1
|
Li M, Yang Y, Wu R, Gong H, Yuan Z, Wang J, Long E, Zhang X, Chen Y. SEE: A Method for Predicting the Dynamics of Chromatin Conformation Based on Single-Cell Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406413. [PMID: 39778075 DOI: 10.1002/advs.202406413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/01/2024] [Indexed: 01/11/2025]
Abstract
The dynamics of chromatin conformation involve continuous and reversible changes within the nucleus of a cell, which participate in regulating processes such as gene expression, DNA replication, and damage repair. Here, SEE is introduced, an artificial intelligence (AI) method that utilizes autoencoder and transformer techniques to analyze chromatin dynamics using single-cell RNA sequencing data and a limited number of single-cell Hi-C maps. SEE is employed to investigate chromatin dynamics across different scales, enabling the detection of (i) rearrangements in topologically associating domains (TADs), and (ii) oscillations in chromatin interactions at gene loci. Additionally, SEE facilitates the interpretation of disease-associated single-nucleotide polymorphisms (SNPs) by leveraging the dynamic features of chromatin conformation. Overall, SEE offers a single-cell, high-resolution approach to analyzing chromatin dynamics in both developmental and disease contexts.
Collapse
Affiliation(s)
- Minghong Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yurong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Rucheng Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Haiyan Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zan Yuan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jixin Wang
- School of Basic Medicine, Tsinghua University, Beijing, 100084, China
| | - Erping Long
- The State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaotong Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
2
|
Shi H, Ding G, Wang Y, Wang J, Wang X, Wang D, Lu P. Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves. BMC Genomics 2025; 26:7. [PMID: 39762752 PMCID: PMC11702200 DOI: 10.1186/s12864-024-11171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages. In total, 1837 lncRNAs have been identified in B. cinerea. A large number of lncRNAs were found to be antisense to mRNAs, forming 743 sense-antisense pairs, of which 55 antisense lncRNAs and their respective sense transcripts were induced in parallel as the infection stage. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. In addition, we found the alternative splicing events occurred in lncRNA. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in the infection stage and provide fundamental resources for studying infection stage-induced lncRNAs.
Collapse
Affiliation(s)
- Haojie Shi
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guijuan Ding
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yun Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaqi Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Climent-Cantó P, Subirana-Granés M, Ramos-Rodríguez M, Dámaso E, Marín F, Vara C, Pérez-González B, Raurell H, Munté E, Soto JL, Alonso Á, Shin G, Ji H, Hitchins M, Capellá G, Pasquali L, Pineda M. Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations. Clin Epigenetics 2024; 16:193. [PMID: 39741348 DOI: 10.1186/s13148-024-01770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/30/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations. We aimed to characterise genetic and gene regulatory changes associated with primary CME to elucidate possible underlying molecular mechanisms. METHODS Four carriers of a primary CME and three non-methylated relatives carrying the same genetic haplotype were included. Genetic alterations were sought using linked-read WGS in blood DNA. Transcriptome (RNA-seq), chromatin landscape (ATAC-seq, H3K27ac CUT&Tag) and 3D chromatin interactions (UMI-4C) were studied in lymphoblastoid cell lines. The MLH1 promoter SNP (c.-93G > A, rs1800734) was used as a reporter in heterozygotes to assess allele-specific chromatin conformation states. RESULTS MLH1 epimutant alleles presented a closed chromatin conformation and decreased levels of H3K27ac, as compared to the unmethylated allele. Moreover, the epimutant MLH1 promoter exhibited differential 3D chromatin contacts, including lost and gained interactions with distal regulatory elements. Of note, rare genetic alterations potentially affecting transcription factor binding sites were found in the promoter-contacting region of CME carriers. CONCLUSIONS Primary CMEs present allele-specific differential interaction patterns with neighbouring genes and regulatory elements. The role of the identified cis-regulatory regions in the molecular mechanism underlying the origin and maintenance of CME requires further investigation.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - Marc Subirana-Granés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Mireia Ramos-Rodríguez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Estela Dámaso
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Molecular Genetics Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), University Hospital of Elche, 03203, Elche, Alicante, Spain
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - Fátima Marín
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - Covadonga Vara
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - Beatriz Pérez-González
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Helena Raurell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Elisabet Munté
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain
| | - José Luis Soto
- Molecular Genetics Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), University Hospital of Elche, 03203, Elche, Alicante, Spain
| | - Ángel Alonso
- Genomics Medicine Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008, Pamplona, Spain
| | - GiWon Shin
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Hanlee Ji
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Megan Hitchins
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gabriel Capellá
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain.
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Marta Pineda
- Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.
- Hereditary Cancer Program, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
4
|
Takeda JI, Okamoto T, Masuda A. Evolutionarily Developed Alternatively Spliced Exons Containing Translation Initiation Sites. Cells 2024; 14:11. [PMID: 39791712 DOI: 10.3390/cells14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information. The analysis showed that more than 5% of cassette exons contain translation initiation codons (alternatively skipped exons harboring a 5' untranslated region and coding region, 5UC-ASEs) although their skipping causes the deletion of translation initiation sites essential for protein synthesis. The splicing of 5UC-ASEs is under the repressive control of MATR3, a DNA/RNA-binding protein associated with neurodegeneration, and is distinctly regulated particularly in the human brain, muscle, and testis. Interestingly, MATR3 represses its own translation by skipping a 5UC-ASE in MATR3 to autoregulate its expression level. 5UC-ASEs are larger than other types of alternative exons. Furthermore, evolutionary analysis revealed that 5UC-ASEs have already appeared in cartilaginous fishes, have increased in amphibians, and are concentrated in the genes involved in transcription in mammals. Taken together, our analysis identified a unique set of alternative exons, 5UC-ASEs, that have evolutionarily acquired a repression mechanism for gene expression through association with MATR3.
Collapse
Affiliation(s)
- Jun-Ichi Takeda
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takaaki Okamoto
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
- Academia-Industry Collaboration Platform for Cultivating Medical AI Leaders (AI-MAILs), Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Akio Masuda
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Tian K, Zhang C, Gao C, Shi J, Xu C, Xie W, Yan S, Xiao C, Jia X, Tian Y, Sun G, Kang X, Wang K, Li W. Full-length transcriptome sequencing of seven tissues of GuShi chickens. Poult Sci 2024; 104:104697. [PMID: 39721272 DOI: 10.1016/j.psj.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Chickens are vital economic poultry and serve as exemplary models for avian research. The incomplete reference genome of chickens and the limited availability of full-length cDNA impede the identification of alternatively spliced transcripts, thereby delaying many fundamental chicken studies. We utilized PacBio Iso-seq technology on various chicken tissues, obtaining 170,162 full-length transcripts through comprehensive transcriptome sequencing and annotation. Of the identified transcripts, 38,925 lncRNAs were predicted and categorized into five models. Our data significantly increases the known number of chickens' lncRNAs and alternatively spliced transcripts are crucial in enhancing current genome annotations. Furthermore, this data will be invaluable for functional studies of other avian species.
