1
|
Yang T, Wang D, Luo L, Yin X, Song Z, Yang M, Zhou Y. PWOs repress gene transcription by regulating chromatin structures in Arabidopsis. Nucleic Acids Res 2024:gkae958. [PMID: 39526374 DOI: 10.1093/nar/gkae958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
PWWP-DOMAIN INTERACTOR OF POLYCOMBS (PWO) family proteins play a vital role in regulating plant development. However, the molecular mechanisms of how PWOs regulate chromatin structure is elusive. Our data show that the PWO1 binding sites are enriched with positive modifications but exclusive with H3K27me3. Moreover, PWO1 binds to the H3K27me3-enriched compartment domain (H3K27me3-CD) boundary regions, and functions to maintain the boundary strength. Meanwhile, we found that PWOs and Polycomb repressive complex 2 (PRC2) function parallelly in maintaining H3K27me3-CDs' structure. Loss of either PWOs or PRC2 leads to H3K27me3-CD strength reduction, B to A compartment switching as well as the H3K27me3-CD relocating away from the nuclear periphery. Additionally, PWOs and lamin-like proteins collaborate to regulate multiple chromatin structures to repress gene transcription within H3K27me3-CDs. We conclude that PWOs maintain H3K27me3-CDs' repressive state and regulate their spatial position in the nucleus.
Collapse
Affiliation(s)
- Tingting Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Lingxiao Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Zhihan Song
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
2
|
Göbel AM, Zhou S, Wang Z, Tzourtzou S, Himmelbach A, Zheng S, Pradillo M, Liu C, Jiang H. Mutations of PDS5 genes enhance TAD-like domain formation Arabidopsis thaliana. Nat Commun 2024; 15:9308. [PMID: 39468060 PMCID: PMC11519323 DOI: 10.1038/s41467-024-53760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
In eukaryotes, topologically associating domains (TADs) organize the genome into functional compartments. While TAD-like structures are common in mammals and many plants, they are challenging to detect in Arabidopsis thaliana. Here, we demonstrate that Arabidopsis PDS5 proteins play a negative role in TAD-like domain formation. Through Hi-C analysis, we show that mutations in PDS5 genes lead to the widespread emergence of enhanced TAD-like domains throughout the Arabidopsis genome, excluding pericentromeric regions. These domains exhibit increased chromatin insulation and enhanced chromatin interactions, without significant changes in gene expression or histone modifications. Our results suggest that PDS5 proteins are key regulators of genome architecture, influencing 3D chromatin organization independently of transcriptional activity. This study provides insights into the unique chromatin structure of Arabidopsis and the broader mechanisms governing plant genome folding.
Collapse
Affiliation(s)
- Anna-Maria Göbel
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Sida Zhou
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhidan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Sofia Tzourtzou
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Shiwei Zheng
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, Spain
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart, Germany.
| | - Hua Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany.
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Khadka J, Trishla VS, Sannidhi S, Singiri JR, Grandhi R, Pesok A, Novoplansky N, Adler-Agmon Z, Grafi G. Revealing cis- and trans-regulatory elements underlying nuclear distribution and function of the Arabidopsis histone H2B.8 variant. BMC PLANT BIOLOGY 2024; 24:811. [PMID: 39198770 PMCID: PMC11351261 DOI: 10.1186/s12870-024-05532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The H2B.8 variant has been diverged from other variants by its extended N-terminal region that possesses a conserved domain. We generated transgenic Arabidopsis plants expressing H2B.9 (class I), H2B.5 (class II) and H2B.8 (class III) fused to GFP under the 35 S promoter and studied their nuclear distribution and function. H2B.8-GFP showed peculiar nuclear localization at chromocenters in all cell types examined, while H2B.5-GFP and H2B.9-GFP displayed various patterns often dependent on cell types. H2B variants faithfully assembled onto nucleosomes showing no effect on nuclear organization; H2B.8-GFP appeared as three distinct isoforms in which one isoform appeared to be SUMOylated. Interestingly, transient expression in protoplasts revealed H2B.8 nuclear localization distinct from transgenic plants as it was restricted to the nuclear periphery generating a distinctive ring-like appearance accompanied by nuclear size reduction. This unique appearance was abolished by deletion of the N-terminal conserved domain or when H2B.8-GFP is transiently expressed in ddm1 protoplasts. GFP-TRAP-coupled proteome analysis uncovered H2B.8-partner proteins including H2A.W.12, which characterizes heterochromatin. Thus, our data highlight H2B.8 as a unique variant evolved in angiosperms to control chromatin compaction/aggregation and uncover cis- and trans-regulatory elements underlying its nuclear distribution and function.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | - Vikas S Trishla
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Sasank Sannidhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Anat Pesok
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Zachor Adler-Agmon
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Morris Kahn Marine Research Station, University of Haifa, Haifa, 3498838, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
4
|
Yin C, Wang Y, Wang P, Chen G, Sun A, Fang Y. The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance. PLANTA 2024; 260:62. [PMID: 39066892 DOI: 10.1007/s00425-024-04489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
The Arabidopsis CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2-CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the crwn1 crwn2 mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanda Wang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Wang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxin Chen
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aiqing Sun
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuda Fang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Choi J, Gehring M. CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:213-228. [PMID: 38715414 PMCID: PMC11162254 DOI: 10.1111/nph.19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.
