1
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
2
|
Käver L, Hinney A, Rajcsanyi LS, Maier HB, Frieling H, Steiger H, Voelz C, Beyer C, Trinh S, Seitz J. Epigenetic alterations in patients with anorexia nervosa-a systematic review. Mol Psychiatry 2024; 29:3900-3914. [PMID: 38849516 PMCID: PMC11609096 DOI: 10.1038/s41380-024-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.
Collapse
Affiliation(s)
- Larissa Käver
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
| |
Collapse
|
3
|
Corradi C, Lencioni G, Felici A, Rizzato C, Gentiluomo M, Ermini S, Archibugi L, Mickevicius A, Lucchesi M, Malecka-Wojciesko E, Basso D, Arcidiacono PG, Petrone MC, Carrara S, Götz M, Bunduc S, Holleczek B, Aoki MN, Uzunoglu FG, Zanette DL, Mambrini A, Jamroziak K, Oliverius M, Lovecek M, Cavestro GM, Milanetto AC, Peduzzi G, Duchonova BM, Izbicki JR, Zalinkevicius R, Hlavac V, van Eijck CHJ, Brenner H, Vanella G, Vokacova K, Soucek P, Tavano F, Perri F, Capurso G, Hussein T, Kiudelis M, Kupcinskas J, Busch OR, Morelli L, Theodoropoulos GE, Testoni SGG, Adamonis K, Neoptolemos JP, Gazouli M, Pasquali C, Kormos Z, Skalicky P, Pezzilli R, Sperti C, Kauffmann E, Büchler MW, Schöttker B, Hegyi P, Capretti G, Lawlor RT, Canzian F, Campa D. Potential association between PSCA rs2976395 functional variant and pancreatic cancer risk. Int J Cancer 2024; 155:1432-1442. [PMID: 38924078 DOI: 10.1002/ijc.35046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 06/28/2024]
Abstract
Correlated regions of systemic interindividual variation (CoRSIV) represent a small proportion of the human genome showing DNA methylation patterns that are the same in all human tissues, are different among individuals, and are partially regulated by genetic variants in cis. In this study we aimed at investigating single-nucleotide polymorphisms (SNPs) within CoRSIVs and their involvement with pancreatic ductal adenocarcinoma (PDAC) risk. We analyzed 29,099 CoRSIV-SNPs and 133,615 CoRSIV-mQTLs in 14,394 cases and 247,022 controls of European and Asian descent. We observed that the A allele of the rs2976395 SNP was associated with increased PDAC risk in Europeans (p = 2.81 × 10-5). This SNP lies in the prostate stem cell antigen gene and is in perfect linkage disequilibrium with a variant (rs2294008) that has been reported to be associated with risk of many other cancer types. The A allele is associated with the DNA methylation level of the gene according to the PanCan-meQTL database and with overexpression according to QTLbase. The expression of the gene has been observed to be deregulated in many tumors of the gastrointestinal tract including pancreatic cancer; however, functional studies are needed to elucidate the function relevance of the association.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliera-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Antanas Mickevicius
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maurizio Lucchesi
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | | | - Daniela Basso
- Laboratory Medicine, Department DIMED, University of Padova, Padua, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Carrara
- Endoscoopic Unit, Gastroenterology Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefania Bunduc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dalila Lucíola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Parana, Brazil
| | - Andrea Mambrini
- Oncology of Massa Carrara, Oncological Department, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rimantas Zalinkevicius
- Clinics of Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktor Hlavac
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Soucek
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
- Digestive and Liver Disease Unit, Sant'Andrea Hospital, Rome, Italy
| | - Tamás Hussein
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mindaugas Kiudelis
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - George E Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina Gloria Giulia Testoni
- Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Kestutis Adamonis
- Gastroenterology Department, Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - John P Neoptolemos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Zita Kormos
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Cosimo Sperti
- Department of DiSCOG, University of Padova, Padua, Italy
| | - Emanuele Kauffmann
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Markus W Büchler
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Giovanni Capretti
- Pancreatic Surgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
| | - Rita T Lawlor
- ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Waldrop SW, Sauder KA, Niemiec SS, Kechris KJ, Yang IV, Starling AP, Perng W, Dabelea D, Borengasser SJ. Differentially methylated regions interrogated for metastable epialleles associate with offspring adiposity. Epigenomics 2024; 16:1215-1230. [PMID: 39263873 PMCID: PMC11486027 DOI: 10.1080/17501911.2024.2359365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/21/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Assess if cord blood differentially methylated regions (DMRs) representing human metastable epialleles (MEs) associate with offspring adiposity in 588 maternal-infant dyads from the Colorado Health Start Study.Materials & methods: DNA methylation was assessed via the Illumina 450K array (~439,500 CpG sites). Offspring adiposity was obtained via air displacement plethysmography. Linear regression modeled the association of DMRs potentially representing MEs with adiposity.Results & conclusion: We identified two potential MEs, ZFP57, which associated with infant adiposity change and B4GALNT4, which associated with infancy and childhood adiposity change. Nine DMRs annotating to genes that annotated to MEs associated with change in offspring adiposity (false discovery rate <0.05). Methylation of approximately 80% of DMRs identified associated with decreased change in adiposity.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine A Sauder
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sierra S Niemiec
- Center for Innovative Design and Analysis, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina J Kechris
- Center for Innovative Design and Analysis, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah J Borengasser
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Chang WJ, Baker MS, Laritsky E, Gunasekara CJ, Maduranga U, Galliou JC, McFadden JW, Waltemyer JR, Berggren-Thomas B, Tate BN, Zhang H, Rosen BD, Van Tassell CP, Liu GE, Coarfa C, Ren YA, Waterland RA. Systemic interindividual DNA methylation variants in cattle share major hallmarks with those in humans. Genome Biol 2024; 25:185. [PMID: 39004763 PMCID: PMC11247883 DOI: 10.1186/s13059-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND We recently identified ~ 10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in the human genome. These methylation variants are amenable to population studies, as DNA methylation measurements in blood provide information on epigenetic regulation throughout the body. Moreover, establishment of DNA methylation at human CoRSIVs is labile to periconceptional influences such as nutrition. Here, we analyze publicly available whole-genome bisulfite sequencing data on multiple tissues of each of two Holstein cows to determine whether CoRSIVs exist in cattle. RESULTS Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual variation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, those in cattle are strongly associated with genetic variation. Also as in humans, we show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive to early embryonic environment, in the context of embryo culture during assisted reproduction. CONCLUSIONS Our data indicate that CoRSIVs exist in cattle, as in humans, suggesting these systemic epigenetic variants may be common to mammals in general. To the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic outcomes, assessment of CoRSIV methylation at birth may become an important tool for optimizing agriculturally important traits. Moreover, adjusting embryo culture conditions during assisted reproduction may provide opportunities to tailor agricultural outcomes by engineering CoRSIV methylation profiles.