Collapse
Affiliation(s)
- Kaiyuan Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Chenxi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Chaoqun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Junlai Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Chunhong Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Wanying Xie
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Sensen Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Chengpeng Xiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Xintao Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Yixiang Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China.; The Shennong Laboratory, Zhengzhou 450002, PR China..
| |
Collapse
|
6
|
Jiang C, Li P, Cao H. Unveiling Tissue-Specific RNA Landscapes in Mouse Organs During Fasting and Feeding Using Nanopore Direct RNA Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408054. [PMID: 39680663 DOI: 10.1002/advs.202408054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Understanding tissue-specific RNA landscapes is essential for uncovering the functional mechanisms of key organs in mammals. However, current knowledge remains limited, as short-read RNA sequencing-the predominant method for assessing gene expression-depends on incomplete gene annotations and struggles to resolve the diverse transcripts produced by genes. To address these limitations, an integrative approach combining nanopore direct RNA sequencing (DRS), ATAC-Seq, and short-read RNA-seq is used. This method enabled the analysis of RNA landscapes across major mouse organs under fasting and fed conditions, representing two extremes of the caloric cycle. This study uncovered tens of thousands of novel transcripts and identified hundreds of genes with tissue-specific expression, revealing additional layers of regulated pathways within each organ that conventional short-read RNA-seq cannot resolve. By profiling transcript expression across multiple organs under identical conditions, it is conducted comparative analyses exposing significant differences in transcript isoforms and regulations. Moreover, nanopore DRS revealed dynamic changes in poly(A) tail length and m6A modifications of transcripts, many regulated in a tissue-specific manner. These changes likely contribute to functional differentiation and metabolic specialization of various organs. Collectively, this findings reveal previously unrecognized layers of gene regulation, offering new insights into the metabolic basis of organ function.
Collapse
Affiliation(s)
- Chengfei Jiang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Schiksnis EC, Nicastro IA, Pasquinelli AE. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. Nucleic Acids Res 2024; 52:13896-13913. [PMID: 39558169 DOI: 10.1093/nar/gkae1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing (RNA-seq) and Oxford Nanopore Technologies direct RNA-seq over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity. Finally, we identify thousands of inosine and hundreds of pseudouridine edits genome-wide. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C Schiksnis
- Department of Molecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A Nicastro
- Department of Molecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Department of Molecular Biology, School of Biological Sciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
8
|
Li Y, Huang J, Li LF, Guo P, Wang Y, Cushman SA, Shang FD. Roles and regulatory patterns of protein isoforms in plant adaptation and development. THE NEW PHYTOLOGIST 2024. [PMID: 39645578 DOI: 10.1111/nph.20327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Protein isoforms (PIs) play pivotal roles in regulating plant growth and development that confer adaptability to diverse environmental conditions. PIs are widely present in plants and generated through alternative splicing (AS), alternative polyadenylation (APA), alternative initiation (AI), and ribosomal frameshifting (RF) events. The widespread presence of PIs not only significantly increases the complexity of genomic information but also greatly enriches regulatory networks and enhances their flexibility. PIs may also play important roles in phenotypic diversity, ecological niche differentiation, and speciation, thereby increasing the dimensions of research in molecular ecology. However, PIs pose new challenges for the quantitative analysis, annotation, and identification of genetic regulatory mechanisms. Thus, focus on PIs make genomic and epigenomic studies both more powerful and more challenging. This review summarizes the origins, functions, regulatory patterns of isoforms, and the challenges they present for future research in molecular ecology and molecular biology.
Collapse
Affiliation(s)
- Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot, 010022, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, 475004, China
| | - Lin-Feng Li
- College of Life Science and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yihan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Samuel A Cushman
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX5QL, UK
| | - Fu-De Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
9
|
Kurzynska A, Mierzejewski K, Golubska M, Jastrzebski JP, Bogacka I. Immunomodulatory dynamics in the porcine myometrium: global transcriptome analysis, including the effects of PPARγ ligands. BMC Genomics 2024; 25:1183. [PMID: 39639230 PMCID: PMC11619573 DOI: 10.1186/s12864-024-11083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The myometrium is involved in many processes during pregnancy and the estrous/menstrual cycle. Peroxisome proliferator-activated receptors (PPARs) can be regulators of the processes occurring in the myometrium. In the present study, we determined the global transcriptome profile of the porcine myometrium during the peri-implantation period and the late luteal phase of the estrous cycle. In addition, we investigated for the first time the influence of PPARγ ligands on the transcriptome profile. RESULTS The myometrium of gilts (n = 3) was collected on days 10-11 and 14-15 of pregnancy and on the corresponding days of the estrous cycle. The expression of PPARγ was confirmed in the tissue. Based on the mRNA level, further studies were conducted on myometrial explants obtained from pigs at days 14-15 of pregnancy and the corresponding days of the estrous cycle. The tissue sections were incubated in vitro for 6 h in the presence of a PPARγ agonist, pioglitazone (P; 10 µM), or antagonist, T0070907 (T; 1 µM). To identify the transcription profile of the myometrium, RNA-Seq was performed on the NovaSeq 6000 Illumina platform. This study identified 1082 differentially expressed genes (DEGs; 609 upregulated and 473 downregulated) in the porcine myometrium on days 14-15 of pregnancy compared with the corresponding days of the estrous cycle. During pregnancy, we detected 6 and 80 DEGs related to PPARγ agonist and antagonist, respectively. During the estrous cycle, we identified 4 and 17 DEGs for P and T vs. the control, respectively. CONCLUSIONS The results indicate that the DEGs are involved in a number of processes, including the immune response, prostaglandin synthesis, cell differentiation and communication. In addition, the role of PPARγ activity in regulating the expression of genes related to the immune response and hormone synthesis in the porcine myometrium has been demonstrated.
Collapse
Affiliation(s)
- Aleksandra Kurzynska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Walker L, Duncan R, Adamson B, Kendall H, Brittain N, Luzzi S, Jones D, Chaytor L, Peel S, Crafter C, O’Neill DJ, Gaughan L. Defining Splicing Factor Requirements for Androgen Receptor Variant Synthesis in Advanced Prostate Cancer. Mol Cancer Res 2024; 22:1128-1142. [PMID: 39348093 PMCID: PMC11612623 DOI: 10.1158/1541-7786.mcr-23-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Resistance to androgen receptor (AR)-targeted therapies represents a major challenge in prostate cancer. A key mechanism of treatment resistance in patients who progress to castration-resistant prostate cancer (CRPC) is the generation of alternatively spliced AR variants (AR-V). Unlike full-length AR isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents and hence drive tumor progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. Although candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for prostate cancer treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts, and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impacts, including genes associated with DNA damage response. As such, MFAP1 downregulation sensitized prostate cancer cells to ionizing radiation, suggesting that therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilized a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.
Collapse
Affiliation(s)
- Laura Walker
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Ruaridh Duncan
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Beth Adamson
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Hannah Kendall
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | | | - Sara Luzzi
- Newcastle University Biosciences Institute, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | | | - Lewis Chaytor
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Samantha Peel
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Claire Crafter
- Early Oncology, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel J. O’Neill
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Guo L, Yu H, Li Q. Sex-specific mRNA alternative splicing patterns and Dmrt1 isoforms contribute to sex determination and differentiation of oyster. Int J Biol Macromol 2024; 283:137747. [PMID: 39551309 DOI: 10.1016/j.ijbiomac.2024.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Alternative splicing (AS) of pre-mRNA is a crucial mechanism that regulates the expression of genes involved in sex determination and differentiation. Despite its importance, AS has been rarely characterized in molluscs. In this study, PacBio Iso-Seq was employed to obtain full-length transcriptome and unveil AS patterns of gonads in the Pacific oyster Crassostrea gigas. A total of 24,783 AS events were identified across 6259 genes, with many enriched in phosphorylation-related processes. Splicing factors were found to drive a high frequency of AS events in gonads. Significant sex-based differences in isoform abundance and the incidence of AS events were observed. Comparative analysis of mature female and male gonads revealed a subset of overlapping differential alternative splicing genes and differentially expressed genes enriched in processes related to microtubule function and cell motility. In addition, the expression levels of sex-biased genes were found correlated with their isoform number in both female and male gonads. A novel isoform of Dmrt1 was identified with male specific expression in mature gonads. This study provides the first comprehensive understanding of full-length transcriptome and AS patterns in molluscan gonads, shedding light on the post-transcriptional regulatory mechanisms underlying sex determination and differentiation in molluscs and potentially across other animals.
