1
|
López-Catalina A, Reverter A, Alexandre PA, Nguyen LT, González-Recio O. Stress-induced epigenetic effects driven by maternal lactation in dairy cattle: a comethylation network approach. Epigenetics 2024; 19:2381856. [PMID: 39044410 PMCID: PMC11271077 DOI: 10.1080/15592294.2024.2381856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Epigenetic marks do not follow the Mendelian laws of inheritance. The environment can alter the epigenotype of an individual when exposed to different external stressors. In lactating cows, the first stages of gestation overlap with the lactation peak, creating a negative energy balance that is difficult to overcome with diet. This negative energy balance could affect early embryo development that must compete with the mammary tissue for nutrients. We hypothesize that the methylation profiles of calves born to nonlactating heifers are different from those of calves born to lactating cows. We found 50,277 differentially methylated cytosines and 2,281 differentially methylated regions between these two groups of animals. A comethylation network was constructed to study the correlation between the phenotypes of the mothers and the epigenome of the calves, revealing 265 regions associated with the phenotypes. Our study revealed the presence of DMCs and DMRs in calves gestated by heifers and lactating cows, which were linked to the dam's lactation and the calves' ICAP and milk EBV. Gene-specific analysis highlighted associations with vasculature and organ morphogenesis and cell communication and signalling. These finding support the hypothesis that calves gestated by nonlactating mothers have a different methylation profile than those gestated by lactating cows.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Pamela A. Alexandre
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
| |
Collapse
|
2
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
5
|
Hamann E, Groen SC, Dunivant TS, Ćalić I, Cochran C, Konshok R, Purugganan MD, Franks SJ. Selection on genome-wide gene expression plasticity of rice in wet and dry field environments. Mol Ecol 2024:e17522. [PMID: 39215462 DOI: 10.1111/mec.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
- Department of Biology, Institute of Plant Ecology and Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Taryn S Dunivant
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Irina Ćalić
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Colleen Cochran
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Rachel Konshok
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| |
Collapse
|
6
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
7
|
Li JA, He Y, Yang B, Mokrani A, Li Y, Tan C, Li Q, Liu S. Whole-genome DNA methylation profiling revealed epigenetic regulation of NF-κB signaling pathway involved in response to Vibrio alginolyticus infection in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109705. [PMID: 38885801 DOI: 10.1016/j.fsi.2024.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.
Collapse
Affiliation(s)
- Jian-An Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yameng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Chao Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China.
| |
Collapse
|
8
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
10
|
Shan S, Gitzendanner MA, Boatwright JL, Spoelhof JP, Ethridge CL, Ji L, Liu X, Soltis PS, Schmitz RJ, Soltis DE. Genome-wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae). THE NEW PHYTOLOGIST 2024; 242:1363-1376. [PMID: 38450804 DOI: 10.1111/nph.19655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Fang S, Wang H, Qiu K, Pang Y, Li C, Liang X. The fungicide pyraclostrobin affects gene expression by altering the DNA methylation pattern in Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2024; 15:1391900. [PMID: 38745924 PMCID: PMC11091397 DOI: 10.3389/fpls.2024.1391900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Introduction Rice blast disease caused by Magnaporthe oryzae has long been the main cause of rice (Oryza sativa L.) yield reduction worldwide. The quinone external inhibitor pyraclostrobin is widely used as a fungicide to effectively control the spread of pathogenic fungi, including M. oryzae. However, M. oryzae can develop resistance through multiple levels of mutation, such as target protein cytb mutation G143A/S, leading to a decrease in the effectiveness of the biocide after a period of application. Therefore, uncovering the possible mutational mechanisms from multiple perspectives will further provide feasible targets for drug development. Methods In this work, we determined the gene expression changes in M. oryzae in response to pyraclostrobin stress and their relationship with DNA methylation by transcriptome and methylome. Results The results showed that under pyraclostrobin treatment, endoplasmic reticulum (ER)-associated and ubiquitin-mediated proteolysis were enhanced, suggesting that more aberrant proteins may be generated that need to be cleared. DNA replication and repair processes were inhibited. Glutathione metabolism was enhanced, while lipid metabolism was impaired. The number of alternative splicing events increased. These changes may be related to the elevated methylation levels of cytosine and adenine in gene bodies. Both hypermethylation and hypomethylation of differentially methylated genes (DMGs) mainly occurred in exons and promoters. Some DMGs and differentially expressed genes (DEGs) were annotated to the same pathways by GO and KEGG, including protein processing in the ER, ubiquitin-mediated proteolysis, RNA transport and glutathione metabolism, suggesting that pyraclostrobin may affect gene expression by altering the methylation patterns of cytosine and adenine. Discussion Our results revealed that 5mC and 6mA in the gene body are associated with gene expression and contribute to adversity adaptation in M. oryzae. This enriched the understanding for potential mechanism of quinone inhibitor resistance, which will facilitate the development of feasible strategies for maintaining the high efficacy of this kind of fungicide.