Collapse
Affiliation(s)
- Wen-Jou Chang
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Maria S Baker
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Eleonora Laritsky
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Chathura J Gunasekara
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Uditha Maduranga
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Justine C Galliou
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | | | | | - Brianna N Tate
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Hanxue Zhang
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, United States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Yi Athena Ren
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| | - Robert A Waterland
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
6
|
An J, Brik Chaouche R, Pereyra-Bistraín LI, Zalzalé H, Wang Q, Huang Y, He X, Dias Lopes C, Antunez-Sanchez J, Bergounioux C, Boulogne C, Dupas C, Gillet C, Pérez-Pérez JM, Mathieu O, Bouché N, Fragkostefanakis S, Zhang Y, Zheng S, Crespi M, Mahfouz MM, Ariel F, Gutierrez-Marcos J, Raynaud C, Latrasse D, Benhamed M. An atlas of the tomato epigenome reveals that KRYPTONITE shapes TAD-like boundaries through the control of H3K9ac distribution. Proc Natl Acad Sci U S A 2024; 121:e2400737121. [PMID: 38968127 PMCID: PMC11252963 DOI: 10.1073/pnas.2400737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.
Collapse
Affiliation(s)
- Jing An
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Rim Brik Chaouche
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Leonardo I. Pereyra-Bistraín
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Hugo Zalzalé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Qingyi Wang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | | | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Claire Boulogne
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Dupas
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Gillet
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | | | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, Clermont-FerrandF-63000, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles78000, France
| | | | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, SantaFe 3000, Argentina
| | | | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
- Institut Universitaire de France, Orsay, Gif-sur-Yvette91190, France
| |
Collapse
|
7
|
Goldberg DC, Cloud C, Lee SM, Barnes B, Gruber S, Kim E, Pottekat A, Westphal M, McAuliffe L, Majournie E, KalayilManian M, Zhu Q, Tran C, Hansen M, Parker JB, Kohli RM, Porecha R, Renke N, Zhou W. MSA: scalable DNA methylation screening BeadChip for high-throughput trait association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594606. [PMID: 38826316 PMCID: PMC11142114 DOI: 10.1101/2024.05.17.594606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Infinium DNA Methylation BeadChips have significantly contributed to population-scale epigenetics research by enabling epigenome-wide trait association discoveries. Here, we design, describe, and experimentally verify a new iteration of this technology, the Methylation Screening Array (MSA), to focus on human trait screening and discovery. This array utilizes extensive data from previous Infinium platform-based epigenome-wide association studies (EWAS). It incorporates knowledge from the latest single-cell and cell type-resolution whole genome methylome profiles. The MSA is engineered to achieve scalable screening of epigenetics-trait association in an ultra-high sample throughput. Our design encompassed diverse human trait associations, including those with genetic, cellular, environmental, and demographical variables and human diseases such as genetic, neurodegenerative, cardiovascular, infectious, and immune diseases. We comprehensively evaluated this array's reproducibility, accuracy, and capacity for cell-type deconvolution and supporting 5-hydroxymethylation profiling in diverse human tissues. Our first atlas data using this platform uncovered the complex chromatin and tissue contexts of DNA modification variations and genetic variants linked to human phenotypes.
Collapse
Affiliation(s)
- David C Goldberg
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Cameron Cloud
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | - Elliot Kim
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
9
|
Cevik SE, Skaar DA, Jima DD, Liu AJ, Østbye T, Whitson HE, Jirtle RL, Hoyo C, Planchart A. DNA methylation of imprint control regions associated with Alzheimer's disease in non-Hispanic Blacks and non-Hispanic Whites. Clin Epigenetics 2024; 16:58. [PMID: 38658973 PMCID: PMC11043040 DOI: 10.1186/s13148-024-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.
Collapse
Affiliation(s)
- Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andy J Liu
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Heather E Whitson
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke/UNC Alzheimer's Disease Research Center (ADRC), Durham, NC, USA
| | - Randy L Jirtle
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Cathrine Hoyo
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Antonio Planchart
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Wang Z, Fu G, Ma G, Wang C, Wang Q, Lu C, Fu L, Zhang X, Cong B, Li S. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet 2024; 143:401-421. [PMID: 38507014 DOI: 10.1007/s00439-024-02659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
As a vital anthropometric characteristic, human height information not only helps to understand overall developmental status and genetic risk factors, but is also important for forensic DNA phenotyping. We utilized linear regression analysis to test the association between each CpG probe and the height phenotype. Next, we designed a methylation sequencing panel targeting 959 CpGs and subsequent height inference models were constructed for the Chinese population. A total of 11,730 height-associated sites were identified. By employing KPCA and deep neural networks, a prediction model was developed, of which the cross-validation RMSE, MAE and R2 were 5.62 cm, 4.45 cm and 0.64, respectively. Genetic factors could explain 39.4% of the methylation level variance of sites used in the height inference models. Collectively, we demonstrated an association between height and DNA methylation status through an EWAS analysis. Targeted methylation sequencing of only 959 CpGs combined with deep learning techniques could provide a model to estimate human height with higher accuracy than SNP-based prediction models.