Collapse
Affiliation(s)
- Lang Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
12
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
13
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Qin T, Han J, Fan C, Sun H, Rauf N, Wang T, Yin Z, Chen X. Unveiling axolotl transcriptome for tissue regeneration with high-resolution annotation via long-read sequencing. Comput Struct Biotechnol J 2024; 23:3186-3198. [PMID: 39263210 PMCID: PMC11388199 DOI: 10.1016/j.csbj.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Axolotls are known for their remarkable regeneration ability. Exploring their transcriptome provides insight into regenerative mechanisms. However, the current annotation of the axolotl transcriptome is limited, leaving the role of unannotated transcripts in regeneration unknown. To discourse this challenge, we exploited long-read sequencing technology, which enables direct observation of full-length RNA transcripts, greatly enhancing the coverage and accuracy of axolotl transcriptome annotation. By utilizing this method, we identified 222 novel gene loci and 4775 novel transcripts, which were quantified using short-read sequencing data. Through the inclusive analysis, we discovered novel homologs, potential functional proteins, noncoding RNAs, and alternative splicing events in key regeneration pathways. In particular, we identified novel transcripts with high protein-coding potential implicated in cell cycle regulation and musculoskeletal development, and regeneration were identified. Interestingly, alternative splice variants were also detected across diverse pathways critical to regeneration. This specifies that these novel transcripts potentially play vital roles underpinning the robust regenerative capacities of axolotls. Single-cell transcriptomic analysis further revealed these isoforms to predominantly exist in axolotl limb chondrocytes and mature tissue cell populations. Overall, the findings significantly advanced consideration of the axolotl transcriptome and provided a new perspective for understanding the mechanisms of regenerative abilities of axolotls.
Collapse
Affiliation(s)
- Tian Qin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jie Han
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunmei Fan
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Heng Sun
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Naveed Rauf
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
15
|
Ciccolella S, Cozzi D, Della Vedova G, Kuria SN, Bonizzoni P, Denti L. Differential quantification of alternative splicing events on spliced pangenome graphs. PLoS Comput Biol 2024; 20:e1012665. [PMID: 39652592 DOI: 10.1371/journal.pcbi.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Pangenomes are becoming a powerful framework to perform many bioinformatics analyses taking into account the genetic variability of a population, thus reducing the bias introduced by a single reference genome. With the wider diffusion of pangenomes, integrating genetic variability with transcriptome diversity is becoming a natural extension that demands specific methods for its exploration. In this work, we extend the notion of spliced pangenomes to that of annotated spliced pangenomes; this allows us to introduce a formal definition of Alternative Splicing (AS) events on a graph structure. To investigate the usage of graph pangenomes for the quantification of AS events across conditions, we developed pantas, the first pangenomic method for the detection and differential analysis of AS events from short RNA-Seq reads. A comparison with state-of-the-art linear reference-based approaches proves that pantas achieves competitive accuracy, making spliced pangenomes effective for conducting AS events quantification and opening future directions for the analysis of population-based transcriptomes.
Collapse
Affiliation(s)
- Simone Ciccolella
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Davide Cozzi
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | | | | | - Paola Bonizzoni
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Luca Denti
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
16
|
Wu J, Liu S, Jiang D, Zhou Y, Jiang H, Xiao X, Zha B, Fang Y, Huang J, Hu X, Mao H, Liu S, Chen B. Exploring Gene Expression and Alternative Splicing in Duck Embryonic Myoblasts via Full-Length Transcriptome Sequencing. Vet Sci 2024; 11:601. [PMID: 39728941 DOI: 10.3390/vetsci11120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024] Open
Abstract
The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development. We detected 3653 differentially expressed genes and 2246 instances of alternative splicing, with key genes involved in essential pathways, such as ECM-receptor interaction and Notch signaling, prominently featured. Additionally, we constructed a protein-protein interaction network that highlighted critical regulators-MYOM3, MYL2, MYL1, TNNI2, and ACTN2-associated with the processes of proliferation and differentiation in myoblasts. This extensive transcriptomic investigation not only sheds light on the intricate molecular mechanisms driving skeletal muscle development in ducks but also provides significant insights for future breeding strategies aimed at enhancing the efficiency of duck production. The results emphasize the efficacy of ONT sequencing in uncovering complex regulatory networks within avian species, ultimately contributing to progress in animal husbandry.
Collapse
Affiliation(s)
- Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongcheng Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyun Xiao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Boqian Zha
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yukai Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Zhang W, Guenther A, Gao Y, Ullrich K, Huettel B, Ahmad A, Duan L, Wei K, Tautz D. Full-length RNA transcript sequencing traces brain isoform diversity in house mouse natural populations. Genome Res 2024; 34:2118-2132. [PMID: 39288994 DOI: 10.1101/gr.279166.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The ability to generate multiple RNA transcript isoforms from the same gene is a general phenomenon in eukaryotes. However, the complexity and diversity of alternative isoforms in natural populations remain largely unexplored. Using a newly developed full-length transcript enrichment protocol with 5' CAP selection, we sequenced full-length RNA transcripts of 48 individuals from outbred populations and subspecies of Mus musculus, and from the closely related sister species Mus spretus and Mus spicilegus as outgroups. The data set represents the most extensive full-length high-quality isoform catalog at the population level to date. In total, we reliably identify 117,728 distinct isoforms, of which only 51% were previously annotated. We show that the population-specific distribution pattern of isoforms is phylogenetically informative and reflects the segregating single nucleotide polymorphism (SNP) diversity between the populations. We find that ancient housekeeping genes are a major source of the overall isoform diversity, and that the generation of alternative first exons plays a major role in generating new isoforms. Given that our data allow us to distinguish between population-specific isoforms and isoforms that are conserved across multiple populations, it is possible to refine the annotation of the reference mouse genome to a set of about 40,000 isoforms that should be most relevant for comparative functional analysis across species.