Collapse
Affiliation(s)
- Junsik Choi
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
- Dept. of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
6
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Dupouy G, Dong Y, Herzog E, Chabouté ME, Berr A. Nuclear envelope dynamics in connection to chromatin remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:963-981. [PMID: 37067011 DOI: 10.1111/tpj.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| |
Collapse
|
8
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
9
|
He S, Yu Y, Wang L, Zhang J, Bai Z, Li G, Li P, Feng X. Linker histone H1 drives heterochromatin condensation via phase separation in Arabidopsis. THE PLANT CELL 2024; 36:1829-1843. [PMID: 38309957 PMCID: PMC11062459 DOI: 10.1093/plcell/koae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/05/2024]
Abstract
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Liang Wang
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhengyong Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
10
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. Nuclear lamina component KAKU4 regulates chromatin states and transcriptional regulation in the Arabidopsis genome. BMC Biol 2024; 22:80. [PMID: 38609974 PMCID: PMC11015597 DOI: 10.1186/s12915-024-01882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. KAKU4 regulates leaf senescence through modulation of H3K27me3 deposition in the Arabidopsis genome. BMC PLANT BIOLOGY 2024; 24:177. [PMID: 38448830 PMCID: PMC10919013 DOI: 10.1186/s12870-024-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Lamins are the major components of the nuclear lamina, which regulate chromatin structure and gene expression. KAKU4 is a unique nuclear lamina component in the nuclear periphery, modulates nuclear shape and size in Arabidopsis. The knowledge about the regulatory role of KAKU4 in leaf development remains limited. Here we found that knockdown of KAKU4 resulted in an accelerated leaf senescence phenotype, with elevated levels of H2O2 and hormones, particularly SA, JA, and ABA. Our results demonstrated the importance of KAKU4 as a potential negative regulator in age-triggered leaf senescence in Arabidopsis. Furthermore, we conducted combination analyses of transcriptomic and epigenomic data for the kaku4 mutant and WT leaves. The knockdown of KAKU4 lowered H3K27me3 deposition in the up-regulated genes associated with hormone pathways, programmed cell death, and leaf senescence, including SARD1, SAG113/HAI1, PR2, and so forth. In addition, we found the functional crosstalks between KAKU4 and its associated proteins (CRWN1/4, PNET2, GBPL3, etc.) through comparing multiple transcriptome datasets. Overall, our results indicated that KAKU4 may inhibit the expression of a series of genes related to hormone signals and H2O2 metabolism by affecting the deposition of H3K27me3, thereby suppressing leaf senescence.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Odell J, Lammerding J. Lamins as structural nuclear elements through evolution. Curr Opin Cell Biol 2023; 85:102267. [PMID: 37871500 PMCID: PMC10841731 DOI: 10.1016/j.ceb.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Lamins are nuclear intermediate filament proteins with important, well-established roles in humans and other vertebrates. Lamins interact with DNA and numerous proteins at the nuclear envelope to determine the mechanical properties of the nucleus, coordinate chromatin organization, and modulate gene expression. Many of these functions are conserved in the lamin homologs found in basal metazoan organisms, including Drosophila and Caenorhabditis elegans. Lamin homologs have also been recently identified in non-metazoans, like the amoeba Dictyostelium discoideum, yet how these proteins compare functionally to the metazoan isoforms is only beginning to emerge. A better understanding of these distantly related lamins is not only valuable for a more complete picture of eukaryotic evolution, but may also provide new insights into the function of vertebrate lamins.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| |
Collapse
|
14
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
15
|
Mermet S, Voisin M, Mordier J, Dubos T, Tutois S, Tuffery P, Baroux C, Tamura K, Probst AV, Vanrobays E, Tatout C. Evolutionarily conserved protein motifs drive interactions between the plant nucleoskeleton and nuclear pores. THE PLANT CELL 2023; 35:4284-4303. [PMID: 37738557 PMCID: PMC10689174 DOI: 10.1093/plcell/koad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
The nucleoskeleton forms a filamentous meshwork under the nuclear envelope and contributes to the regulation of nuclear shape and gene expression. To understand how the Arabidopsis (Arabidopsis thaliana) nucleoskeleton physically connects to the nuclear periphery in plants, we investigated the Arabidopsis nucleoskeleton protein KAKU4 and sought for functional regions responsible for its localization at the nuclear periphery. We identified 3 conserved peptide motifs within the N-terminal region of KAKU4, which are required for intermolecular interactions of KAKU4 with itself, interaction with the nucleoskeleton protein CROWDED NUCLEI (CRWN), localization at the nuclear periphery, and nuclear elongation in differentiated tissues. Unexpectedly, we find these motifs to be present also in NUP82 and NUP136, 2 plant-specific nucleoporins from the nuclear pore basket. We further show that NUP82, NUP136, and KAKU4 have a common evolutionary history predating nonvascular land plants with KAKU4 mainly localizing outside the nuclear pore suggesting its divergence from an ancient nucleoporin into a new nucleoskeleton component. Finally, we demonstrate that both NUP82 and NUP136, through their shared N-terminal motifs, interact with CRWN and KAKU4 proteins revealing the existence of a physical continuum between the nuclear pore and the nucleoskeleton in plants.