Collapse
Affiliation(s)
- Zhonghua Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guangping Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
11
|
Salvadores M, Supek F. Cell cycle gene alterations associate with a redistribution of mutation risk across chromosomal domains in human cancers. NATURE CANCER 2024; 5:330-346. [PMID: 38200245 DOI: 10.1038/s43018-023-00707-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Mutations in human cells exhibit increased burden in heterochromatic, late DNA replication time (RT) chromosomal domains, with variation in mutation rates between tissues mirroring variation in heterochromatin and RT. We observed that regional mutation risk further varies between individual tumors in a manner independent of cell type, identifying three signatures of domain-scale mutagenesis in >4,000 tumor genomes. The major signature reflects remodeling of heterochromatin and of the RT program domains seen across tumors, tissues and cultured cells, and is robustly linked with higher expression of cell proliferation genes. Regional mutagenesis is associated with loss of activity of the tumor-suppressor genes RB1 and TP53, consistent with their roles in cell cycle control, with distinct mutational patterns generated by the two genes. Loss of regional heterogeneity in mutagenesis is associated with deficiencies in various DNA repair pathways. These mutation risk redistribution processes modify the mutation supply towards important genes, diverting the course of somatic evolution.
Collapse
Affiliation(s)
- Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
Knoll J, Amend B, Abruzzese T, Harland N, Stenzl A, Aicher WK. Production of Proliferation- and Differentiation-Competent Porcine Myoblasts for Preclinical Studies in a Porcine Large Animal Model of Muscular Insufficiency. Life (Basel) 2024; 14:212. [PMID: 38398721 PMCID: PMC10889968 DOI: 10.3390/life14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Muscular insufficiency is observed in many conditions after injury, chronic inflammation, and especially in elderly populations. Causative cell therapies for muscle deficiencies are not state of the art. Animal models to study the therapy efficacy are, therefore, needed. We developed an improved protocol to produce myoblasts suitable for pre-clinical muscle therapy studies in a large animal model. Myoblasts were isolated from the striated muscle, expanded by employing five different protocols, and characterized on transcript and protein expression levels to determine procedures that yielded optimized regeneration-competent myoblasts and multi-nucleated myotubes. We report that swine skeletal myoblasts proliferated well under improved conditions without signs of cellular senescence, and expressed significant levels of myogenic markers including Pax7, MyoD1, Myf5, MyoG, Des, Myf6, CD56 (p ≤ 0.05 each). Upon terminal differentiation, myoblasts ceased proliferation and generated multi-nucleated myotubes. Injection of such myoblasts into the urethral sphincter complex of pigs with sphincter muscle insufficiency yielded an enhanced functional regeneration of this muscle (81.54% of initial level) when compared to the spontaneous regeneration in the sham controls without myoblast injection (67.03% of initial level). We conclude that the optimized production of porcine myoblasts yields cells that seem suitable for preclinical studies of cell therapy in a porcine large animal model of muscle insufficiency.
Collapse
Affiliation(s)
- Jasmin Knoll
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Tanja Abruzzese
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Wilhelm K. Aicher
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| |
Collapse
|
13
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
14
|
Drzymalla E, Crider KS, Wang A, Marta G, Khoury MJ, Rasooly D. Epigenome-wide association studies of prenatal maternal mental health and infant epigenetic profiles: a systematic review. Transl Psychiatry 2023; 13:377. [PMID: 38062042 PMCID: PMC10703876 DOI: 10.1038/s41398-023-02620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
Prenatal stress and poor maternal mental health are associated with adverse offspring outcomes; however, the biological mechanisms are unknown. Epigenetic modification has linked maternal health with offspring development. Epigenome-wide association studies (EWAS) have examined offspring DNA methylation profiles for association with prenatal maternal mental health to elucidate mechanisms of these complex relationships. The objective of this study is to provide a comprehensive, systematic review of EWASs of infant epigenetic profiles and prenatal maternal anxiety, depression, or depression treatment. We conducted a systematic literature search following PRISMA guidelines for EWAS studies between prenatal maternal mental health and infant epigenetics through May 22, 2023. Of 645 identified articles, 20 fulfilled inclusion criteria. We assessed replication of CpG sites among studies, conducted gene enrichment analysis, and evaluated the articles for quality and risk of bias. We found one repeated CpG site among the maternal depression studies; however, nine pairs of overlapping differentially methylatd regions were reported in at least two maternal depression studies. Gene enrichment analysis found significant pathways for maternal depression but not for any other maternal mental health category. We found evidence that these EWAS present a medium to high risk of bias. Exposure to prenatal maternal depression and anxiety or treatment for such was not consistently associated with epigenetic changes in infants in this systematic review and meta-analysis. Small sample size, potential bias due to exposure misclassification and statistical challenges are critical to address in future efforts to explore epigenetic modification as a potential mechanism by which prenatal exposure to maternal mental health disorders leads to adverse infant outcomes.
Collapse
Affiliation(s)
- Emily Drzymalla
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Krista S Crider
- Infant Outcomes Research and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arick Wang
- Infant Outcomes Research and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Muin J Khoury
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Danielle Rasooly
- Division of Blood Disorders and Public Health Genomics, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
15
|
Morelli V, Heizelman RJ. Monitoring Social Determinants of Health Assessing Patients and Communities. Prim Care 2023; 50:527-547. [PMID: 37866829 DOI: 10.1016/j.pop.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Because of the devastating health effects of social determinants of health (SDoH), it is important for the primary care provider to assess and monitor these types of stressors. This can be done via surveys, geomapping, or various biomarkers. To date, however, each of these methods is fraught with obstacles. There are currently are no validated "best" SDoH screening tools for use in clinical practice. Nor is geomapping, a perfect solution. Although mapping can collect location specific factors, it does not account for the fact that patients may live in one area, work in another and travel frequently to a third.