Collapse
Affiliation(s)
- Shumei Fang
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hanxin Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kaihua Qiu
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Pang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chen Li
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Awan MJA, Farooq MA, Naqvi RZ, Karamat U, Bukhari SAR, Waqas MAB, Mahmood MA, Buzdar MI, Rasheed A, Amin I, Saeed NA, Mansoor S. Deciphering the differential expression patterns of yield-related negative regulators in hexaploid wheat cultivars and hybrids at different growth stages. Mol Biol Rep 2024; 51:537. [PMID: 38642174 DOI: 10.1007/s11033-024-09454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sayyad Ali Raza Bukhari
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
13
|
Lee S, Park YS, Rhee JH, Chu H, Frost JM, Choi Y. Insights into plant regeneration: cellular pathways and DNA methylation dynamics. PLANT CELL REPORTS 2024; 43:120. [PMID: 38634973 PMCID: PMC11026228 DOI: 10.1007/s00299-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Young Seo Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Hyojeong Chu
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Jennifer M Frost
- Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
14
|
Peterson CR, Scott CB, Ghaffari R, Dixon G, Matz MV. Mixed Patterns of Intergenerational DNA Methylation Inheritance in Acropora. Mol Biol Evol 2024; 41:msae008. [PMID: 38243377 PMCID: PMC11079325 DOI: 10.1093/molbev/msae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.
Collapse
Affiliation(s)
| | - Carly B Scott
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Rashin Ghaffari
- Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mikhail V Matz
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Williams CJ, Dai D, Tran KA, Monroe JG, Williams BP. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol 2023; 24:227. [PMID: 37828516 PMCID: PMC10571256 DOI: 10.1186/s13059-023-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In several eukaryotes, DNA methylation occurs within the coding regions of many genes, termed gene body methylation (GbM). Whereas the role of DNA methylation on the silencing of transposons and repetitive DNA is well understood, gene body methylation is not associated with transcriptional repression, and its biological importance remains unclear. RESULTS We report a newly discovered type of GbM in plants, which is under constitutive addition and removal by dynamic methylation modifiers in all cells, including the germline. Methylation at Dynamic GbM genes is removed by the DRDD demethylation pathway and added by an unknown source of de novo methylation, most likely the maintenance methyltransferase MET1. We show that the Dynamic GbM state is present at homologous genes across divergent lineages spanning over 100 million years, indicating evolutionary conservation. We demonstrate that Dynamic GbM is tightly associated with the presence of a promoter or regulatory chromatin state within the gene body, in contrast to other gene body methylated genes. We find Dynamic GbM is associated with enhanced gene expression plasticity across development and diverse physiological conditions, whereas stably methylated GbM genes exhibit reduced plasticity. Dynamic GbM genes exhibit reduced dynamic range in drdd mutants, indicating a causal link between DNA demethylation and enhanced gene expression plasticity. CONCLUSIONS We propose a new model for GbM in regulating gene expression plasticity, including a novel type of GbM in which increased gene expression plasticity is associated with the activity of DNA methylation writers and erasers and the enrichment of a regulatory chromatin state.
Collapse
Affiliation(s)
- Clara J Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Dawei Dai
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Kevin A Tran
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, USA
| | - Ben P Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA.
| |
Collapse
|
16
|
Jiang D, Berger F. Variation is important: Warranting chromatin function and dynamics by histone variants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102408. [PMID: 37399781 DOI: 10.1016/j.pbi.2023.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The chromatin of flowering plants exhibits a wide range of sequence variants of the core and linker histones. Recent studies have demonstrated that specific histone variant enrichment, combined with post-translational modifications (PTMs) of histones, defines distinct chromatin states that impact specific chromatin functions. Chromatin remodelers are emerging as key regulators of histone variant dynamics, contributing to shaping chromatin states and regulating gene transcription in response to environment. Recognizing the histone variants by their specific readers, controlled by histone PTMs, is crucial for maintaining genome and chromatin integrity. In addition, various histone variants have been shown to play essential roles in remodeling chromatin domains to facilitate important programmed transitions throughout the plant life cycle. In this review, we discuss recent findings in this exciting field of research, which holds immense promise for many surprising discoveries related to the evolution of complexity in plant organization through a seemingly simple protein family.
Collapse
Affiliation(s)
- Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
17
|
Goeldel C, Johannes F. Stochasticity in gene body methylation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102436. [PMID: 37597469 DOI: 10.1016/j.pbi.2023.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/21/2023]
Abstract
Gene body methylation (gbM) is a widely conserved epigenetic feature of plant genomes. Efforts to delineate the mechanisms by which gbM contributes to transcriptional regulation remain largely inconclusive, and its evolutionary significance continues to be debated. Curiously, although steady-state gbM levels are remarkably stable across mitotic and meiotic cell divisions, the methylation status of individual CG dinucleotides in gbM genes is highly stochastic. How can these two seemingly contradictory observations be reconciled? Here, we discuss how stochastic processes relate to gbM maintenance dynamics. We show that a quantitative understanding of these processes can shed deeper insights into the molecular and evolutionary biology of this enigmatic epigenetic trait.
Collapse
Affiliation(s)
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich, Germany.