Collapse
Affiliation(s)
- Sarah Mermet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Maxime Voisin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Joris Mordier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Tristan Dubos
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Sylvie Tutois
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Pierre Tuffery
- Université Paris Cité, CNRS UMR 8251, INSERM ERL U1133, 75013 Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Aline V Probst
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| | - Christophe Tatout
- iGReD, Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France
| |
Collapse
|
16
|
Choi J, Gehring M. CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560721. [PMID: 37873406 PMCID: PMC10592970 DOI: 10.1101/2023.10.03.560721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The nuclear lamina, a sub-nuclear protein matrix, maintains nuclear structure and genome function. Here, we investigate the role of Arabidopsis lamin analogs CROWDED NUCLEIs during gametophyte and seed development. We observed defects in crwn mutant seeds, including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. We focused on the crwn1 crwn2 (crwn1/2) endosperm, which exhibited enlarged chalazal cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.
Collapse
Affiliation(s)
- Junsik Choi
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
- Dept. of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
17
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
18
|
Sakamoto T, Matsunaga S. Chromatin dynamics and subnuclear gene positioning for transcriptional regulation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102431. [PMID: 37562088 DOI: 10.1016/j.pbi.2023.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Plants have been found to exhibit diverse characteristics and functions of chromatin organization, showing both similarities and differences to animals. It is becoming clear how chromatin organization is linked to transcriptional regulation in response to environmental stresses. Regulation of specific chromatin positions in the nuclear space is important for transcription, and the mechanisms that enable such chromatin dynamics are gradually being unveiled. Genes move between subdomains responsible for transcriptional activation or suppression in the subnuclear space in a gene repositioning cycle. We propose a model of localized chromatin interaction in nuclear subdomains, in which the dynamics of local chromatin interactions have a more important impact on the regulation of gene expression than large-scale chromatin organization. In this mini-review, we highlight recent findings on chromatin dynamics, particularly involving transcriptional regulation, and discuss future directions in the study of chromatin organization in plants.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-0802, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
19
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
20
|
Blunt EL, Choi J, Sussman H, Christopherson RC, Keen P, Rahmati Ishka M, Li LY, Idrovo JM, Julkowska MM, Van Eck J, Richards EJ. The nuclear lamina is required for proper development and nuclear shape distortion in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5500-5513. [PMID: 37503569 PMCID: PMC10540737 DOI: 10.1093/jxb/erad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.
Collapse
Affiliation(s)
- Endia L Blunt
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Junsik Choi
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Hayley Sussman
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Patricia Keen
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Linda Y Li
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Joanna M Idrovo
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Joyce Van Eck
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Eric J Richards
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Gong Y, Dale R, Fung HF, Amador GO, Smit ME, Bergmann DC. A cell size threshold triggers commitment to stomatal fate in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3497. [PMID: 37729402 PMCID: PMC10881030 DOI: 10.1126/sciadv.adf3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Hannah F. Fung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gabriel O. Amador
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Margot E. Smit
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Yin C, Sun A, Guo T, Mao X, Fang Y. Arabidopsis lamin-like proteins CRWN1 and CRWN2 interact with SUPPRESSOR OF NPR1-1 INDUCIBLE 1 and RAD51D to prevent DNA damage. THE PLANT CELL 2023; 35:3345-3362. [PMID: 37335899 PMCID: PMC10473219 DOI: 10.1093/plcell/koad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Plants cope with various recurring stress conditions that often induce DNA damage, ultimately affecting plant genome integrity, growth, and productivity. The CROWDED NUCLEI (CRWN) family comprises lamin-like proteins with multiple functions, such as regulating gene expression, genome organization, and DNA damage repair in Arabidopsis (Arabidopsis thaliana). However, the mechanisms and consequences of CRWNs in DNA damage repair are largely unknown. Here, we reveal that CRWNs maintain genome stability by forming repairing nuclear bodies at DNA double-strand breaks. We demonstrate that CRWN1 and CRWN2 physically associate with the DNA damage repair proteins RAD51D and SUPPRESSOR OF NPR1-1 Inducible 1 (SNI1) and act in the same genetic pathway to mediate this process. Moreover, CRWN1 and CRWN2 partially localize at γ-H2AX foci upon DNA damage. Notably, CRWN1 and CRWN2 undergo liquid-liquid phase separation to form highly dynamic droplet-like structures with RAD51D and SNI1 to promote the DNA damage response (DDR). Collectively, our data shed light on the function of plant lamin-like proteins in the DDR and maintenance of genome stability.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuegao Mao