Collapse
Affiliation(s)
- Vincent Morelli
- Department of Family and Community Medicine, Meharry Medical College, 3rd Floor, Old Hospital Building, 1005 Dr. D. B. Todd, Jr., Boulevard, Nashville, TN 37208-3599, USA.
| | - Robert Joseph Heizelman
- Department of Family Medicine, Medical Informatics, University of Michigan, 3rd Floor, Old Hospital Building, 1005 Dr. D. B. Todd, Jr., Boulevard, Nashville, TN 37208-3599, USA
| |
Collapse
|
16
|
Senapati P, Miyano M, Sayaman RW, Basam M, Leung A, LaBarge MA, Schones DE. Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Res 2023; 33:1229-1241. [PMID: 37463750 PMCID: PMC10547379 DOI: 10.1101/gr.277511.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.
Collapse
Affiliation(s)
- Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-0981, USA
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
- Center for Cancer Biomarker Research, University of Bergen, 5021 Bergen, Norway
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA;
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
17
|
Lechner L, Opitz R, Silver MJ, Krabusch PM, Prentice AM, Field MS, Stachelscheid H, Leitão E, Schröder C, Fernandez Vallone V, Horsthemke B, Jöckel KH, Schmidt B, Nöthen MM, Hoffmann P, Herms S, Kleyn PW, Megges M, Blume-Peytavi U, Weiss K, Mai K, Blankenstein O, Obermayer B, Wiegand S, Kühnen P. Early-set POMC methylation variability is accompanied by increased risk for obesity and is addressable by MC4R agonist treatment. Sci Transl Med 2023; 15:eadg1659. [PMID: 37467315 DOI: 10.1126/scitranslmed.adg1659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.
Collapse
Affiliation(s)
- Lara Lechner
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Robert Opitz
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Matt J Silver
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Philipp M Krabusch
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Andrew M Prentice
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Harald Stachelscheid
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | | | - Valeria Fernandez Vallone
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | - Matthias Megges
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Venerology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Katja Weiss
- Klinik für Angeborene Herzfehler - Kinderkardiologie, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes, and Nutrition and Charité Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Center for Diabetes Research, 85764 München-Neuherberg, Germany
| | - Oliver Blankenstein
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Department Endocrinology and Metabolism, Labor Berlin-Charité Vivantes GmbH, 13353 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health/Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Susanna Wiegand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, 13353 Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
18
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
19
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Krzyzewska IM, Lauffer P, Mul AN, Laan LVD, Yim AYFL, Cobben JM, Niklinski J, Chomczyk MA, Smigiel R, Mannens MMAM, Henneman P. Expression Quantitative Trait Methylation Analysis Identifies Whole Blood Molecular Footprint in Fetal Alcohol Spectrum Disorder (FASD). Int J Mol Sci 2023; 24:ijms24076601. [PMID: 37047575 PMCID: PMC10095438 DOI: 10.3390/ijms24076601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses neurodevelopmental disabilities and physical birth defects associated with prenatal alcohol exposure. Previously, we attempted to identify epigenetic biomarkers for FASD by investigating the genome-wide DNA methylation (DNAm) profiles of individuals with FASD compared to healthy controls. In this study, we generated additional gene expression profiles in a subset of our previous FASD cohort, encompassing the most severely affected individuals, to examine the functional integrative effects of altered DNAm status on gene expression. We identified six differentially methylated regions (annotated to the SEC61G, REEP3, ZNF577, HNRNPF, MSC, and SDHAF1 genes) associated with changes in gene expression (p-value < 0.05). To the best of our knowledge, this study is the first to assess whole blood gene expression and DNAm-gene expression associations in FASD. Our results present novel insights into the molecular footprint of FASD in whole blood and opens opportunities for future research into multi-omics biomarkers for the diagnosis of FASD.
Collapse
Affiliation(s)
- Izabela M. Krzyzewska
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Lauffer
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Adri N. Mul
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Liselot van der Laan
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Maarten Cobben
- Department of Pediatric Endocrinology and Faculty of Medicine, Northwest Thames Regional Genetics NHS, Imperial College, London SW7 2BX, UK
| | - Jacek Niklinski
- Department of Molecular Biology, Medical University of Bialystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
| | - Monika A. Chomczyk
- Department of Molecular Biology, Medical University of Bialystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
| | - Robert Smigiel
- Department of Genetics, Medical University of Wroclaw, Wybrzeże Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Fang Y, Ji Z, Zhou W, Abante J, Koldobskiy MA, Ji H, Feinberg A. DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Res 2023; 51:2046-2065. [PMID: 36762477 PMCID: PMC10018346 DOI: 10.1093/nar/gkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic information defines tissue identity and is largely inherited in development through DNA methylation. While studied mostly for mean differences, methylation also encodes stochastic change, defined as entropy in information theory. Analyzing allele-specific methylation in 49 human tissue sample datasets, we find that methylation entropy is associated with specific DNA binding motifs, regulatory DNA, and CpG density. Then applying information theory to 42 mouse embryo methylation datasets, we find that the contribution of methylation entropy to time- and tissue-specific patterns of development is comparable to the contribution of methylation mean, and methylation entropy is associated with sequence and chromatin features conserved with human. Moreover, methylation entropy is directly related to gene expression variability in development, suggesting a role for epigenetic entropy in developmental plasticity.
Collapse
Affiliation(s)
- Yuqi Fang
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jordi Abante
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Kim JY, Jelinek J, Lee YH, Kim DH, Kang K, Ryu SH, Moon HR, Cho K, Rha SH, Cha JK, Issa JPJ, Kim J. Hypomethylation in MTNR1B: a novel epigenetic marker for atherosclerosis profiling using stenosis radiophenotype and blood inflammatory cells. Clin Epigenetics 2023; 15:11. [PMID: 36658621 PMCID: PMC9854223 DOI: 10.1186/s13148-023-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.