| |
Collapse
|
18
|
Hackerott S, Virdis F, Flood PJ, Souto DG, Paez W, Eirin-Lopez JM. Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals. Mol Ecol 2023; 32:4814-4828. [PMID: 37454286 DOI: 10.1111/mec.17072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Francesca Virdis
- Reef Renewal Foundation Bonaire, Kralendijk, Caribbean Netherlands
| | - Peter J Flood
- Florida International University, Miami, Florida, USA
| | - Daniel Garcia Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Wendy Paez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| |
Collapse
|
19
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
20
|
Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol 2023; 21:149. [PMID: 37365578 DOI: 10.1186/s12915-023-01645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
| | - Marie E Strader
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
- Department of Biology, Texas A&M University, College Station, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
| |
Collapse
|
21
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
22
|
Pisupati R, Nizhynska V, Mollá Morales A, Nordborg M. On the causes of gene-body methylation variation in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010728. [PMID: 37141384 DOI: 10.1371/journal.pgen.1010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, which is especially prominent in evolutionarily conserved house-keeping genes. It is found in both plants and animals, but is directly and stably (epigenetically) inherited over multiple generations in the former. Studies in Arabidopsis thaliana have demonstrated that plants originating from different parts of the world exhibit genome-wide differences in gbM, which could reflect direct selection on gbM, but which could also reflect an epigenetic memory of ancestral genetic and/or environmental factors. Here we look for evidence of such factors in F2 plants resulting from a cross between a southern Swedish line with low gbM and a northern Swedish line with high gbM, grown at two different temperatures. Using bisulfite-sequencing data with nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are either methylated (nearly 100% methylation across sampled cells) or unmethylated (approximately 0% methylation across sampled cells), and show that the higher level of gbM in the northern line is due to more sites being methylated. Furthermore, methylation variants almost always show Mendelian segregation, consistent with their being directly and stably inherited through meiosis. To explore how the differences between the parental lines could have arisen, we focused on somatic deviations from the inherited state, distinguishing between gains (relative to the inherited 0% methylation) and losses (relative to the inherited 100% methylation) at each site in the F2 generation. We demonstrate that deviations predominantly affect sites that differ between the parental lines, consistent with these sites being more mutable. Gains and losses behave very differently in terms of the genomic distribution, and are influenced by the local chromatin state. We find clear evidence for different trans-acting genetic polymorphism affecting gains and losses, with those affecting gains showing strong environmental interactions (G×E). Direct effects of the environment were minimal. In conclusion, we show that genetic and environmental factors can change gbM at a cellular level, and hypothesize that these factors can also lead to transgenerational differences between individuals via the inclusion of such changes in the zygote. If true, this could explain genographic pattern of gbM with selection, and would cast doubt on estimates of epimutation rates from inbred lines in constant environments.
Collapse
Affiliation(s)
- Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Vienna Graduate School of Population Genetics, Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Almudena Mollá Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
23
|
Hafner A, Mackenzie S. Re-analysis of publicly available methylomes using signal detection yields new information. Sci Rep 2023; 13:3307. [PMID: 36849495 PMCID: PMC9971211 DOI: 10.1038/s41598-023-30422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
Cytosine methylation is an epigenetic mark that participates in regulation of gene expression and chromatin stability in plants. Advancements in whole genome sequencing technologies have enabled investigation of methylome dynamics under different conditions. However, the computational methods for analyzing bisulfite sequence data have not been unified. Contention remains in the correlation of differentially methylated positions with the investigated treatment and exclusion of noise, inherent to these stochastic datasets. The prevalent approaches apply Fisher's exact test, logistic, or beta regression, followed by an arbitrary cut-off for differences in methylation levels. A different strategy, the MethylIT pipeline, utilizes signal detection to determine cut-off based on a fitted generalized gamma probability distribution of methylation divergence. Re-analysis of publicly available BS-seq data from two epigenetic studies in Arabidopsis and applying MethylIT revealed additional, previously unreported results. Methylome repatterning in response to phosphate starvation was confirmed to be tissue-specific and included phosphate assimilation genes in addition to sulfate metabolism genes not implicated in the original study. During seed germination plants undergo major methylome reprogramming and use of MethylIT allowed us to identify stage-specific gene networks. We surmise from these comparative studies that robust methylome experiments must account for data stochasticity to achieve meaningful functional analyses.
Collapse
Affiliation(s)
- Alenka Hafner
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sally Mackenzie
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA, 16802, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
24
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
25
|
El-Shehawi AM, Elseehy MA, Elseehy MM. CpG Methylation of the Proximal Promoter Region Regulates the Expression of NAC6D Gene in Response to High Temperature in Wheat (Triticum aestivum). CYTOL GENET+ 2022. [DOI: 10.3103/s009545272205005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Bennett M, Piya S, Baum TJ, Hewezi T. miR778 mediates gene expression, histone modification, and DNA methylation during cyst nematode parasitism. PLANT PHYSIOLOGY 2022; 189:2432-2453. [PMID: 35579365 PMCID: PMC9342967 DOI: 10.1093/plphys/kiac228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Despite the known critical regulatory functions of microRNAs, histone modifications, and DNA methylation in reprograming plant epigenomes in response to pathogen infection, the molecular mechanisms underlying the tight coordination of these components remain poorly understood. Here, we show how Arabidopsis (Arabidopsis thaliana) miR778 coordinately modulates the root transcriptome, histone methylation, and DNA methylation via post-transcriptional regulation of the H3K9 methyltransferases SU(var)3-9 homolog 5 (SUVH5) and SUVH6 upon infection by the beet cyst nematode Heterodera schachtii. miR778 post-transcriptionally silences SUVH5 and SUVH6 upon nematode infection. Manipulation of the expression of miR778 and its two target genes significantly altered plant susceptibility to H. schachtii. RNA-seq analysis revealed a key role of SUVH5 and SUVH6 in reprograming the transcriptome of Arabidopsis roots upon H. schachtii infection. In addition, chromatin immunoprecipitation (ChIP)-seq analysis established SUVH5 and SUVH6 as the main enzymes mediating H3K9me2 deposition in Arabidopsis roots in response to nematode infection. ChIP-seq analysis also showed that these methyltransferases possess distinct DNA binding preferences in that they are targeting transposable elements under noninfected conditions and protein-coding genes in infected plants. Further analyses indicated that H3K9me2 deposition directed by SUVH5 and SUVH6 contributes to gene expression changes both in roots and in nematode feeding sites and preferentially associates with CG DNA methylation. Together, our results uncovered multi-layered epigenetic regulatory mechanisms coordinated by miR778 during Arabidopsis-H. schachtii interactions.