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
24
|
Wang N, Wang Z, Tzourtzou S, Wang X, Bi X, Leimeister J, Xu L, Sakamoto T, Matsunaga S, Schaller A, Jiang H, Liu C. The plant nuclear lamina disassembles to regulate genome folding in stress conditions. NATURE PLANTS 2023:10.1038/s41477-023-01457-2. [PMID: 37400513 PMCID: PMC10356608 DOI: 10.1038/s41477-023-01457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
The nuclear lamina is a complex network of nuclear lamins and lamin-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In Arabidopsis thaliana, nuclear matrix constituent proteins (NMCPs) are essential components of the nuclear lamina and are required to maintain the structural integrity of the nucleus and specific perinuclear chromatin anchoring. At the nuclear periphery, suppressed chromatin overlapping with repetitive sequences and inactive protein-coding genes are enriched. At a chromosomal level, plant chromatin organization in interphase nuclei is flexible and responds to various developmental cues and environmental stimuli. On the basis of these observations in Arabidopsis, and given the role of NMCP genes (CRWN1 and CRWN4) in organizing chromatin positioning at the nuclear periphery, one can expect considerable changes in chromatin-nuclear lamina interactions when the global chromatin organization patterns are being altered in plants. Here we report the highly flexible nature of the plant nuclear lamina, which disassembles substantially under various stress conditions. Focusing on heat stress, we reveal that chromatin domains, initially tethered to the nuclear envelope, remain largely associated with CRWN1 and become scattered in the inner nuclear space. By investigating the three-dimensional chromatin contact network, we further reveal that CRWN1 proteins play a structural role in shaping the changes in genome folding under heat stress. Also, CRWN1 acts as a negative transcriptional coregulator to modulate the shift of the plant transcriptome profile in response to heat stress.
Collapse
Affiliation(s)
- Nan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Zhidan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sofia Tzourtzou
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Wang
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Xiuli Bi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Julia Leimeister
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Linhao Xu
- Applied Chromosome Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hua Jiang
- Applied Chromosome Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
25
|
Fang Y, Gu Y. Dynamic nucleoskeleton in stress. NATURE PLANTS 2023:10.1038/s41477-023-01458-1. [PMID: 37400512 DOI: 10.1038/s41477-023-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Affiliation(s)
- Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
26
|
Reimann TM, Müdsam C, Schachtler C, Ince S, Sticht H, Herrmann C, Stürzl M, Kost B. The large GTPase AtGBPL3 links nuclear envelope formation and morphogenesis to transcriptional repression. NATURE PLANTS 2023; 9:766-784. [PMID: 37095224 DOI: 10.1038/s41477-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Guanylate binding proteins (GBPs) are prominent regulators of immunity not known to be required for nuclear envelope formation and morphogenesis. Here we identify the Arabidopsis GBP orthologue AtGBPL3 as a lamina component with essential functions in mitotic nuclear envelope reformation, nuclear morphogenesis and transcriptional repression during interphase. AtGBPL3 is preferentially expressed in mitotically active root tips, accumulates at the nuclear envelope and interacts with centromeric chromatin as well as with lamina components transcriptionally repressing pericentromeric chromatin. Reduced expression of AtGBPL3 or associated lamina components similarly altered nuclear morphology and caused overlapping transcriptional deregulation. Investigating the dynamics of AtGBPL3-GFP and other nuclear markers during mitosis (1) revealed that AtGBPL3 accumulation on the surface of daughter nuclei precedes nuclear envelope reformation and (2) uncovered defects in this process in roots of AtGBPL3 mutants, which cause programmed cell death and impair growth. AtGBPL3 functions established by these observations are unique among dynamin-family large GTPases.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Müdsam
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Schachtler
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Semra Ince
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Herrmann
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Michael Stürzl
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
27
|
Kirkland NJ, Skalak SH, Whitehead AJ, Hocker JD, Beri P, Vogler G, Hum B, Wang M, Lakatta EG, Ren B, Bodmer R, Engler AJ. Age-dependent Lamin changes induce cardiac dysfunction via dysregulation of cardiac transcriptional programs. NATURE AGING 2023; 3:17-33. [PMID: 36845078 PMCID: PMC9956937 DOI: 10.1038/s43587-022-00323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
As we age, structural changes contribute to progressive decline in organ function, which in the heart act through poorly characterized mechanisms. Taking advantage of the short lifespan and conserved cardiac proteome of the fruit fly, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age, coincident with decreasing nuclear size and increasing nuclear stiffness. Premature genetic reduction of Lamin C phenocopies aging's effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find a role for cardiac transcription factors in regulating adult heart contractility and show that maintenance of Lamin C, and cardiac transcription factor expression, prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating that age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.
