitude and thus facilitate a flexible evolutionary response to the changing environment across the species range.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Protection and Utilization of Subtropical Agriculture Resource, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| | - Edouard I. Severing
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
50
|
Mathieu AS, Périlleux C, Jacquemin G, Renard ME, Lutts S, Quinet M. Impact of vernalization and heat on flowering induction, development and fertility in root chicory (Cichorium intybus L. var. sativum). JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153272. [PMID: 32980639 DOI: 10.1016/j.jplph.2020.153272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Root chicory (Cichorium intybus var. sativum) is a biennial plant that requires vernalization for flowering initiation. However, we previously showed that heat can induce root chicory flowering independently of vernalization. To deepen our understanding of the temperature control of flowering in this species, we investigated the impact of heat, vernalization and their interaction on flowering induction and reproductive development. Heat increased the flowering percentage of non-vernalized plants by 25% but decreased that of vernalized plants by 65%. After bolting, heat negatively affected inflorescence development, decreasing the proportion of sessile capitula on the floral stem by 40% and the floral stem dry weight by 42% compared to control conditions, although it did not affect the number of flowers per capitulum. Heat also decreased flower fertility: pollen production, pollen viability and stigma receptivity were respectively 25%, 3% and 82% lower in heat-treated plants than in untreated control plants. To investigate the genetic control of flowering by temperature in root chicory, we studied the expression of the FLC-LIKE1 (CiFL1) gene in response to heat; CiFL1 was previously shown to be repressed by vernalization in chicory and to repress flowering when over-expressed in Arabidopsis. Heat treatment increased CiFL1 expression, as well as the percentage of bolting and flowering shoot apices. Heat thus has a dual impact on flowering initiation in root chicory since it appears to both induce flowering and counteract vernalization. However, after floral transition, heat has a primarily negative impact on root chicory reproduction.
Collapse
Affiliation(s)
- Anne-Sophie Mathieu
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Claire Périlleux
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus Quartier Vallée 1, Chemin de la Vallée 4, B-4000 Liège, Belgium
| | - Guillaume Jacquemin
- Crop Production Systems Unit, Production and Sectors Department, Walloon Agricultural Research Centre, 4 Rue du Bordia, B-5030 Gembloux, Belgium
| | - Marie-Eve Renard
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|