Collapse
Affiliation(s)
- Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
27
|
Dye CK, Corley MJ, Ing C, Lum-Jones A, Li D, Mau MKLM, Maunakea AK. Shifts in the immunoepigenomic landscape of monocytes in response to a diabetes-specific social support intervention: a pilot study among Native Hawaiian adults with diabetes. Clin Epigenetics 2022; 14:91. [PMID: 35851422 PMCID: PMC9295496 DOI: 10.1186/s13148-022-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Native Hawaiians are disproportionately affected by type 2 diabetes mellitus (DM), a chronic metabolic, non-communicable disease characterized by hyperglycemia and systemic inflammation. Unrelenting systemic inflammation frequently leads to a cascade of multiple comorbidities associated with DM, including cardiovascular disease, microvascular complications, and renal dysfunction. Yet few studies have examined the link between chronic inflammation at a cellular level and its relationship to standard DM therapies such as diabetes-specific lifestyle and social support education, well recognized as the cornerstone of clinical standards of diabetes care. This pilot study was initiated to explore the association of monocyte inflammation using epigenetic, immunologic, and clinical measures following a 3-month diabetes-specific social support program among high-risk Native Hawaiian adults with DM. RESULTS From a sample of 16 Native Hawaiian adults with DM, monocytes enriched from peripheral blood mononuclear cells (PBMCs) of 8 individuals were randomly selected for epigenomic analysis. Using the Illumina HumanMethylation450 BeadChip microarray, 1,061 differentially methylated loci (DML) were identified in monocytes of participants at baseline and 3 months following a DM-specific social support program (DM-SSP). Gene ontology analysis showed that these DML were enriched within genes involved in immune, metabolic, and cardiometabolic pathways, a subset of which were also significantly differentially expressed. Ex vivo analysis of immune function showed improvement post-DM-SSP compared with baseline, characterized by attenuated interleukin 1β and IL-6 secretion from monocytes. Altered cytokine secretion in response to the DM-SSP was significantly associated with changes in the methylation and gene expression states of immune-related genes in monocytes between intervention time points. CONCLUSIONS Our pilot study provides preliminary evidence of changes to inflammatory monocyte activity, potentially driven by epigenetic modifications, 3 months following a DM-specific SSP intervention. These novel alterations in the trajectory of monocyte inflammatory states were identified at loci that regulate transcription of immune and metabolic genes in high-risk Native Hawaiians with DM, suggesting a relationship between improvements in psychosocial behaviors and shifts in the immunoepigenetic patterns following a diabetes-specific SSP. Further research is warranted to investigate how social support influences systemic inflammation via immunoepigenetic modifications in chronic inflammatory diseases such as DM.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA
| | - Michael J Corley
- Cornell Center for Immunology, Weill Cornell Medical Center, Cornell University, New York, NY, 10065, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Claire Ing
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Marjorie K L M Mau
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA.
| |
Collapse
|
28
|
Sarkies P. Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochem Soc Trans 2022; 50:1179-1190. [PMID: 35521905 PMCID: PMC9246332 DOI: 10.1042/bst20210725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is an epigenetic modification with a very long evolutionary history. However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-wide distribution of methylation diversifies rapidly in different lineages, and DNA methylation is lost altogether surprisingly frequently. The growing availability of genomic and epigenomic sequencing across organisms highlights this diversity but also illuminates potential factors that could explain why both the DNA methylation machinery and its genome-wide distribution evolve so rapidly. Key to this are new discoveries about the fitness costs associated with DNA methylation, and new theories about how the fundamental biochemical mechanisms of DNA methylation introduction and maintenance could explain how new genome-wide patterns of methylation evolve.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, U.K
- MRC London Institute of Molecular Biology, London, U.K
- Institute of Clinical Sciences, Imperial College London, London, U.K
| |
Collapse
|
29
|
Genetic and Epigenetic Signatures Associated with the Divergence of Aquilegia Species. Genes (Basel) 2022; 13:genes13050793. [PMID: 35627179 PMCID: PMC9141525 DOI: 10.3390/genes13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Widely grown in the Northern Hemisphere, the genus Aquilegia (columbine) is a model system in adaptive radiation research. While morphological variations between species have been associated with environmental factors, such as pollinators, how genetic and epigenetic factors are involved in the rapid divergence in this genus remains under investigated. In this study, we surveyed the genomes and DNA methylomes of ten Aquilegia species, representative of the Asian, European and North American lineages. Our analyses of the phylogeny and population structure revealed high genetic and DNA methylomic divergence across these three lineages. By multi-level genome-wide scanning, we identified candidate genes exhibiting lineage-specific genetic or epigenetic variation patterns that were signatures of inter-specific divergence. We demonstrated that these species-specific genetic variations and epigenetic variabilities are partially independent and are both functionally related to various biological processes vital to adaptation, including stress tolerance, cell reproduction and DNA repair. Our study provides an exploratory overview of how genetic and epigenetic signatures are associated with the diversification of the Aquilegia species.
Collapse
|
30
|
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene-body methylation in plants: mechanisms, functions and important implications for understanding evolutionary processes. Genome Biol Evol 2022; 14:6550137. [PMID: 35298639 PMCID: PMC8995044 DOI: 10.1093/gbe/evac038] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.
Collapse
Affiliation(s)
| | | | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | | |
Collapse
|
31
|
Harney E, Paterson S, Collin H, Chan BH, Bennett D, Plaistow SJ. Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evol Lett 2022; 6:118-135. [PMID: 35386832 PMCID: PMC8966472 DOI: 10.1002/evl3.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome‐wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long‐term legacy of pollutant exposure distinct from the persistent effects. Pollutant‐induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.