Collapse
Affiliation(s)
- Natalie J. Kirkland
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Scott H. Skalak
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Alexander J. Whitehead
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - James D. Hocker
- Cell and Molecular Medicine, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
| | - Pranjali Beri
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| | - Geo Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Bill Hum
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA 21224
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA 21224
| | - Bing Ren
- Cell and Molecular Medicine, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
- Ludwig Institute for Cancer Research; La Jolla, CA, USA 92037
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla, CA, USA 92037
| | - Adam J. Engler
- Department of Bioengineering, University California San Diego; La Jolla, CA, USA 92093
- Biomedical Sciences Program, University California San Diego; La Jolla, CA, USA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA, USA 92037
| |
Collapse
|
28
|
Wibowo AT, Antunez-Sanchez J, Dawson A, Price J, Meehan C, Wrightsman T, Collenberg M, Bezrukov I, Becker C, Benhamed M, Weigel D, Gutierrez-Marcos J. Predictable and stable epimutations induced during clonal plant propagation with embryonic transcription factor. PLoS Genet 2022; 18:e1010479. [PMID: 36383565 PMCID: PMC9731469 DOI: 10.1371/journal.pgen.1010479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/08/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Clonal propagation is frequently used in commercial plant breeding and biotechnology programs because it minimizes genetic variation, yet it is not uncommon to observe clonal plants with stable phenotypic changes, a phenomenon known as somaclonal variation. Several studies have linked epigenetic modifications induced during regeneration with this newly acquired phenotypic variation. However, the factors that determine the extent of somaclonal variation and the molecular changes underpinning this process remain poorly understood. To address this gap in our knowledge, we compared clonally propagated Arabidopsis thaliana plants derived from somatic embryogenesis using two different embryonic transcription factors- RWP-RK DOMAIN-CONTAINING 4 (RKD4) or LEAFY COTYLEDON2 (LEC2) and from two epigenetically distinct founder tissues. We found that both the epi(genetic) status of the explant and the regeneration protocol employed play critical roles in shaping the molecular and phenotypic landscape of clonal plants. Phenotypic variation in regenerated plants can be largely explained by the inheritance of tissue-specific DNA methylation imprints, which are associated with specific transcriptional and metabolic changes in sexual progeny of clonal plants. For instance, regenerants were particularly affected by the inheritance of root-specific epigenetic imprints, which were associated with an increased accumulation of salicylic acid in leaves and accelerated plant senescence. Collectively, our data reveal specific pathways underpinning the phenotypic and molecular variation that arise and accumulate in clonal plant populations.
Collapse
Affiliation(s)
- Anjar Tri Wibowo
- School of Life Science, University of Warwick, Coventry, United Kingdom
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya City, East Java, Indonesia
| | | | - Alexander Dawson
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Jonathan Price
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Cathal Meehan
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Travis Wrightsman
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Maximillian Collenberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Biocenter, Martinsried, Germany
| | - Moussa Benhamed
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National De La Recherche Agronomique, University of Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | | |
Collapse
|
29
|
Liu ZW, Simmons CH, Zhong X. Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102261. [PMID: 35841650 PMCID: PMC10014033 DOI: 10.1016/j.pbi.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chromatin organization is important for many DNA-templated processes in eukaryotic cells such as replication and transcription. Recent studies have uncovered the capacity of epigenetic modifications, phase separation, and nuclear architecture and spatial positioning to regulate chromatin organization in both plants and animals. Here, we provide an overview of the recent progress made in understanding how chromatin is organized within the nucleus at both the local and global levels with respect to the regulation of transcriptional silencing in plants. To be concise while covering important mechanisms across a range of scales, we focus on how epigenetic modifications and chromatin remodelers alter local chromatin structure, how liquid-liquid phase separation physically separates broader chromatin domains into distinct droplets, and how nuclear positioning affects global chromatin organization.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carl H Simmons
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
30
|
Sakamoto T, Sakamoto Y, Grob S, Slane D, Yamashita T, Ito N, Oko Y, Sugiyama T, Higaki T, Hasezawa S, Tanaka M, Matsui A, Seki M, Suzuki T, Grossniklaus U, Matsunaga S. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins. NATURE PLANTS 2022; 8:940-953. [PMID: 35915144 DOI: 10.1038/s41477-022-01200-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The arrangement of centromeres within the nucleus differs among species and cell types. However, neither the mechanisms determining centromere distribution nor its biological significance are currently well understood. In this study, we demonstrate the importance of centromere distribution for the maintenance of genome integrity through the cytogenic and molecular analysis of mutants defective in centromere distribution. We propose a two-step regulatory mechanism that shapes the non-Rabl-like centromere distribution in Arabidopsis thaliana through condensin II and the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Condensin II is enriched at centromeres and, in cooperation with the LINC complex, induces the scattering of centromeres around the nuclear periphery during late anaphase/telophase. After entering interphase, the positions of the scattered centromeres are then stabilized by nuclear lamina proteins of the CROWDED NUCLEI (CRWN) family. We also found that, despite their strong impact on centromere distribution, condensin II and CRWN proteins have little effect on chromatin organization involved in the control of gene expression, indicating a robustness of chromatin organization regardless of the type of centromere distribution.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| | - Yuki Sakamoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Department of Biological Sciences, Osaka University, Toyonaka, Japan
| | - Stefan Grob
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Daniel Slane
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tomoe Yamashita
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Nanami Ito
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yuka Oko
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Tomoya Sugiyama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Graduate School of Science and Engineering, Hosei University, Tokyo, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
31
|
Hummel G, Liu C. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102199. [PMID: 35364484 DOI: 10.1016/j.pbi.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The genetic information linearly scripted in chromosomes is wrapped in a ribonucleoprotein complex called chromatin. The adaptation of its compaction level and spatiotemporal organization refines gene expression in response to developmental and environmental cues. RNA polymerase III (RNAPIII) is responsible for the biogenesis of elementary non-coding RNAs. Their genes are subjected to high duplication and mutational rates, and invade nuclear genomes. Their insertion into different epigenomic environments raises the question of how chromatin packing affects their individual transcription. In this review, we provide a unique perspective to this issue in plants. In addition, we discuss how the genomic organization of RNAPIII-transcribed loci, combined with epigenetic differences, might participate to plant trait variations.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
32
|
Domb K, Wang N, Hummel G, Liu C. Spatial Features and Functional Implications of Plant 3D Genome Organization. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:173-200. [PMID: 35130445 DOI: 10.1146/annurev-arplant-102720-022810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.