Collapse
Affiliation(s)
- Wenyu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China;
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany
| | - Anja Guenther
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany
- Research Group Behavioral Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany
| | - Yuanxiao Gao
- School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kristian Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany
| | - Bruno Huettel
- Max-Planck-Genome-Centre Cologne, MPI for Plant Breeding Research, Cologne 50829, Germany
| | - Aftab Ahmad
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Duan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Kaizong Wei
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen 24306, Germany;
| |
Collapse
|
18
|
Feng P, Tian Y, Chen W. Inferring causal relationships among histone modifications in exon skipping event. Methods 2024; 232:89-95. [PMID: 39528091 DOI: 10.1016/j.ymeth.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Alternative splicing is a crucial process of gene expression. Over 90% multi-exonic genes in human genome undergo alternative splicing. Although the splicing code has been proposed, it still couldn't satisfactorily explain the tissue-specific alternative splicing. Results of co-transcriptional RNA processing analysis demonstrated that, except for trans- and cis-acting elements, histone modifications also play a role in alternative splicing. In the present work, we analyzed the associations among 27 kinds of histone modifications in H1 human embryonic stem cell. In order to illustrate the casual relationships between histone modification and alternative splicing, we built the Bayesian network and validated its robustness by using cross validation test. In addition to the combinatorial patterns, distinct histone modification patterns were also observed in the alternative spliced exons and surrounding intron regions, indicating that histone modifications could substantially mark alternative splicing.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuanfang Tian
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Wei Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
19
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024; 111:2458-2477. [PMID: 39383868 PMCID: PMC11568790 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
20
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
21
|
Bai X, Tang M, Hu X, Huang P, Wu Y, Chen T, He H, Xu ZF. Comparative transcriptome analysis of Cyperus esculentus and C. rotundus with contrasting oil contents in tubers defines genes and regulatory networks involved in oil accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112230. [PMID: 39154894 DOI: 10.1016/j.plantsci.2024.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Plant vegetative organs present great potential for lipid storage, with tubers of Cyperus esculentus as a unique example. To investigate the genome and transcriptomic features of C. esculentus and related species, we sequenced and assembled the C. esculentus genome at the contig level. Through a comparative study of high-quality transcriptomes across 36 tissues from high-oil and intermediate-oil C. esculentus and low-oil Cyperus rotundus, we identified potential genes and regulatory networks related to tuber oil accumulation. First, we identified tuber-specific genes in two C. esculentus cultivars. Second, genes involved in fatty acid (FA) biosynthesis, triacylglycerol synthesis, and TAG packaging presented increased activity in the later stages of tuber development. Notably, tubers with high oil contents presented higher levels of these genes than those with intermediate oil contents did, whereas tubers with low oil contents presented minimal gene expression. Notably, a large fragment of the FA biosynthesis rate-limiting enzyme-encoding gene BCCP1 was missing from the C. rotundus transcript, which might be responsible for blocking FA biosynthesis in its tubers. WGCNA pinpointed a gene module linked to tuber oil accumulation, with a coexpression network involving the transcription factors WRI1, MYB4, and bHLH68. The ethylene-related genes in this module suggest a role for ethylene signaling in oil accumulation, which is supported by the finding that ethylene (ETH) treatment increases the oil content in C. esculentus tubers. This study identified potential genes and networks associated with tuber oil accumulation in C. esculentus, highlighting the role of specific genes, transcription factors, and ethylene signaling in this process.
Collapse
Affiliation(s)
- Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| | - Xiaodi Hu
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Tao Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
22
|
Rogalska ME, Mancini E, Bonnal S, Gohr A, Dunyak BM, Arecco N, Smith PG, Vaillancourt FH, Valcárcel J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024; 386:551-560. [PMID: 39480945 DOI: 10.1126/science.adn8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
The spliceosome is the complex molecular machinery that sequentially assembles on eukaryotic messenger RNA precursors to remove introns (pre-mRNA splicing), a physiologically regulated process altered in numerous pathologies. We report transcriptome-wide analyses upon systematic knock down of 305 spliceosome components and regulators in human cancer cells and the reconstruction of functional splicing factor networks that govern different classes of alternative splicing decisions. The results disentangle intricate circuits of splicing factor cross-regulation, reveal that the precise architecture of late-assembling U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) complexes regulates splice site pairing, and discover an unprecedented division of labor among protein components of U1 snRNP for regulating exon definition and alternative 5' splice site selection. Thus, we provide a resource to explore physiological and pathological mechanisms of splicing regulation.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Liu K, Xie N. Full-length transcriptome assembly of black amur bream (Megalobrama terminalis) as a reference resource. Mol Biol Rep 2024; 51:1101. [PMID: 39470845 DOI: 10.1007/s11033-024-10056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis. METHODS AND RESULTS We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs. CONCLUSIONS The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| |
Collapse
|
24
|
Li R, Hu Y, Wang X, Liu C, Huang G. Full-length transcriptome characterization and analysis of Carrizo Citrange and molecular insights into pathogen defense. Mol Genet Genomics 2024; 299:104. [PMID: 39467857 DOI: 10.1007/s00438-024-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Citrus huanglongbing (HLB) is a major challenge that impacts the flourishing of the citrus industry. Therefore, analyzing the genomic information of HLB-resistant or tolerant citrus resources is crucial for breeding HLB-resistant citrus varieties. The Carrizo citrange, a hybrid of Citrus sinensis and Poncirus trifoliata, plays a pivotal role in citrus cultivation. However, its genetic explorations are difficult due to the absence of a reference genome or full-length transcriptome. In order to enhance our understanding of the genetic information of citrange, we conducted a full-length transcriptomic sequencing of multiple tissues from the Carrizo citrange using the PacBio Sequel II platform. Moreover, we performed gene ontology (GO) annotation, gene functional annotation, simple sequence repeats (SSR) types analysis, as well as identification of lncRNAs, alternative splicing events, and analysis of pathogen defense-related genes. Results showed that a total of 43,452 isoforms were generated, with 43,307 of them being annotated. GO annotation indicated the involvement of these isoforms in various biological processes, cellular components, and molecular functions. The coding sequence length of the isoforms ranged from 1,000 to 4,000 base pairs (bp). Moreover, we have discovered 54 varieties of transcription factors and regulators, along with 16 classifications of genes associated with resistance. Among all types of SSRs, trimer type SSRs were the most abundant. 130 lncRNAs were predicted to be highly reliable in the isoforms of the Carrizo citrange, with alternative splicing events identified, and the most frequent being retained intron. The analysis of gene family expansion and contraction revealed a significant increase in pathogen defense-related genes within the Carrizo citrange. The results of this study will be of great value for future investigations into gene function in citrange and for expanding the genetic pool for breeding citrus varieties resistant or tolerant to HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Chang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| |
Collapse
|
25
|