Collapse
Affiliation(s)
- Ewan Harney
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Institute of Evolutionary Biology (CSIC‐UPF) CMIMA Building Barcelona 08003 Spain
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Hélène Collin
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Brian H.K. Chan
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT United Kingdom
| | - Daimark Bennett
- Molecular and Physiology Cell Signalling, Institute of Systems, Molecular and Integrative Biology University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Stewart J. Plaistow
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| |
Collapse
|
32
|
Johnson KM, Sirovy KA, Kelly MW. Differential DNA methylation across environments has no effect on gene expression in the eastern oyster. J Anim Ecol 2021; 91:1135-1147. [PMID: 34882793 DOI: 10.1111/1365-2656.13645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments. We compared patterns of global gene expression (Tag-seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oysters Crassostrea virginica from six full-sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity. At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression. Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments. An analysis of CpG observed/expected values (CpG O/E) across the C. virginica genome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression. Taken together, the differential methylation results suggest that only a small portion of the C. virginica genome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.
Collapse
Affiliation(s)
- Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA.,California Sea Grant, University of California San Diego, La Jolla, CA, USA
| | - Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
33
|
Morandin C, Brendel VP. Tools and applications for integrative analysis of DNA methylation in social insects. Mol Ecol Resour 2021; 22:1656-1674. [PMID: 34861105 DOI: 10.1111/1755-0998.13566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
DNA methylation is a common epigenetic signalling tool and an important biological process which is widely studied in a large array of species. The presence, level and function of DNA methylation vary greatly across species. In some insects, DNA methylation systems are minimal, and overall methylation rates tend to be low in all studied insect species. Low methylation levels probed by whole-genome bisulphite sequencing require great care with respect to data quality control and interpretation. Here, we introduce BWASP/R, a complete workflow that allows efficient, scalable and entirely reproducible analyses of raw DNA methylation sequencing data. Consistent application of quality control filters and analysis parameters provides fair comparisons among different studies and an integrated view of all experiments on one species. We describe the capabilities of the BWASP/R workflow by re-analysing several publicly available social insect WGBS data sets, comprising 70 samples and cumulatively 147 replicates from four different species. We show that the CpG methylome comprises only about 1.5% of CpG sites in the honeybee genome and that the cumulative data are consistent with genetic signatures of site accessibility and physiological control of methylation levels.
Collapse
Affiliation(s)
- Claire Morandin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Volker P Brendel
- Departments of Biology and Computer Science, Indiana University, Bloomingto, Indiana, USA
| |
Collapse
|
34
|
Wang Y, Dai A, Chen Y, Tang T. Gene Body Methylation Confers Transcription Robustness in Mangroves During Long-Term Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2021; 12:733846. [PMID: 34630483 PMCID: PMC8493031 DOI: 10.3389/fpls.2021.733846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 05/23/2023]
Abstract
Whether induced epigenetic changes contribute to long-term adaptation remains controversial. Recent studies indicate that environmentally cued changes in gene body methylation (gbM) can facilitate acclimatization. However, such changes are often associated with genetic variation and their contribution to long-term stress adaptation remains unclear. Using whole-genome bisulfite sequencing, we examined evolutionary gains and losses of gbM in mangroves that adapted to extreme intertidal environments. We treated mangrove seedlings with salt stress, and investigated expression changes in relation with stress-induced or evolutionarily-acquired gbM changes. Evolution and function of gbM was compared with that of genetic variation. Mangroves gained much more gbM than their terrestrial relatives, mainly through convergent evolution. Genes that convergently gained gbM during evolution are more likely to become methylated in response to salt stress in species where they are normally not marked. Stress-induced and evolutionarily convergent gains of gbM both correlate with reduction in expression variation, conferring genome-wide expression robustness under salt stress. Moreover, convergent gbM evolution is uncoupled with convergent sequence evolution. Our findings suggest that transgenerational inheritance of acquired gbM helps environmental canalization of gene expression, facilitating long-term stress adaptation of mangroves in the face of a severe reduction in genetic diversity.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aimei Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiping Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Abstract
Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.
Collapse
Affiliation(s)
- James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
36
|
The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. Int J Mol Sci 2021; 22:ijms22168618. [PMID: 34445323 PMCID: PMC8395315 DOI: 10.3390/ijms22168618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
In plants, the gene expression and associated phenotypes can be modulated by dynamic changes in DNA methylation, occasionally being fixed in certain genomic loci and inherited stably as epialleles. Epiallelic variations in a population can occur as methylation changes at an individual cytosine position, methylation changes within a stretch of genomic regions, and chromatin changes in certain loci. Here, we focus on methylated regions, since it is unclear whether variations at individual methylated cytosines can serve any regulatory function, and the evidence for heritable chromatin changes independent of genetic changes is limited. While DNA methylation is known to affect and regulate wide arrays of plant phenotypes, most epialleles in the form of methylated regions have not been assigned any biological function. Here, we review how epialleles can be established in plants, serve a regulatory function, and are involved in adaptive processes. Recent studies suggest that most epialleles occur as byproducts of genetic variations, mainly from structural variants and Transposable Element (TE) activation. Nevertheless, epialleles that occur spontaneously independent of any genetic variations have also been described across different plant species. Here, we discuss how epialleles that are dependent and independent of genetic architecture are stabilized in the plant genome and how methylation can regulate a transcription relative to its genomic location.