Collapse
Affiliation(s)
- Katherine Domb
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Guillaume Hummel
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
33
|
Zhang X, Dong X. Life-or-death decisions in plant immunity. Curr Opin Immunol 2022; 75:102169. [PMID: 35168119 PMCID: PMC9081146 DOI: 10.1016/j.coi.2022.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
Upon pathogen challenge, plant cells can mount defense not only by triggering programmed cell death (PCD) to limit pathogen growth, but also by secreting immune signals to activate subsequent organism-scale defense responses. Recent advances in the study of plant immune mechanisms have found that pathogen-induced oligomerization of immune receptors is a common 'on' switch for the normally self-inhibitory proteins. The resulting 'resistosome' triggers PCD through the formation of a calcium channel or a NADase. Synergy between different receptor-mediated signaling pathways appears to be required for sustained immune induction to trigger PCD of infected cells. In the neighboring cells, PCD is inhibited through the production of immune signal salicylic acid (SA) which mediates degradation of PCD-inducing immune components in biomolecular condensates. Future work is required to connect the resistosome-mediated channel formation and the NADase activity to the downstream regulation of immune execution.
Collapse
Affiliation(s)
- Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
34
|
Chang L, Li M, Shao S, Li C, Ai S, Xue B, Hou Y, Zhang Y, Li R, Fan X, He A, Li C, Sun Y. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell 2022; 13:258-280. [PMID: 33155082 PMCID: PMC8934373 DOI: 10.1007/s13238-020-00794-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the inter-chromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.
Collapse
Affiliation(s)
- Lei Chang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530 China
| | - Mengfan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Shipeng Shao
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Chen Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Shanshan Ai
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yiwen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Ruifeng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530 China
| | - Aibin He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
- Center for Statistical Science, Peking University, Beijing, 100871 China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| |
Collapse
|
35
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
36
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
37
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
38
|
Zhang X, Wang T. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. PLANT & CELL PHYSIOLOGY 2021; 62:1648-1661. [PMID: 34486654 PMCID: PMC8664644 DOI: 10.1093/pcp/pcab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 05/05/2023]
Abstract
Over the past few decades, eukaryotic linear genomes and epigenomes have been widely and extensively studied for understanding gene expression regulation. More recently, the three-dimensional (3D) chromatin organization was found to be important for determining genome functionality, finely tuning physiological processes for appropriate cellular responses. With the development of visualization techniques and chromatin conformation capture (3C)-based techniques, increasing evidence indicates that chromosomal architecture characteristics and chromatin domains with different epigenetic modifications in the nucleus are correlated with transcriptional activities. Subsequent studies have further explored the intricate interplay between 3D genome organization and the function of interacting regions. In this review, we summarize spatial distribution patterns of chromatin, including chromatin positioning, configurations and domains, with a particular focus on the effect of a unique form of interaction between varieties of factors that shape the 3D genome conformation in plants. We further discuss the methods, advantages and limitations of various 3C-based techniques, highlighting the applications of these technologies in plants to identify chromatin domains, and address their dynamic changes and functional implications in evolution, and adaptation to development and changing environmental conditions. Moreover, the future implications and emerging research directions of 3D genome organization are discussed.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100093, P. R. China
| |
Collapse
|
39
|
Di Stefano M, Nützmann HW. Modeling the 3D genome of plants. Nucleus 2021; 12:65-81. [PMID: 34057011 PMCID: PMC8168717 DOI: 10.1080/19491034.2021.1927503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
40
|
Tang Y, Dong Q, Wang T, Gong L, Gu Y. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Dev Cell 2021; 57:19-31.e6. [PMID: 34822788 DOI: 10.1016/j.devcel.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
The interaction between chromatin and the nuclear lamina (NL) is intrinsically important to the establishment of three-dimensional chromatin architecture and spatiotemporal regulation of gene expression. However, critical regulators involved in this process are poorly understood in plants. Here, we report that Arabidopsis PNET2 and its two homologs are bona fide inner nuclear membrane proteins and integral components of the NL. PNET2s physically interact with the plant nucleoskeleton and engage nucleosome-enriched chromatin at the nuclear periphery. Loss of all three PNET2s leads to severely disrupted growth and development, concomitant activation of abiotic and biotic stress responses, and ultimate lethality in Arabidopsis. The pent2 triple mutant also displays drastic transcriptome changes accompanied by a globally altered chromatin architecture revealed by HiC analysis. Our study identified PNET2 as an inner nuclear membrane (INM) component of the NL, which associates with chromatin and play a critical role in orchestrating gene expression and chromatin organization in plants.