Collapse
Affiliation(s)
- Jee Yeon Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Young Ho Lee
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dae Hyun Kim
- grid.412048.b0000 0004 0647 1081Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Su Hyun Ryu
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Hye Rin Moon
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Kwangjo Cho
- grid.412048.b0000 0004 0647 1081Department of Thoracic and Cardiovascular Surgery, Dong-A University Hospital, Busan, South Korea
| | - Seo Hee Rha
- grid.412048.b0000 0004 0647 1081Department of Pathology, Dong-A University Hospital, Busan, South Korea
| | - Jae Kwan Cha
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Jei Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea ,grid.411665.10000 0004 0647 2279Daejeon-Chungnam Regional Cerebrovascular Center, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
23
|
Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, Grimm SL, Jun G, Li Y, Chen R, Wiemels JL, Coarfa C, Waterland RA. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol 2023; 24:2. [PMID: 36631879 PMCID: PMC9835319 DOI: 10.1186/s13059-022-02827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Harry MacKay
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - C. Anthony Scott
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Shaobo Li
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Eleonora Laritsky
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Maria S. Baker
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sandra L. Grimm
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yumei Li
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Robert A. Waterland
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
24
|
Genetic substrates of bipolar disorder risk in Latino families. Mol Psychiatry 2023; 28:154-167. [PMID: 35948660 DOI: 10.1038/s41380-022-01705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Genetic studies of bipolar disorder (BP) have been conducted in the Latin American population, to date, in several countries, including Mexico, the United States, Costa Rica, Colombia, and, to a lesser extent, Brazil. These studies focused primarily on linkage-based designs utilizing families with multiplex cases of BP. Significant BP loci were identified on Chromosomes 18, 5 and 8, and fine mapping suggested several genes of interest underlying these linkage peaks. More recently, studies in these same pedigrees yielded significant linkage loci for BP endophenotypes, including measures of activity, sleep cycles, and personality traits. Building from findings in other populations, candidate gene association analyses in Latinos from Mexican and Central American ancestry confirmed the role of several genes (including CACNA1C and ANK3) in conferring BP risk. Although GWAS, methylation, and deep sequencing studies have only begun in these populations, there is evidence that CNVs and rare SNPs both play a role in BP risk of these populations. Large segments of the Latino populations in the Americas remain largely unstudied regarding BP genetics, but evidence to date has shown that this type of research can be successfully conducted in these populations and that the genetic underpinnings of BP in these cohorts share at least some characteristics with risk genes identified in European and other populations.
Collapse
|
25
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
26
|
Abstract
Despite decades of investigation into the genetics of autism spectrum disorder (ASD), a current consensus in the field persists that ASD risk is too heterogeneous to be diagnosed by a single set of genetic variants. As such, ASD research has broadened to include assessment of other molecular biomarkers implicated in the condition that may be reflective of environmental exposures or gene by environment interactions. Epigenetic variance, and specifically differential DNA methylation, have emerged as areas of particularly high interest to ASD, as the epigenetic markers from specific chromatin loci collectively can reflect influences of multiple genetic and environmental factors and can also result in differential gene expression patterns. This review examines recent studies of the ASD epigenome, detailing common gene pathways found to be differentially methylated in people with ASD, and considers how these discoveries may inform our understanding of ASD etiology. We also consider future applications of epigenetics in ASD research and clinical practice, focusing on substratification, biomarker development, and experimental preclinical models of ASD that test causality. In combination with other -omics approaches, epigenomics allows an improved conceptualization of the multifactorial nature of ASD, and opens future lines of inquiry for both basic research and clinical practice.
Collapse
Affiliation(s)
- Logan A Williams
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Sommerer Y, Ohlei O, Dobricic V, Oakley DH, Wesse T, Sedghpour Sabet S, Demuth I, Franke A, Hyman BT, Lill CM, Bertram L. A correlation map of genome-wide DNA methylation patterns between paired human brain and buccal samples. Clin Epigenetics 2022; 14:139. [PMID: 36320053 PMCID: PMC9628033 DOI: 10.1186/s13148-022-01357-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed a correlation analysis between DNAm data of a total of n = 120 matched post-mortem buccal and prefrontal cortex samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing significant (false discovery rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed a preponderance to being located in promoter regions and showed a significant enrichment of being determined by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex mQTL databases. Our novel buccal-brain DNAm correlation map will provide a valuable resource for future EWAS using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made freely available to the public online.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Berlin Institute of Health, Berlin, Germany
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
- Ageing Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany.
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Oslo, Norway.
| |
Collapse
|
28
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
29
|
DNA methylation at birth in monozygotic twins discordant for pediatric acute lymphoblastic leukemia. Nat Commun 2022; 13:6077. [PMID: 36241624 PMCID: PMC9568651 DOI: 10.1038/s41467-022-33677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aberrant DNA methylation constitutes a key feature of pediatric acute lymphoblastic leukemia at diagnosis, however its role as a predisposing or early contributor to leukemia development remains unknown. Here, we evaluate DNA methylation at birth in 41 leukemia-discordant monozygotic twin pairs using the Illumina EPIC array on archived neonatal blood spots to identify epigenetic variation associated with development of pediatric acute lymphoblastic leukemia, independent of genetic influence. Through conditional logistic regression we identify 240 significant probes and 10 regions associated with the discordant onset of leukemia. We identify a significant negative coefficient bias, indicating DNA hypomethylation in cases, across the array and enhanced in open sea, shelf/shore, and gene body regions compared to promoter and CpG island regions. Here, we show an association between global DNA hypomethylation and future development of pediatric acute lymphoblastic leukemia across disease-discordant genetically identical twins, implying DNA hypomethylation may contribute more generally to leukemia risk.
Collapse
|
30
|
Derakhshan M, Kessler NJ, Ishida M, Demetriou C, Brucato N, Moore G, Fall CHD, Chandak GR, Ricaut FX, Prentice A, Hellenthal G, Silver M. Tissue- and ethnicity-independent hypervariable DNA methylation states show evidence of establishment in the early human embryo. Nucleic Acids Res 2022; 50:6735-6752. [PMID: 35713545 PMCID: PMC9749461 DOI: 10.1093/nar/gkac503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.