Collapse
|
37
|
Martin GT, Seymour DK, Gaut BS. CHH Methylation Islands: A Nonconserved Feature of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively Associated with Gene-Body Methylation. Genome Biol Evol 2021; 13:evab144. [PMID: 34146109 PMCID: PMC8374106 DOI: 10.1093/gbe/evab144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Methylated CHH (mCHH) islands are peaks of CHH methylation that occur primarily upstream to genes. These regions are actively targeted by the methylation machinery, occur at boundaries between heterochromatin and euchromatin, and tend to be near highly expressed genes. Here we took an evolutionary perspective by studying upstream mCHH islands across a sample of eight grass species. Using a statistical approach to define mCHH islands as regions that differ from genome-wide background CHH methylation levels, we demonstrated that mCHH islands are common and associate with 39% of genes, on average. We hypothesized that islands should be more frequent in genomes of large size, because they have more heterochromatin and hence more need for defined boundaries. We found, however, that smaller genomes tended to have a higher proportion of genes associated with 5' mCHH islands. Consistent with previous work suggesting that islands reflect the silencing of the edge of transposable elements (TEs), genes with nearby TEs were more likely to have mCHH islands. However, the presence of mCHH islands was not a function solely of TEs, both because the underlying sequences of islands were often not homologous to TEs and because genic properties also predicted the presence of 5' mCHH islands. These genic properties included length and gene-body methylation (gbM); in fact, in three of eight species, the absence of gbM was a stronger predictor of a 5' mCHH island than TE proximity. In contrast, gene expression level was a positive but weak predictor of the presence of an island. Finally, we assessed whether mCHH islands were evolutionarily conserved by focusing on a set of 2,720 orthologs across the eight species. They were generally not conserved across evolutionary time. Overall, our data establish additional genic properties that are associated with mCHH islands and suggest that they are not just a consequence of the TE silencing machinery.
Collapse
Affiliation(s)
- Galen T Martin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
38
|
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol 2021; 19:148. [PMID: 34340707 PMCID: PMC8330077 DOI: 10.1186/s12915-021-01074-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation. RESULTS Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth. CONCLUSIONS Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals.
Collapse
Affiliation(s)
- Anabelle Planques
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Laure Ferry
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75006, Paris, France
| | - Christoph Grunau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, F-66860, Perpignan, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France.
| |
Collapse
|
39
|
Maize DNA Methylation in Response to Drought Stress Is Involved in Target Gene Expression and Alternative Splicing. Int J Mol Sci 2021; 22:ijms22158285. [PMID: 34361051 PMCID: PMC8347047 DOI: 10.3390/ijms22158285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is important for plant growth, development, and stress response. To understand DNA methylation dynamics in maize roots under water stress (WS), we reanalyzed DNA methylation sequencing data to profile DNA methylation and the gene expression landscape of two inbred lines with different drought sensitivities, as well as two of their derived recombination inbred lines (RILs). Combined with genotyping-by-sequencing, we found that the inheritance pattern of DNA methylation between RILs and parental lines was sequence-dependent. Increased DNA methylation levels were observed under WS and the methylome of drought-tolerant inbred lines were much more stable than that of the drought-sensitive inbred lines. Distinctive differentially methylated genes were found among diverse genetic backgrounds, suggesting that inbred lines with different drought sensitivities may have responded to stress in varying ways. Gene body DNA methylation showed a negative correlation with gene expression but a positive correlation with exon splicing events. Furthermore, a positive correlation of a varying extent was observed between small interfering RNA (siRNA) and DNA methylation, which at different genic regions. The response of siRNAs under WS was consistent with the differential DNA methylation. Taken together, our data can be useful in deciphering the roles of DNA methylation in plant drought-tolerance variations and in emphasizing its function in alternative splicing.
Collapse
|
40
|
Papareddy RK, Páldi K, Smolka AD, Hüther P, Becker C, Nodine MD. Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. eLife 2021; 10:e69396. [PMID: 34296996 PMCID: PMC8352596 DOI: 10.7554/elife.69396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Collapse
Affiliation(s)
- Ranjith K Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Katalin Páldi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Anna D Smolka
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Patrick Hüther
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Claude Becker
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Laboratory of Molecular Biology, Wageningen UniversityWageningenNetherlands
| |
Collapse
|
41
|
Liu W, Gallego-Bartolomé J, Zhou Y, Zhong Z, Wang M, Wongpalee SP, Gardiner J, Feng S, Kuo PH, Jacobsen SE. Ectopic targeting of CG DNA methylation in Arabidopsis with the bacterial SssI methyltransferase. Nat Commun 2021; 12:3130. [PMID: 34035251 PMCID: PMC8149686 DOI: 10.1038/s41467-021-23346-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/30/2021] [Indexed: 01/03/2023] Open
Abstract
The ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes. The ability to target DNA methylation to specific loci is important for both basic and applied research. Here, the authors fuse CG-specific methyltransferase SssI with an artificial zinc finger protein for DNA methylation targeting and show the chromatin features favorable for efficient gain of methylation.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Orthopedic of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Javier Gallego-Bartolomé
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.,Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yuxing Zhou
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Somsakul Pop Wongpalee
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.,Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | - Peggy Hsuanyu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA. .,Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Brodie ED, Gregory B, Lisch D, Riddle NC. The epigenome and beyond: How does non-genetic inheritance change our view of evolution? Integr Comp Biol 2021; 61:2199-2207. [PMID: 34028538 DOI: 10.1093/icb/icab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes.