Collapse
Affiliation(s)
- Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Shan W, Kubová M, Mandáková T, Lysak MA. Nuclear organization in crucifer genomes: nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:528-540. [PMID: 34390055 DOI: 10.1111/tpj.15459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 05/15/2023]
Abstract
Arabidopsis thaliana has become a major plant research model, where interphase nuclear organization exhibits unique features, including nucleolus-associated telomere clustering. The chromocenter (CC)-loop model, or rosette-like configuration, describes intranuclear chromatin organization in Arabidopsis as megabase-long loops anchored in, and emanating from, peripherally positioned CCs, with those containing telomeres associating with the nucleolus. To investigate whether the CC-loop organization is universal across the mustard family (crucifers), the nuclear distributions of centromeres, telomeres and nucleoli were analyzed by fluorescence in situ hybridization in seven diploid species (2n = 10-16) representing major crucifer clades with an up to 26-fold variation in genome size (160-4260 Mb). Nucleolus-associated telomere clustering was confirmed in Arabidopsis (157 Mb) and was newly identified as the major nuclear phenotype in other species with a small genome (215-381 Mb). In large-genome species (2611-4264 Mb), centromeres and telomeres adopted a Rabl-like configuration or dispersed distribution in the nuclear interior; telomeres only rarely associated with the nucleolus. In Arabis cypria (381 Mb) and Bunias orientalis (2611 Mb), tissue-specific patterns deviating from the major nuclear phenotypes were observed in anther and stem tissues, respectively. The rosette-like configuration, including nucleolus-associated telomere clustering in small-genome species from different infrafamiliar clades, suggests that genomic properties rather than phylogenetic position determine the interphase nuclear organization. Our data suggest that nuclear genome size, average chromosome size and degree of longitudinal chromosome compartmentalization affect interphase chromosome organization in crucifer genomes.
Collapse
Affiliation(s)
- Wenbo Shan
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Michaela Kubová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
42
|
Masuda K, Hikida R, Fujino K. The plant nuclear lamina proteins NMCP1 and NMCP2 form a filamentous network with lateral filament associations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6190-6204. [PMID: 34086868 PMCID: PMC8483785 DOI: 10.1093/jxb/erab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
Plant genomes lack genes encoding intermediate filament proteins, including lamins; however, functional lamin analogues are presumed to exist in plants. Plant-specific coiled-coil proteins, that is, nuclear matrix constituent proteins (NMCPs), are the most likely candidates as the structural elements of the nuclear lamina because they exhibit a lamin-like domain arrangement. They are exclusively localized at the nuclear periphery and have functions that are analogous to those of lamins. However, their assembly into filamentous polymers has not yet been confirmed. In this study, we examined the higher-order structure of NMCP1 and NMCP2 in Apium graveolens cells by using stimulated emission depletion microscopy combined with immunofluorescence cell labelling. Our analyses revealed that NMCP1 and NMCP2 form intricate filamentous networks, which include thick segments consisting of filament bundles, forming a dense filamentous layer extending across the nuclear periphery. Furthermore, the outermost chromatin distribution was found to be in the nucleoplasm-facing region of the nuclear lamina. Recombinant Daucus carota NMCP1 with a His-tag produced in Escherichia coli refolded into dimers and self-assembled into filaments and filament bundles. These results suggest that NMCP1 and NMCP2 organize into the nuclear lamina by forming a filamentous network with filament bundles that localize at the nuclear periphery.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo 060-8589, Hokkaido, Japan
| | - Riku Hikida
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo 060-8589, Hokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
43
|
Grob S. Three-dimensional chromosome organization in flowering plants. Brief Funct Genomics 2021; 19:83-91. [PMID: 31680170 DOI: 10.1093/bfgp/elz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Research on plant three-dimensional (3D) genome architecture made rapid progress over the past 5 years. Numerous Hi-C interaction data sets were generated in a wide range of plant species, allowing for a comprehensive overview on 3D chromosome folding principles in the plant kingdom. Plants lack important genes reported to be vital for chromosome folding in animals. However, similar 3D structures such as topologically associating domains and chromatin loops were identified. Recent studies in Arabidopsis thaliana revealed how chromosomal regions are positioned within the nucleus by determining their association with both, the nuclear periphery and the nucleolus. Additionally, many plant species exhibit high-frequency interactions among KNOT entangled elements, which are associated with safeguarding the genome from invasive DNA elements. Many of the recently published Hi-C data sets were generated to aid de novo genome assembly and remain to date little explored. These data sets represent a valuable resource for future comparative studies, which may lead to a more profound understanding of the evolution of 3D chromosome organization in plants.