Wang Y, Li X, Lu W, Li F, Yao L, Liu Z, Shi H, Zhang W, Bai Y. Full-length circRNA sequencing method using low-input RNAs and profiling of circRNAs in MPTP-PD mice on a nanopore platform. Analyst 2024; 149:5118-5130. [PMID: 39240088 DOI: 10.1039/d4an00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Considering the importance of accurate information of full-length (FL) transcripts in functional analysis, researchers prefer to develop new sequencing methods based on third-generation sequencing (TGS) rather than short-read sequencing. Several FL circRNA sequencing strategies have been developed. However, the current methods are inapplicable to low-biomass samples, since a large amount of total RNAs are acquired for circRNA enrichment before library preparation. In this work, we developed an effective method to detect FL circRNAs from a nanogram level (1-100 ng) of total RNAs based on a nanopore platform. Additionally, prior to the library preparation process, we added a series of 24 nt barcodes for each sample to reduce the cost and operating time. Using this method, we profiled circRNA expression in the striatum, hippocampus and cerebral cortex of a Parkinson's disease (PD) mouse model. Over 6% of reads were effective for FL circRNA identification in most datasets. Notably, a reduction in the RNA initial input resulted in a lower correlation between replicates and the detection efficiency for longer circRNA, but the lowest input (1 ng) was able to detect numerous FL circRNAs. Next, we systematically identified over 263 934 circRNAs in PD and healthy mice using the lower-input FL sequencing method, some of which came from 50.52% of PD-associated genes. Moreover, significant changes were observed in the circRNA expression pattern at an isoform level, and high-confidence protein translation evidence was predicted. Overall, we developed an effective method to characterize FL circRNAs from low-input samples and provide a comprehensive insight into the biological function of circRNAs in PD at an isoform level.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Lingsong Yao
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhiyu Liu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Huajuan Shi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
26
|
Montero-Hidalgo AJ, Jiménez-Vacas JM, Gómez-Gómez E, Porcel-Pastrana F, Sáez-Martínez P, Pérez-Gómez JM, Fuentes-Fayos AC, Blázquez-Encinas R, Sánchez-Sánchez R, González-Serrano T, Castro E, López-Soto PJ, Carrasco-Valiente J, Sarmento-Cabral A, Martinez-Fuentes AJ, Eyras E, Castaño JP, Sharp A, Olmos D, Gahete MD, Luque RM. SRSF6 modulates histone-chaperone HIRA splicing to orchestrate AR and E2F activity in prostate cancer. SCIENCE ADVANCES 2024; 10:eado8231. [PMID: 39356765 PMCID: PMC11446284 DOI: 10.1126/sciadv.ado8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Despite novel therapeutic strategies, advanced-stage prostate cancer (PCa) remains highly lethal, pointing out the urgent need for effective therapeutic strategies. While dysregulation of the splicing process is considered a cancer hallmark, the role of certain splicing factors remains unknown in PCa. This study focuses on characterizing the levels and role of SRSF6 in this disease. Comprehensive analyses of SRSF6 alterations (copy number/mRNA/protein) were conducted across eight well-characterized PCa cohorts and the Hi-MYC transgenic model. SRSF6 was up-regulated in PCa samples, correlating with adverse clinical parameters. Functional assays, both in vitro (cell proliferation, migration, colony, and tumorsphere formation) and in vivo (xenograft tumors), demonstrated the impact of SRSF6 modulation on critical cancer hallmarks. Mechanistically, SRSF6 regulates the splicing pattern of the histone-chaperone HIRA, consequently affecting the activity of H3.3 in PCa and breast cancer cell models and disrupting pivotal oncogenic pathways (AR and E2F) in PCa cells. These findings underscore SRSF6 as a promising therapeutic target for PCa/advanced-stage PCa.
Collapse
Affiliation(s)
- Antonio J. Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
- Institute of Cancer Research, London, UK
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Jesús M. Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Biomedical Research Institute of Málaga, Málaga, Spain
| | - Pablo J. López-Soto
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Department of Nursing, Pharmacology, and Physiotherapy, University of Cordoba, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J. Martinez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| |
Collapse
|
27
|
Siachisumo C, Luzzi S, Aldalaqan S, Hysenaj G, Dalgliesh C, Cheung K, Gazzara MR, Yonchev ID, James K, Kheirollahi Chadegani M, Ehrmann IE, Smith GR, Cockell SJ, Munkley J, Wilson SA, Barash Y, Elliott DJ. An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression. eLife 2024; 12:RP89705. [PMID: 39356106 PMCID: PMC11446547 DOI: 10.7554/elife.89705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Collapse
Affiliation(s)
- Chileleko Siachisumo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Sara Luzzi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Saad Aldalaqan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - Ivaylo D Yonchev
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Katherine James
- School of Computing, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Ingrid E Ehrmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Jennifer Munkley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Stuart A Wilson
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - David J Elliott
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
28
|
Alors‐Pérez E, Blázquez‐Encinas R, Moreno‐Montilla MT, García‐Vioque V, Jiménez‐Vacas JM, Mafficini A, González‐Borja I, Luchini C, Sánchez‐Hidalgo JM, Sánchez‐Frías ME, Pedraza‐Arevalo S, Romero‐Ruiz A, Lawlor RT, Viúdez A, Gahete MD, Scarpa A, Arjona‐Sánchez Á, Luque RM, Ibáñez‐Costa A, Castaño JP. Spliceosomic dysregulation in pancreatic cancer uncovers splicing factors PRPF8 and RBMX as novel candidate actionable targets. Mol Oncol 2024; 18:2524-2540. [PMID: 38790138 PMCID: PMC11459039 DOI: 10.1002/1878-0261.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.
Collapse
Affiliation(s)
- Emilia Alors‐Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Ricardo Blázquez‐Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - María Trinidad Moreno‐Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Víctor García‐Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Juan Manuel Jiménez‐Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Andrea Mafficini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Iranzu González‐Borja
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
| | - Claudio Luchini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Juan M. Sánchez‐Hidalgo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Marina E. Sánchez‐Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Pathology ServiceReina Sofia University HospitalCórdobaSpain
| | - Sergio Pedraza‐Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | | | - Rita T. Lawlor
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
- ICON plcPamplonaSpain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Aldo Scarpa
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Álvaro Arjona‐Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Alejandro Ibáñez‐Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| |
Collapse
|
29
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615242. [PMID: 39386569 PMCID: PMC11463404 DOI: 10.1101/2024.09.26.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2+ tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Diogo F. T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
30
|
Golubska M, Paukszto Ł, Kurzyńska A, Mierzejewski K, Gerwel Z, Bogacka I. PPAR beta/delta regulates the immune response mechanisms in the porcine endometrium during LPS-induced inflammation - An in vitro study. Theriogenology 2024; 226:130-140. [PMID: 38878465 DOI: 10.1016/j.theriogenology.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Inflammation in the reproductive tract has become a serious threat to animal fertility. Recently, the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the context of reproduction and the inflammatory response has been highlighted, but the role of PPARβ/δ has not been fully elucidated. The aim of the present study was to investigate the in vitro effect of PPARβ/δ ligands (agonist: L-165,041 and antagonist: GSK 3787) on the transcriptome profile of porcine endometrium during LPS-induced inflammation in the mid-luteal and follicular phases of the oestrous cycle (days 10-12 and 18-20, respectively) using the RNA-Seq method. During the mid-luteal phase of the oestrous cycle, the current study identified 145 and 143 differentially expressed genes (DEGs) after treatment with an agonist or antagonist, respectively. During the follicular phase of the oestrous cycle, 55 and 207 DEGs were detected after treatment with an agonist or antagonist, respectively. The detected DEGs are engaged in the regulation of various processes, such as the complement and coagulation cascade, NF-κB signalling pathway, or the pathway of 15-eicosatetraenoic acid derivatives synthesis. The results of the current study indicate that PPARβ/δ ligands are involved in the control of the endometrial inflammatory response.