Collapse
Affiliation(s)
| | - Noah J Kessler
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, UK
| | - Miho Ishida
- UCL Great Ormond Street Institute of Child Health, UK
| | | | - Nicolas Brucato
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université
de Toulouse Midi-Pyrénées, CNRS, IRD, UPS,Toulouse, France
| | | | - Caroline H D Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular
and Molecular Biology,Hyderabad, India
| | - Francois-Xavier Ricaut
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université
de Toulouse Midi-Pyrénées, CNRS, IRD, UPS,Toulouse, France
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene
and Tropical Medicine, The Gambia
| | - Garrett Hellenthal
- UCL Genetics Institute, University College London,
Gower Street, London WC1E 6BT, UK
| | - Matt J Silver
- London School of Hygiene and Tropical Medicine, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene
and Tropical Medicine, The Gambia
| |
Collapse
|
31
|
Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, Cowley M, Wright F, House J, Liu A, Jirtle RL, Hoyo C. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics 2022; 17:1920-1943. [PMID: 35786392 PMCID: PMC9665137 DOI: 10.1080/15592294.2022.2091815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Imprinted genes – critical for growth, metabolism, and neuronal function – are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.
Collapse
Affiliation(s)
- Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Sarah S Park
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.,Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Fred Wright
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Andy Liu
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden.,Centre for Biodiversity Dynamics, Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
35
|
Genetic and epigenetic processes linked to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Candler T, Kessler N, Gunasekara C, Ward K, James P, Laritsky E, Baker M, Dyer R, Elango R, Jeffries D, Waterland R, Moore S, Ludgate M, Prentice A, Silver M. DNA methylation at a nutritionally sensitive region of the PAX8 gene is associated with thyroid volume and function in Gambian children. SCIENCE ADVANCES 2021; 7:eabj1561. [PMID: 34739318 PMCID: PMC8570597 DOI: 10.1126/sciadv.abj1561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.
Collapse
Affiliation(s)
- Toby Candler
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Noah Kessler
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chathura Gunasekara
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kate Ward
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- MRC Lifecourse Epidemiology, University of Southampton, Southampton, UK
| | - Philip James
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Eleonora Laritsky
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria Baker
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roger Dyer
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Rajavel Elango
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - David Jeffries
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Robert Waterland
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sophie Moore
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Marian Ludgate
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Matt Silver
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
37
|
Layton KKS, Bradbury IR. Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 2021; 91:1064-1072. [PMID: 34679193 DOI: 10.1111/1365-2656.13619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.
Collapse
Affiliation(s)
- Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ian R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Canada
| |
Collapse
|
38
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
39
|
Planterose Jiménez B, Kayser M, Vidaki A. Revisiting genetic artifacts on DNA methylation microarrays exposes novel biological implications. Genome Biol 2021; 22:274. [PMID: 34548083 PMCID: PMC8454075 DOI: 10.1186/s13059-021-02484-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Illumina DNA methylation microarrays enable epigenome-wide analysis vastly used for the discovery of novel DNA methylation variation in health and disease. However, the microarrays' probe design cannot fully consider the vast human genetic diversity, leading to genetic artifacts. Distinguishing genuine from artifactual genetic influence is of particular relevance in the study of DNA methylation heritability and methylation quantitative trait loci. But despite its importance, current strategies to account for genetic artifacts are lagging due to a limited mechanistic understanding on how such artifacts operate. RESULTS To address this, we develop and benchmark UMtools, an R-package containing novel methods for the quantification and qualification of genetic artifacts based on fluorescence intensity signals. With our approach, we model and validate known SNPs/indels on a genetically controlled dataset of monozygotic twins, and we estimate minor allele frequency from DNA methylation data and empirically detect variants not included in dbSNP. Moreover, we identify examples where genetic artifacts interact with each other or with imprinting, X-inactivation, or tissue-specific regulation. Finally, we propose a novel strategy based on co-methylation that can discern between genetic artifacts and genuine genomic influence. CONCLUSIONS We provide an atlas to navigate through the huge diversity of genetic artifacts encountered on DNA methylation microarrays. Overall, our study sets the ground for a paradigm shift in the study of the genetic component of epigenetic variation in DNA methylation microarrays.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Manfred Kayser
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Athina Vidaki
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
41
|
Gunasekara CJ, Hannon E, MacKay H, Coarfa C, McQuillin A, Clair DS, Mill J, Waterland RA. A machine learning case-control classifier for schizophrenia based on DNA methylation in blood. Transl Psychiatry 2021; 11:412. [PMID: 34341337 PMCID: PMC8329061 DOI: 10.1038/s41398-021-01496-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case-control classifier based on DNA methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been previously reported. Using the first two SPLS-DA dimensions we calculated a "risk distance" to identify individuals with the highest probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r = 0.28, P = 1.28 × 10-12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic variants.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Eilis Hannon
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Harry MacKay
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Andrew McQuillin
- grid.83440.3b0000000121901201Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
| | - David St. Clair
- grid.7107.10000 0004 1936 7291The Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Robert A. Waterland
- grid.39382.330000 0001 2160 926XUSDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
42
|
Li M, Sun X, Yao H, Chen W, Zhang F, Gao S, Zou X, Chen J, Qiu S, Wei H, Hu Z, Chen W. Genomic methylation variations predict the susceptibility of six chemotherapy related adverse effects and cancer development for Chinese colorectal cancer patients. Toxicol Appl Pharmacol 2021; 427:115657. [PMID: 34332992 DOI: 10.1016/j.taap.2021.115657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) remains a major concern with high morbidity and mortality worldwide. Despite the positive influence of chemotherapy on the decline in CRC mortality, the negative influence of chemotherapy-related adverse effects (CRAEs) caused by capecitabine (Cap) remains a challenging problem. DNA methylation alteration plays a pivotal role in gene expression regulation. Here, we aimed to screen reliable and novel biomarkers for CRC diagnosis and CRAE prediction using the advanced Illumina Infinium MethylationEPIC (850 K) BeadChip. Paired tumor and normal tissues from 21 Chinese CRC patients who received Cap-based adjuvant chemotherapy were analyzed. CRC-related methylation was characterized by hypermethylated promoter islands and hypomethylated intragenic openseas; CRAE-related methylation was characterized by hyper- (or hypo-) methylated intragenic (or intergenic) regions. Based on three types of methylation profiles (differentially methylated probes, differentially methylated regions, and gene-function-differentially methylated regions), pathway enrichment analyses revealed that CRC-related genes were significantly enriched in the neuronal system, metabolism of RNA, and extracellular matrix organization; CRAE-related genes were abundantly enriched in pathways controlling regeneration functions and immune response. Finally, based on genes within the mostly related pathways and LASSO logistic regression selection, the integrated-methylation-marker systems developed here demonstrated high discriminative accuracy in both CRC diagnosis (AUROC = 1) and CRAE prediction (AUROC = 0.817-1). In conclusion, we conducted a comprehensive DNA methylation analysis of CRC patients with chemotherapy, which provided new insights into the formation of CRC and CRAEs. Most importantly, our findings identified potentially CRAE-related metabolic pathways and markers, providing a valuable reference for personalized medicine promising better safety. Trail registration:ClinicalTrials.gov,NCT03030508, Registered 25 January 2017,https://www.clinicaltrials.gov/ct2/show/NCT03030508?term=NCT03030508&draw=2&rank=1.