Collapse
Affiliation(s)
- Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
44
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
45
|
Huang Y, Sicar S, Ramirez-Prado JS, Manza-Mianza D, Antunez-Sanchez J, Brik-Chaouche R, Rodriguez-Granados NY, An J, Bergounioux C, Mahfouz MM, Hirt H, Crespi M, Concia L, Barneche F, Amiard S, Probst AV, Gutierrez-Marcos J, Ariel F, Raynaud C, Latrasse D, Benhamed M. Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in Arabidopsis. Genome Res 2021; 31:1230-1244. [PMID: 34083408 PMCID: PMC8256866 DOI: 10.1101/gr.273771.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the Arabidopsis thaliana nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase clf mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.
Collapse
Affiliation(s)
- Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Sanchari Sicar
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Juan S Ramirez-Prado
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | | - Rim Brik-Chaouche
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Natalia Y Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Jing An
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Lorenzo Concia
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Simon Amiard
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006 Paris, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
46
|
Dubos T, Poulet A, Gonthier-Gueret C, Mougeot G, Vanrobays E, Li Y, Tutois S, Pery E, Chausse F, Probst AV, Tatout C, Desset S. Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0. Nucleus 2021; 11:315-329. [PMID: 33153359 PMCID: PMC7714466 DOI: 10.1080/19491034.2020.1845012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.
Collapse
Affiliation(s)
- Tristan Dubos
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Axel Poulet
- Department of Molecular, Cellular & Developmental Biology, Yale University , New Haven, CT, USA
| | | | - Guillaume Mougeot
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58.,Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University , Oxford, UK
| | - Emmanuel Vanrobays
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Yanru Li
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich , Zürich, Switzerland
| | - Sylvie Tutois
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Emilie Pery
- Institut Pascal, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Frédéric Chausse
- Institut Pascal, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Aline V Probst
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| | - Sophie Desset
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France58
| |
Collapse
|
47
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
48
|
Pei L, Li G, Lindsey K, Zhang X, Wang M. Plant 3D genomics: the exploration and application of chromatin organization. THE NEW PHYTOLOGIST 2021; 230:1772-1786. [PMID: 33560539 PMCID: PMC8252774 DOI: 10.1111/nph.17262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
Eukaryotic genomes are highly folded for packing into higher-order chromatin structures in the nucleus. With the emergence of state-of-the-art chromosome conformation capture methods and microscopic imaging techniques, the spatial organization of chromatin and its functional implications have been interrogated. Our knowledge of 3D chromatin organization in plants has improved dramatically in the past few years, building on the early advances in animal systems. Here, we review recent advances in 3D genome mapping approaches, our understanding of the sophisticated organization of spatial structures, and the application of 3D genomic principles in plants. We also discuss directions for future developments in 3D genomics in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Guoliang Li
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
49
|
Baroux C. Three-dimensional genome organization in epigenetic regulations: cause or consequence? CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102031. [PMID: 33819713 DOI: 10.1016/j.pbi.2021.102031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The evolution of the nucleus is an evolutionary milestone. By enabling genome compartmentalization, it contributes to the fine-tuning of genome functions. The genome is partitioned into functional domains differing in spatial positioning and topological folding at different scales. The rise of '3D Genomics' embracing experimental, theoretical, and modeling approaches allowed the proposal of a multiscale model of the eukaryotic genome, capturing its organizing principles and functionalities. In these efforts, resolving causality remains an important objective. Are positioning and folding the cause or consequence of functional states? This minireview presents emerging answers to this question, borrowing examples from recent studies of the three-dimensional genome in both plants and animals.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Switzerland.
| |
Collapse
|
50
|
Di Stefano M, Nützmann HW, Marti-Renom M, Jost D. Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:1840-1858. [PMID: 33444439 PMCID: PMC7913674 DOI: 10.1093/nar/gkaa1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
The 3D genome is characterized by a complex organization made of genomic and epigenomic layers with profound implications on gene regulation and cell function. However, the understanding of the fundamental mechanisms driving the crosstalk between nuclear architecture and (epi)genomic information is still lacking. The plant Arabidopsis thaliana is a powerful model organism to address these questions owing to its compact genome for which we have a rich collection of microscopy, chromosome conformation capture (Hi-C) and ChIP-seq experiments. Using polymer modelling, we investigate the roles of nucleolus formation and epigenomics-driven interactions in shaping the 3D genome of A. thaliana. By validation of several predictions with published data, we demonstrate that self-attracting nucleolar organizing regions and repulsive constitutive heterochromatin are major mechanisms to regulate the organization of chromosomes. Simulations also suggest that interphase chromosomes maintain a partial structural memory of the V-shapes, typical of (sub)metacentric chromosomes in anaphase. Additionally, self-attraction between facultative heterochromatin regions facilitates the formation of Polycomb bodies hosting H3K27me3-enriched gene-clusters. Since nucleolus and heterochromatin are highly-conserved in eukaryotic cells, our findings pave the way for a comprehensive characterization of the generic principles that are likely to shape and regulate the 3D genome in many species.
Collapse
Affiliation(s)
- Marco Di Stefano
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Marc A Marti-Renom
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|