Collapse
Affiliation(s)
- Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zuzanna Gerwel
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
31
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
32
|
Liu Z, Yang B, Zhang T, Sun H, Mao L, Yang S, Dai X, Suo H, Zhang Z, Chen W, Chen H, Xu W, Dossa K, Zou X, Ou L. Full-length transcriptome sequencing of pepper fruit during development and construction of a transcript variation database. HORTICULTURE RESEARCH 2024; 11:uhae198. [PMID: 39257544 PMCID: PMC11387007 DOI: 10.1093/hr/uhae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 09/12/2024]
Abstract
Chili pepper is an important spice and a model plant for fruit development studies. Large-scale omics information on chili pepper plant development continues to be gathered for understanding development as well as capsaicin biosynthesis. In this study, a full-spectrum transcriptome data of eight chili pepper tissues at five growth stages using the Oxford Nanopore long-read sequencing approach was generated. Of the 485 351 transcripts, 35 336 were recorded as reference transcripts (genes), while 450 015 were novel including coding, lnc, and other non-coding RNAs. These novel transcripts belonged to unknown/intergenic (347703), those retained introns (26336), and had multi-exons with at least one junction match (20333). In terms of alternative splicing, retained intron had the highest proportion (14795). The number of tissue-specific expressed transcripts ranged from 22 925 (stem) to 40 289 (flower). The expression changes during fruit and placenta development are discussed in detail. Integration of gene expression and capsaicin content quantification throughout the placental development clarifies that capsaicin biosynthesis in pepper is mainly derived from valine, leucin, and isoleucine degradation as well as citrate cycle and/or pyrimidine metabolism pathways. Most importantly, a user-friendly Pepper Full-Length Transcriptome Variation Database (PFTVD 1.0) (http://pepper-database.cn/) has been developed. PFTVD 1.0 provides transcriptomics and genomics information and allows users to analyse the data using various tools implemented. This work highlights the potential of long-read sequencing to discover novel genes and transcripts and their diversity in plant developmental biology.
Collapse
Affiliation(s)
- Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | | | - Hao Sun
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lianzhen Mao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Huan Suo
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Wangjie Xu
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, 97170 Petit Bourg, Guadeloupe, France
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
33
|
Yu R, Xue H, Lin W, Collins F, Mount S, Cao K. Progerin mRNA expression in non-HGPS patients is correlated with widespread shifts in transcript isoforms. NAR Genom Bioinform 2024; 6:lqae115. [PMID: 39211333 PMCID: PMC11358823 DOI: 10.1093/nargab/lqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease caused primarily by a C1824T mutation in LMNA. This mutation activates a cryptic splice donor site, producing a lamin variant called progerin. Interestingly, progerin has also been detected in cells and tissues of non-HGPS patients. Here, we investigated progerin expression using publicly available RNA-seq data from non-HGPS patients in the GTEx project. We found that progerin expression is present across all tissue types in non-HGPS patients and correlated with telomere shortening in the skin. Transcriptome-wide correlation analyses suggest that the level of progerin expression is correlated with switches in gene isoform expression patterns. Differential expression analyses show that progerin expression is correlated with significant changes in genes involved in splicing regulation and mitochondrial function. Interestingly, 5' splice sites whose use is correlated with progerin expression have significantly altered frequencies of consensus trinucleotides within the core 5' splice site. Furthermore, introns whose alternative splicing correlates with progerin have reduced GC content. Our study suggests that progerin expression in non-HGPS patients is part of a global shift in splicing patterns.
Collapse
Affiliation(s)
- Reynold Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Wanru Lin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| |
Collapse
|
34
|
Miyokawa R, Sasaki E. The role of FIONA1 in alternative splicing and its effects on flowering regulation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:2055-2060. [PMID: 39056273 DOI: 10.1111/nph.19995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Ryo Miyokawa
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
35
|
Shen A, Hencel K, Parker M, Scott R, Skukan R, Adesina A, Metheringham C, Miska E, Nam Y, Haerty W, Simpson G, Akay A. U6 snRNA m6A modification is required for accurate and efficient splicing of C. elegans and human pre-mRNAs. Nucleic Acids Res 2024; 52:9139-9160. [PMID: 38808663 PMCID: PMC11347140 DOI: 10.1093/nar/gkae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.
Collapse
Affiliation(s)
- Aykut Shen
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Katarzyna Hencel
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Matthew T Parker
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robyn Scott
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberta Skukan
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | | | | | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gordon G Simpson
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Cell & Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Alper Akay
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| |
Collapse
|
36
|
Zhuo Z, Wang J, Zhang Y, Meng G. Integrative alternative splicing analysis reveals new prognosis signature in B-cell acute lymphoblastic leukemia. Int J Biol Sci 2024; 20:4496-4512. [PMID: 39247833 PMCID: PMC11380455 DOI: 10.7150/ijbs.98899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
The dysregulation of alternative splicing (AS) is increasingly recognized as a pivotal player in the pathogenesis, progression, and treatment resistance of B-cell acute lymphoblastic leukemia (B-ALL). Despite its significance, the clinical implications of AS events in B-ALL remain largely unexplored. This study developed a prognostic model based on 18 AS events (18-AS), derived from a meticulous integration of bioinformatics methodologies and advanced machine learning algorithms. The 18-AS signature observed in B-ALL distinctly categorized patients into different groups with significant differences in immune infiltration, V(D)J rearrangement, drug sensitivity, and immunotherapy outcomes. Patients classified within the high 18-AS group exhibited lower immune infiltration scores, poorer chemo- and immune-therapy responses, and worse overall survival, underscoring the model's potential in refining therapeutic strategies. To validate the clinical applicability of the 18-AS, we established an SF-AS regulatory network and identified candidate drugs. More importantly, we conducted in vitro cell proliferation assays to confirm our analysis, demonstrating that the High-18AS cell line (SUP-B15) exhibited significantly enhanced sensitivity to Dasatinib, Dovitinib, and Midostaurin compared to the Low-18AS cell line (REH). These findings reveal AS events as novel prognostic biomarkers and therapeutic targets, advancing personalized treatment strategies in B-ALL management.
Collapse
Affiliation(s)
- Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| |
Collapse
|
37
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
38
|
Yuan J, Zhuang YY, Liu X, Zhang Y, Li K, Chen ZJ, Li D, Chen H, Liang J, Yao Y, Yu X, Zhuo R, Zhao F, Zhou X, Yu X, Qu J, Su J. Exome-wide association study identifies KDELR3 mutations in extreme myopia. Nat Commun 2024; 15:6703. [PMID: 39112444 PMCID: PMC11306401 DOI: 10.1038/s41467-024-50580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Extreme myopia (EM), defined as a spherical equivalent (SE) ≤ -10.00 diopters (D), is one of the leading causes of sight impairment. Known EM-associated variants only explain limited risk and are inadequate for clinical decision-making. To discover risk genes, we performed a whole-exome sequencing (WES) on 449 EM individuals and 9606 controls. We find a significant excess of rare protein-truncating variants (PTVs) in EM cases, enriched in the retrograde vesicle-mediated transport pathway. Employing single-cell RNA-sequencing (scRNA-seq) and a single-cell polygenic burden score (scPBS), we pinpointed PI16 + /SFRP4+ fibroblasts as the most relevant cell type. We observed that KDELR3 is highly expressed in scleral fibroblast and involved in scleral extracellular matrix (ECM) organization. The zebrafish model revealed that kdelr3 downregulation leads to elongated ocular axial length and increased lens diameter. Together, our study provides insight into the genetics of EM in humans and highlights KDELR3's role in EM pathogenesis.
Collapse
Affiliation(s)
- Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - You-Yuan Zhuang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhen Ji Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - He Chen
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jiacheng Liang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Xiangyi Yu
- Institute of PSI Genomics, Wenzhou, China
| | - Ran Zhuo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fei Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangtian Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | | | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China.