Collapse
Affiliation(s)
- Mingming Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiaomeng Sun
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai 201318, China
| | - Houshan Yao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wei Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Feng Zhang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xun Zou
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Wei
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Department of Pharmacy, 905th Hospital of PLA Navy, Naval Medical University, Shanghai 200052, China.
| | - Zhiqian Hu
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai 200065, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
43
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Liang J, Zhang K, Yang J, Li X, Li Q, Wang Y, Cai W, Teng H, Sun Z. A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing. Brief Bioinform 2021; 22:6289882. [PMID: 34058751 PMCID: PMC8575003 DOI: 10.1093/bib/bbab201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic contributions to various diseases and biological processes have been well-recognized. However, simultaneous identification of single-nucleotide variants (SNVs) and DNA methylation levels from traditional bisulfite sequencing data is still challenging. Here, we develop double strand bisulfite sequencing (DSBS) for genome-wide accurate identification of SNVs and DNA methylation simultaneously at a single-base resolution by using one dataset. Locking Watson and Crick strand together by hairpin adapter followed by bisulfite treatment and massive parallel sequencing, DSBS simultaneously sequences the bisulfite-converted Watson and Crick strand in one paired-end read, eliminating the strand bias of bisulfite sequencing data. Mutual correction of read1 and read2 can estimate the amplification and sequencing errors, and enables our developed computational pipeline, DSBS Analyzer (https://github.com/tianguolangzi/DSBS), to accurately identify SNV and DNA methylation. Additionally, using DSBS, we provide a genome-wide hemimethylation landscape in the human cells, and reveal that the density of DNA hemimethylation sites in promoter region and CpG island is lower than that in other genomic regions. The cost-effective new approach, which decodes DNA methylome and genomic variants simultaneously, will facilitate more comprehensive studies on numerous diseases and biological processes driven by both genetic and epigenetic variations.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Beijing 100101, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huajing Teng
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| | - Zhongsheng Sun
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| |
Collapse
|
45
|
Rizzardi LF, Hickey PF, Idrizi A, Tryggvadóttir R, Callahan CM, Stephens KE, Taverna SD, Zhang H, Ramazanoglu S, Hansen KD, Feinberg AP. Human brain region-specific variably methylated regions are enriched for heritability of distinct neuropsychiatric traits. Genome Biol 2021; 22:116. [PMID: 33888138 PMCID: PMC8061076 DOI: 10.1186/s13059-021-02335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Peter F. Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Colin M. Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Sean D. Taverna
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
| | - Sinan Ramazanoglu
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - GTEx Consortium
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| |
Collapse
|
46
|
Robinson SL, Zeng X, Guan W, Sundaram R, Mendola P, Putnick DL, Waterland RA, Gunasekara CJ, Kannan K, Gao C, Bell EM, Yeung EH. Perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) and DNA methylation in newborn dried blood spots in the Upstate KIDS cohort. ENVIRONMENTAL RESEARCH 2021; 194:110668. [PMID: 33387539 PMCID: PMC7946760 DOI: 10.1016/j.envres.2020.110668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent organic pollutants which may alter prenatal development, potentially through epigenetic modifications. Prior studies examining PFOS/PFOA and DNA methylation have relatively few subjects (n < 200) and inconsistent results. We examined relations of PFOA/PFOS with DNA methylation among 597 neonates in the Upstate KIDS cohort study. PFOA/PFOS were quantified in newborn dried blood spots (DBS) using high-performance liquid chromatography/tandem mass spectrometry. DNA methylation was measured using the Infinium MethylationEPIC BeadChip with DNA extracted from DBS. Robust linear regression was used to examine the associations of PFOA/PFOS with DNA methylation at individual CpG sites. Covariates included sample plate, estimated cell type, epigenetically derived ancestry, infant sex and plurality, indicators of maternal socioeconomic status, and prior pregnancy loss. In supplemental analysis, we restricted the analysis to 2242 CpG sites previously identified as Correlated Regions of Systemic Interindividual Variation (CoRSIVs) which include metastable epialleles. At FDR<0.05, PFOA concentration >90th percentile was related to DNA methylation at cg15557840, near SCRT2, SRXN1; PFOS>90th percentile was related to 2 CpG sites in a sex-specific manner (cg19039925 in GVIN1 in boys and cg05754408 in ZNF26 in girls). When analysis was restricted to CoRSIVs, log-scaled, continuous PFOS concentration was related to DNA methylation at cg03278866 within PTBP1. In conclusion, there was limited evidence of an association between high concentrations of PFOA/PFOS and DNA methylation in newborn DBS in the Upstate KIDS cohort. These findings merit replication in populations with a higher median concentration of PFOA/PFOS.