Collapse
Affiliation(s)
- Edmund D Brodie
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Brian Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
43
|
Muyle A, Ross-Ibarra J, Seymour DK, Gaut BS. Gene body methylation is under selection in Arabidopsis thaliana. Genetics 2021; 218:6237897. [PMID: 33871638 PMCID: PMC8225343 DOI: 10.1093/genetics/iyab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
In plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation (gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-frequency spectrum of allelic states. Using a population genetics model specifically designed for epigenetic data, we found that genes with ancestral gbM are under significant selection to remain methylated. Conversely, ancestrally unmethylated genes were under selection to remain unmethylated. Repeating the analyses at the level of individual cytosines confirmed these results. Estimated selection coefficients were small, on the order of 4 Nes = 1.4, which is similar to the magnitude of selection acting on codon usage. We also estimated that A. thaliana is losing gbM threefold more rapidly than gaining it, which could be due to a recent reduction in the efficacy of selection after a switch to selfing. Finally, we investigated the potential function of gbM through its link with gene expression. Across genes with polymorphic methylation states, the expression of gene body methylated alleles was consistently and significantly higher than unmethylated alleles. Although it is difficult to disentangle genetic from epigenetic effects, our work suggests that gbM has a small but measurable effect on fitness, perhaps due to its association to a phenotype-like gene expression.
Collapse
Affiliation(s)
- Aline Muyle
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Jeffrey Ross-Ibarra
- Evolution and Ecology, Center for Population Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Danelle K Seymour
- Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon S Gaut
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
44
|
Baduel P, Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200123. [PMID: 33866816 PMCID: PMC8059525 DOI: 10.1098/rstb.2020.0123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA provides the fundamental framework for heritability, yet heritable trait variation need not be completely ‘hard-wired’ into the DNA sequence. In plants, the epigenetic machinery that controls transposable element (TE) activity, and which includes DNA methylation, underpins most known cases of inherited trait variants that are independent of DNA sequence changes. Here, we review our current knowledge of the extent, mechanisms and potential adaptive contribution of epiallelic variation at TE-containing alleles in this group of species. For the purpose of this review, we focus mainly on DNA methylation, as it provides an easily quantifiable readout of such variation. The picture that emerges is complex. On the one hand, pronounced differences in DNA methylation at TE sequences can either occur spontaneously or be induced experimentally en masse across the genome through genetic means. Many of these epivariants are stably inherited over multiple sexual generations, thus leading to transgenerational epigenetic inheritance. Functional consequences can be significant, yet they are typically of limited magnitude and although the same epivariants can be found in nature, the factors involved in their generation in this setting remain to be determined. On the other hand, moderate DNA methylation variation at TE-containing alleles can be reproducibly induced by the environment, again usually with mild effects, and most of this variation tends to be lost across generations. Based on these considerations, we argue that TE-containing alleles, rather than their inherited epiallelic variants, are the main targets of natural selection. Thus, we propose that the adaptive contribution of TE-associated epivariation, whether stable or not, lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hard-wired opportunities for the flexible exploration of the phenotypic space. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| |
Collapse
|
45
|
Dyson CJ, Goodisman MAD. Gene Duplication in the Honeybee: Patterns of DNA Methylation, Gene Expression, and Genomic Environment. Mol Biol Evol 2021; 37:2322-2331. [PMID: 32243528 DOI: 10.1093/molbev/msaa088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene duplication serves a critical role in evolutionary adaptation by providing genetic raw material to the genome. The evolution of duplicated genes may be influenced by epigenetic processes such as DNA methylation, which affects gene function in some taxa. However, the manner in which DNA methylation affects duplicated genes is not well understood. We studied duplicated genes in the honeybee Apis mellifera, an insect with a highly sophisticated social structure, to investigate whether DNA methylation was associated with gene duplication and genic evolution. We found that levels of gene body methylation were significantly lower in duplicate genes than in single-copy genes, implicating a possible role of DNA methylation in postduplication gene maintenance. Additionally, we discovered associations of gene body methylation with the location, length, and time since divergence of paralogous genes. We also found that divergence in DNA methylation was associated with divergence in gene expression in paralogs, although the relationship was not completely consistent with a direct link between DNA methylation and gene expression. Overall, our results provide further insight into genic methylation and how its association with duplicate genes might facilitate evolutionary processes and adaptation.
Collapse
Affiliation(s)
- Carl J Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
46
|
Lu Y, Song Y, Liu L, Wang T. DNA methylation dynamics of sperm cell lineage development in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:565-579. [PMID: 33249677 DOI: 10.1111/tpj.15098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
During the sexual reproduction of higher plants, DNA methylation and transcription are broadly changed to reshape a microspore into two sperm cells (SCs) and a vegetative cell (VC). However, when and how the DNA methylation of SCs is established remains not fully understood. Here we investigate the DNA methylation (5 mC) dynamics of SC lineage and the VC in tomato using whole-genome bisulfite sequencing. We find the asymmetric division of the microspore gives its two daughter cells differential methylome. Compared with the generative cell (GC), the VC is hypomethylated at CG sites while hypermethylated at CHG and CHH sites, with the majority of differentially methylation regions targeted to transposable elements (TEs). SCs have a nearly identical DNA methylome to the GC, suggesting that the methylation landscape in SCs may be pre-established following the asymmetric division or inherited from the GC. The random forest classifier for predicting gene and TE expression shows that methylation within the gene body is a more powerful predictor for gene expression. Among all tested samples, gene and TE expression in the microspore may be more predictable by DNA methylation. Our results depict an intact DNA methylome landscape of SC lineage in higher plants, and reveal that the impact of DNA methylation on transcription is variant in different cell types.