- School of Biomedical Engineering, Hainan University, Haikou, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
39
|
Leung SK, Bamford RA, Jeffries AR, Castanho I, Chioza B, Flaxman CS, Moore K, Dempster EL, Harvey J, Brown JT, Ahmed Z, O'Neill P, Richardson SJ, Hannon E, Mill J. Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology. Nat Commun 2024; 15:6458. [PMID: 39095344 PMCID: PMC11297290 DOI: 10.1038/s41467-024-50486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Collapse
Affiliation(s)
- Szi Kay Leung
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Isabel Castanho
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
40
|
Song Y, Parada G, Lee JTH, Hemberg M. Mining alternative splicing patterns in scRNA-seq data using scASfind. Genome Biol 2024; 25:197. [PMID: 39075577 PMCID: PMC11285346 DOI: 10.1186/s13059-024-03323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is widely used for transcriptome profiling, but most analyses focus on gene-level events, with less attention devoted to alternative splicing. Here, we present scASfind, a novel computational method to allow for quantitative analysis of cell type-specific splicing events using full-length scRNA-seq data. ScASfind utilizes an efficient data structure to store the percent spliced-in value for each splicing event. This makes it possible to exhaustively search for patterns among all differential splicing events, allowing us to identify marker events, mutually exclusive events, and events involving large blocks of exons that are specific to one or more cell types.
Collapse
Affiliation(s)
- Yuyao Song
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Guillermo Parada
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Choi TJ, Malik A, Han SM, Kim CB. Differences in alternative splicing events in the adaptive strategies of two Daphnia galeata genotypes induced by fish kairomones. BMC Genomics 2024; 25:725. [PMID: 39060996 PMCID: PMC11282837 DOI: 10.1186/s12864-024-10643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Daphnia galeata is a suitable model organism for investigating predator-induced defense. Genes and pathways exhibiting differential expression between fish kairomone-treated and untreated groups in D. galeata have been identified. However, understanding of the significance of alternative splicing, a crucial process of the regulation of gene expression in eukaryotes, to this mechanism remains limited. This study measured life-history traits and conducted short-read RNA sequencing and long-read isoform sequencing of two Korean D. galeata genotypes (KB1 and KE2) to uncover the genetic mechanism underlying their phenotypic plasticity under predation stress. RESULTS KB1 exhibited strategies to enhance fertility and decrease body length when exposed to fish kairomones, while KE2 deployed an adaptive strategy to increase body length. Full-length transcriptomes from KB1 and KE2 yielded 65,736 and 57,437 transcripts, respectively, of which 32 differentially expressed transcripts (DETs) were shared under predation stress across both genotypes. Prominent DETs common to both genotypes were related to energy metabolism and the immune system. Additionally, differential alternative splicing (DAS) events were detected in both genotypes in response to fish kairomones. DAS genes shared between both genotypes may indicate their significant role in the post-transcriptional stress response to fish predation. Calpain-3, involved in digestion and nutrient absorption, was identified as a DAS gene in both genotypes when exposed to fish kairomones. In addition, the gene encoding thymosin beta, which is related to growth, was found to be a statistically significant DAS only in KB1, while that encoding ultraspiracle protein, also associated with growth, was only identified in KE2. Moreover, transcripts encoding proteins such as EGF-like domain-containing protein, vitellogenin fused with superoxide dismutase, and others were identified overlapping between DAS events and DETs and potentially elucidating their association with the observed phenotypic variation in each genotype. CONCLUSIONS Our findings highlight the crucial role of alternative splicing in modulating transcriptome landscape under predation stress in D. galeata, emphasizing the requirement for integrating gene expression and splicing analyses in evolutionary adaptation studies.
Collapse
Affiliation(s)
- Tae-June Choi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Korea
| | - Seung-Min Han
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Korea.
| |
Collapse
|
42
|
Shekhar MS, Katneni VK, Jangam AK, Krishnan K, Prabhudas SK, Jayaraman R, Angel JRJ, Kailasam M. Genome assembly, Full-length transcriptome, and isoform diversity of Red Snapper, Lutjanus argentimaculatus. Sci Data 2024; 11:796. [PMID: 39025998 PMCID: PMC11258364 DOI: 10.1038/s41597-024-03633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The mangrove red snapper, Lutjanus argentimaculatus, is a marine food fish of economic and aquaculture importance. The application of genomic selection-based breeding programs for this species is limited by the absence of a reference genome and transcriptome profiles. The current study attempted to fill this void by generating genomic and transcriptomic resources for red snapper. Using PacBio long reads, and Arima Hi-C linked reads, a scaffold-level genome assembly was generated for L. argentimaculatus. The assembly is of 1.03 Gb comprising of 400 scaffolds with N50 of 33.8 Mb and was assessed to be 97.2% complete upon benchmarking with BUSCO. Full-length transcriptome generated with PacBio Iso-Sequencing strategy using six tissues (muscle, gills, liver, kidney, stomach, and gonad) contained 56,515 isoforms belonging to 18,108 unique genes with N50 length of 3,973 bp. The resources generated will have potential applications in the functional studies, conservation, broodstock management and selective breeding programmes of L. argentimaculatus.
Collapse
Affiliation(s)
- Mudagandur S Shekhar
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Vinaya Kumar Katneni
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India.
| | - Ashok Kumar Jangam
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Karthic Krishnan
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Sudheesh K Prabhudas
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Roja Jayaraman
- Centre for Bioinformatics, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Jesudhas Raymond Jani Angel
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| | - Muniyandi Kailasam
- Finfish Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, No 75, Santhome High Road, MRC Nagar, Chennai, 600028, Tamil Nadu, India
| |
Collapse
|
43
|
Apostolides M, Choi B, Navickas A, Saberi A, Soto LM, Goodarzi H, Najafabadi HS. Accurate isoform quantification by joint short- and long-read RNA-sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603067. [PMID: 39026819 PMCID: PMC11257535 DOI: 10.1101/2024.07.11.603067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate quantification of transcript isoforms is crucial for understanding gene regulation, functional diversity, and cellular behavior. Existing RNA sequencing methods have significant limitations: short-read (SR) sequencing provides high depth but struggles with isoform deconvolution, whereas long-read (LR) sequencing offers isoform resolution at the cost of lower depth, higher noise, and technical biases. Addressing this gap, we introduce Multi-Platform Aggregation and Quantification of Transcripts (MPAQT), a generative model that combines the complementary strengths of different sequencing platforms to achieve state-of-the-art isoform-resolved transcript quantification, as demonstrated by extensive simulations and experimental benchmarks. By applying MPAQT to an in vitro model of human embryonic stem cell differentiation into cortical neurons, followed by machine learning-based modeling of transcript abundances, we show that untranslated regions (UTRs) are major determinants of isoform proportion and exon usage; this effect is mediated through isoform-specific sequence features embedded in UTRs, which likely interact with RNA-binding proteins that modulate mRNA stability. These findings highlight MPAQT's potential to enhance our understanding of transcriptomic complexity and underline the role of splicing-independent post-transcriptional mechanisms in shaping the isoform and exon usage landscape of the cell.