Collapse
Affiliation(s)
- Sonia L Robinson
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Xuehuo Zeng
- Glotech Inc., 1801 Research Blvd #605, Rockville, MD, 20850, United States.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, United States.
| | - Rajeshwari Sundaram
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY, 14214, United States.
| | - Diane L Putnick
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Robert A Waterland
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX, 77030, United States.
| | - Chathura J Gunasekara
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX, 77030, United States.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States.
| | - Chongjing Gao
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States.
| | - Erin M Bell
- Departments of Environmental Health Sciences, And Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer, NY, 12144, United States.
| | - Edwina H Yeung
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| |
Collapse
|
47
|
Lindner M, Laine VN, Verhagen I, Viitaniemi HM, Visser ME, van Oers K, Husby A. Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird. Mol Ecol 2021; 30:3645-3659. [PMID: 33453134 PMCID: PMC8359384 DOI: 10.1111/mec.15803] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome‐wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits. see also the Perspective by Melanie J. Heckwolf and Britta S. Meyer
Collapse
Affiliation(s)
- Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Heidi M Viitaniemi
- Organismal and Evolutionary Biology Research Programme (OEB), University of Helsinki, Helsinki, Finland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Arild Husby
- Organismal and Evolutionary Biology Research Programme (OEB), University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway.,Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Husby A. On the Use of Blood Samples for Measuring DNA Methylation in Ecological Epigenetic Studies. Integr Comp Biol 2020; 60:1558-1566. [PMID: 32835371 PMCID: PMC7742428 DOI: 10.1093/icb/icaa123] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is increasing interest in understanding the potential for epigenetic factors to contribute to phenotypic diversity in evolutionary biology. One well studied epigenetic mechanism is DNA methylation, the addition of a methyl group to cytosines, which have the potential to alter gene expression depending on the genomic region in which it takes place. Obtaining information about DNA methylation at genome-wide scale has become straightforward with the use of bisulfite treatment in combination with reduced representation or whole-genome sequencing. While it is well recognized that methylation is tissue specific, a frequent limitation for many studies is that sampling-specific tissues may require sacrificing individuals, something which is generally undesirable and sometimes impossible. Instead, information about DNA methylation patterns in the blood is frequently used as a proxy tissue. This can obviously be problematic if methylation patterns in the blood do not reflect that in the relevant tissue. Understanding how, or if, DNA methylation in blood reflect DNA methylation patterns in other tissues is therefore of utmost importance if we are to make inferences about how observed differences in methylation or temporal changes in methylation can contribute to phenotypic variation. The aim of this review is to examine what we know about the potential for using blood samples in ecological epigenetic studies. I briefly outline some methods by which we can measure DNA methylation before I examine studies that have compared DNA methylation patterns across different tissues and, finally, examine how useful blood samples may be for ecological studies of DNA methylation. Ecological epigenetic studies are in their infancy, but it is paramount for the field to move forward to have detailed information about tissue and time dependence relationships in methylation to gain insights into if blood DNA methylation patterns can be a reliable bioindicator for changes in methylation that generate phenotypic variation in ecologically important traits.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, SE-75236 Uppsala, Sweden
| |
Collapse
|
50
|
Wang Q, Chen Y, Readhead B, Chen K, Su Y, Reiman EM, Dudley JT. Longitudinal data in peripheral blood confirm that PM20D1 is a quantitative trait locus (QTL) for Alzheimer's disease and implicate its dynamic role in disease progression. Clin Epigenetics 2020; 12:189. [PMID: 33298155 PMCID: PMC7724832 DOI: 10.1186/s13148-020-00984-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND While Alzheimer's disease (AD) remains one of the most challenging diseases to tackle, genome-wide genetic/epigenetic studies reveal many disease-associated risk loci, which sheds new light onto disease heritability, provides novel insights to understand its underlying mechanism and potentially offers easily measurable biomarkers for early diagnosis and intervention. METHODS We analyzed whole-genome DNA methylation data collected from peripheral blood in a cohort (n = 649) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared the DNA methylation level at baseline among participants diagnosed with AD (n = 87), mild cognitive impairment (MCI, n = 175) and normal controls (n = 162), to identify differentially methylated regions (DMRs). We also leveraged up to 4 years of longitudinal DNA methylation data, sampled at approximately 1 year intervals to model alterations in methylation levels at DMRs to delineate methylation changes associated with aging and disease progression, by linear mixed-effects (LME) modeling for the unchanged diagnosis groups (AD, MCI and control, respectively) and U-shape testing for those with changed diagnosis (converters). RESULTS When compared with controls, patients with MCI consistently displayed promoter hypomethylation at methylation QTL (mQTL) gene locus PM20D1. This promoter hypomethylation was even more prominent in patients with mild to moderate AD. This is in stark contrast with previously reported hypermethylation in hippocampal and frontal cortex brain tissues in patients with advanced-stage AD at this locus. From longitudinal data, we show that initial promoter hypomethylation of PM20D1 during MCI and early stage AD is reversed to eventual promoter hypermethylation in late stage AD, which helps to complete a fuller picture of methylation dynamics. We also confirm this observation in an independent cohort from the Religious Orders Study and Memory and Aging Project (ROSMAP) Study using DNA methylation and gene expression data from brain tissues as neuropathological staging (Braak score) advances. CONCLUSIONS Our results confirm that PM20D1 is an mQTL in AD and demonstrate that it plays a dynamic role at different stages of the disease. Further in-depth study is thus warranted to fully decipher its role in the evolution of AD and potentially explore its utility as a blood-based biomarker for AD.
Collapse
Affiliation(s)
- Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
| | | | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Eric M Reiman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Joel T Dudley
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|