Collapse
Affiliation(s)
- Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100093, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
47
|
Yagound B, Remnant EJ, Buchmann G, Oldroyd BP. Intergenerational transfer of DNA methylation marks in the honey bee. Proc Natl Acad Sci U S A 2020; 117:32519-32527. [PMID: 33257552 PMCID: PMC7768778 DOI: 10.1073/pnas.2017094117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evolutionary significance of epigenetic inheritance is controversial. While epigenetic marks such as DNA methylation can affect gene function and change in response to environmental conditions, their role as carriers of heritable information is often considered anecdotal. Indeed, near-complete DNA methylation reprogramming, as occurs during mammalian embryogenesis, is a major hindrance for the transmission of nongenetic information between generations. Yet it remains unclear how general DNA methylation reprogramming is across the tree of life. Here we investigate the existence of epigenetic inheritance in the honey bee. We studied whether fathers can transfer epigenetic information to their daughters through DNA methylation. We performed instrumental inseminations of queens, each with four different males, retaining half of each male's semen for whole genome bisulfite sequencing. We then compared the methylation profile of each father's somatic tissue and semen with the methylation profile of his daughters. We found that DNA methylation patterns were highly conserved between tissues and generations. There was a much greater similarity of methylomes within patrilines (i.e., father-daughter subfamilies) than between patrilines in each colony. Indeed, the samples' methylomes consistently clustered by patriline within colony. Samples from the same patriline had twice as many shared methylated sites and four times fewer differentially methylated regions compared to samples from different patrilines. Our findings indicate that there is no DNA methylation reprogramming in bees and, consequently, that DNA methylation marks are stably transferred between generations. This points to a greater evolutionary potential of the epigenome in invertebrates than there is in mammals.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, 14193 Berlin, Germany
| |
Collapse
|
48
|
Dixon G, Matz M. Benchmarking DNA methylation assays in a reef-building coral. Mol Ecol Resour 2020; 21:464-477. [PMID: 33058551 DOI: 10.1111/1755-0998.13282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Interrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics. We compare whole genome bisulphite sequencing (WGBS) with methylated CpG binding domain sequencing (MBD-seq), and a modified version of MethylRAD we term methylation-dependent restriction site-associated DNA sequencing (mdRAD). We evaluate these three assays in measuring variation in methylation across the genome, between genotypes, and between polyp types in the reef-building coral Acropora millepora. We find that all three assays measure absolute methylation levels similarly for gene bodies (gbM), as well as exons and 1 Kb windows with a minimum Pearson correlation 0.66. Differential gbM estimates were less correlated, but still concurrent across assays. We conclude that MBD-seq and mdRAD are reliable and cost-effective alternatives to WGBS. The considerably lower sequencing effort required for mdRAD to produce comparable methylation estimates makes it particularly useful for ecological epigenetics.
Collapse
Affiliation(s)
- Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
49
|
Timbergen MJM, Boers R, Vriends ALM, Boers J, van IJcken WFJ, Lavrijsen M, Grünhagen DJ, Verhoef C, Sleijfer S, Smits R, Gribnau J, Wiemer EAC. Differentially Methylated Regions in Desmoid-Type Fibromatosis: A Comparison Between CTNNB1 S45F and T41A Tumors. Front Oncol 2020; 10:565031. [PMID: 33194643 PMCID: PMC7658920 DOI: 10.3389/fonc.2020.565031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction The majority of desmoid-type fibromatosis (DTF) tumors harbor a β-catenin mutation, affecting specific codons in CTNNB1 exon 3. S45F tumors are reported to have a higher chance of recurrence after surgery and more resistance to systemic treatments compared to wild-type (WT) and T41A tumors. The aim of this pilot study was to examine the genome-wide DNA methylation profiles of S45F and T41A mutated DTF, to explain the observed differences in clinical behavior between these DTF subtypes. Material and Methods Genome-wide analysis of DNA methylation was performed using MeD-seq on formalin-fixed, paraffin-embedded primary DTF samples harboring a S45F (n = 14) or a T41A (n = 15) mutation. Differentially methylated regions (DMRs) between S45F and T41A DTF were identified and used for a supervised hierarchical cluster analysis. DMRs with a fold-change ≥1.5 were considered to be differentially methylated and differences between S45F and T41A tumors were quantitatively assessed. The effect of DMRs on the expression of associated genes was assessed using an independent mRNA expression dataset. Protein-protein interactions between WT β-catenin and mutant variants and DNA methyltransferase 1 (DNMT1) were examined by immunoprecipitation experiments. Results MeD-seq analyses indicated 354 regions that displayed differential methylation. Cluster analysis yielded no distinct clusters based on mutation, sex, tumor site or tumor size. A supervised clustering based on DMRs between small (≤34 mm) and large (>87 mm) DTF distinguished the two groups. Only ten DMRs displayed a fold change of ≥1.5 and six of them were found associated with the following genes: NLRP4, FOXK2, PERM1, CCDC6, NOC4L, and DUX4L6. The effects of DMRs on gene expression yielded a significant difference (p < 0.05) in the expression between S45F and T41A for CCDC6 and FOXK2 but not for all Affymetrix probe-sets used to detect these genes. Immunoprecipitations did not reveal an association of WT β-catenin or mutant variants with DNMT1. Conclusion This study demonstrated that S45F and T41A DTF tumors did not exhibit gross differences in DNA methylation patterns. This implies that distinct DNA methylation profiles are not the sole determinant for the divergent clinical behavior of these different DTF mutant subtypes.
Collapse
Affiliation(s)
- Milea J M Timbergen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Oncode Institute, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Anne L M Vriends
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Oncode Institute, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Oncode Institute, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
50
|
Mona Mohamed Elseehy. Differential Transgeneration Methylation of Exogenous Promoters in T1 Transgenic Wheat (Triticum aestivum). CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|