Collapse
Affiliation(s)
- Michael Apostolides
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Present address: Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Ali Saberi
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
| | - Larisa M. Soto
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, 3181 Porter Drive, Palo Alto, CA, USA
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
- McGill Centre for RNA Sciences, McGill University, Montreal, Canada
| |
Collapse
|
44
|
Donovan BT, Wang B, Garcia GR, Mount SM, Larson DR. REAL-TIME VISUALIZATION OF SPLICEOSOME ASSEMBLY REVEALS BASIC PRINCIPLES OF SPLICE SITE SELECTION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603320. [PMID: 39372787 PMCID: PMC11451613 DOI: 10.1101/2024.07.12.603320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The spliceosome is a megadalton protein-RNA complex which removes introns from pre-mRNA, yet the dynamic early assembly steps have not been structurally resolved. Specifically, how the spliceosome selects the correct 3' splice site (3'SS) amongst highly similar non-functional sites is not known. Here, we develop a kinetic model of splice site selection based on single-molecule U2AF heterodimer imaging in vitro and in vivo. The model successfully predicts alternative splicing patterns and indicates that 3'SS selection occurs while U2AF is in complex with the spliceosome, not during initial binding. This finding indicates the spliceosome operates in a 'partial' kinetic proofreading regime, catalyzed in part by the helicase DDX42, which increases selectivity to the underlying U2AF binding site while still allowing for efficient forward progression.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bixuan Wang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Gloria R Garcia
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- NIH Myeloid Malignancies Program, Bethesda, MD 20892, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- NIH Myeloid Malignancies Program, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Li F, Karimi N, Wang S, Pan T, Dong J, Wang X, Ma S, Shan Q, Liu C, Zhang Y, Li W, Feng G. mRNA isoform switches during mouse zygotic genome activation. Cell Prolif 2024; 57:e13655. [PMID: 38764347 PMCID: PMC11216927 DOI: 10.1111/cpr.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Fan Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Siqi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Tianshi Pan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
| | - Xin Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Sinan Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Qingtong Shan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
46
|
Schiksnis EC, Nicastro IA, Pasquinelli AE. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599640. [PMID: 38948813 PMCID: PMC11213008 DOI: 10.1101/2024.06.18.599640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Organismal aging is marked by decline in cellular function and anatomy, ultimately resulting in death. To inform our understanding of the mechanisms underlying this degeneration, we performed standard RNA sequencing and Nanopore direct RNA sequencing over an adult time course in Caenorhabditis elegans. Long reads allowed for identification of hundreds of novel isoforms and age-associated differential isoform accumulation, resulting from alternative splicing and terminal exon choice. Genome-wide analysis reveals a decline in RNA processing fidelity and a rise in inosine and pseudouridine editing events in transcripts from older animals. In this first map of pseudouridine modifications for C. elegans, we find that they largely reside in coding sequences and that the number of genes with this modification increases with age. Collectively, this analysis discovers transcriptomic signatures associated with age and is a valuable resource to understand the many processes that dictate altered gene expression patterns and post-transcriptional regulation in aging.
Collapse
Affiliation(s)
- Erin C. Schiksnis
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Ian A. Nicastro
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E. Pasquinelli
- Molecular Biology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
47
|
Caldi Gomes L, Hänzelmann S, Hausmann F, Khatri R, Oller S, Parvaz M, Tzeplaeff L, Pasetto L, Gebelin M, Ebbing M, Holzapfel C, Columbro SF, Scozzari S, Knöferle J, Cordts I, Demleitner AF, Deschauer M, Dufke C, Sturm M, Zhou Q, Zelina P, Sudria-Lopez E, Haack TB, Streb S, Kuzma-Kozakiewicz M, Edbauer D, Pasterkamp RJ, Laczko E, Rehrauer H, Schlapbach R, Carapito C, Bonetto V, Bonn S, Lingor P. Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target. Nat Commun 2024; 15:4893. [PMID: 38849340 PMCID: PMC11161513 DOI: 10.1038/s41467-024-49196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Oller
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mojan Parvaz
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Tzeplaeff
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marie Gebelin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Melanie Ebbing
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Holzapfel
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Serena Scozzari
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Johanna Knöferle
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Isabell Cordts
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Antonia F Demleitner
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Marcus Deschauer
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sebastian Streb
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Endre Laczko
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Paul Lingor
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
48
|
Kubota N, Chen L, Zheng S. Shiba: A unified computational method for robust identification of differential RNA splicing across platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596331. [PMID: 38895326 PMCID: PMC11185541 DOI: 10.1101/2024.05.30.596331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alternative pre-mRNA splicing (AS) is a fundamental regulatory process that generates transcript diversity and cell type variation. We developed Shiba, a robust method integrating transcript assembly, splicing event identification, read counting, and statistical analysis, to efficiently quantify exon splicing levels across various types of RNA-seq datasets. Compared to existing pipelines, Shiba excels in capturing both annotated and unannotated or cryptic differential splicing events with superior accuracy, sensitivity, and reproducibility. Furthermore, Shiba's unique consideration of junction read imbalance and exon-body read coverage reduces false positives, essential for downstream functional analyses. We have further developed scShiba for single-cell/nucleus (sc/sn) RNA-seq data, enabling the exploration of splicing variations in heterogeneous cell populations. Both simulated and real data demonstrate Shiba's robustness across multiple sample sizes, including n=1 datasets and individual cell clusters from scRNA-seq. Application of Shiba on single replicates of RNA-seq identified new AS-NMD targets, and scShiba on snRNA-seq revealed intricate temporal AS regulation in dopaminergic neurons. Both Shiba and scShiba are provided in Docker/Singularity containers and Snakemake pipeline, enhancing accessibility and reproducibility. The comprehensive capabilities of Shiba and scShiba allow systematic and robust quantification of alternative splicing events, laying a solid foundation for mechanistic exploration of functional complexity in RNA splicing.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
49
|
Tang M, Liu Y, Zhang H, Sun L, Lü P, Chen K. Comprehensive transcriptome sequencing of silkworm Midguts: Uncovering extensive isoform diversity and alternative splicing in BmNPV-Sensitive and BmNPV-resistant strains. J Invertebr Pathol 2024; 204:108104. [PMID: 38608751 DOI: 10.1016/j.jip.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The silkworm, Bombyx mori, stands out as one of the few economically valuable insects within the realm of model organisms. However, Bombyx mori nucleopolyhedrovirus (BmNPV) poses a significant threat, decreasing the quality and quantity of silkworm cocoons. Over the past few decades, a multitude of researchers has delved into the mechanisms that underlie silkworm resistance to BmNPV, employing diverse methodologies and approaching the problem from various angles. Despite this extensive research, the role of alternative splicing (AS) in the silkworm's response to BmNPV infection has been largely unexplored. This study leveraged both third-generation (Oxford Nanopore Technologies) and second-generation (Illumina) high-throughput sequencing technologies to meticulously identify and analyze AS patterns in the context of BmNPV response, utilizing two distinct silkworm strains-the susceptible strain 306 and the resistant strain NB. Consequently, we identified five crucial genes (Dsclp, LOC692903, LOC101743583, LOC101742498, LOC101743809) that are linked to the response to BmNPV infection through AS and differential expression. Additionally, a thorough comparative analysis was conducted on their diverse transcriptomic expression profiles, including alternative polyadenylation, simple sequence repeats, and transcription factors.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
50
|
Jiang J, Zhang Z, Bai Y, Wang X, Dou Y, Geng R, Wu C, Zhang H, Lu C, Gu L, Gao J. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1087-1105. [PMID: 38051011 DOI: 10.1111/jipb.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaojing Wang
- School of Life Science, Peking University, Beijing, 100871, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|