1
|
Neu AT, Torchin ME, Allen EE, Roy K. Microbiome divergence of marine gastropod species separated by the Isthmus of Panama. Appl Environ Microbiol 2024:e0100324. [PMID: 39480095 DOI: 10.1128/aem.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
The rise of the Isthmus of Panama separated the populations of many marine organisms, which then diverged into new geminate sister species currently living in the Eastern Pacific Ocean and the Caribbean Sea. However, we know very little about how such evolutionary divergences of host species have shaped the compositions of their microbiomes. Here, we compared the microbiomes of whole-body and shell-surface samples of geminate species of marine gastropods in the genera Cerithium and Cerithideopsis to those of congeneric outgroups. Our results suggest that the effects of ~3 million years of separation and isolation on microbiome composition varied among host genera and between sample types within the same hosts. In the whole-body samples, microbiome compositions of geminate species pairs tended to be similar, likely due to host filtering, although the strength of this relationship varied among the two groups and across similarity metrics. Shell-surface microbiomes show contrasting patterns, with co-divergence between the host taxa and a small number of microbial clades evident in Cerithideopsis but not Cerithium. These results suggest that (i) isolation of host populations after the rise of the Isthmus of Panama affected microbiomes of geminate hosts in a complex and host-specific manner, and (ii) host-associated microbial taxa respond differently to vicariance events than the hosts themselves.IMPORTANCEWhile considerable work has been done on evolutionary divergences of marine species in response to the rise of the Isthmus of Panama, which separated two previously connected oceans, how this event shaped the microbiomes of these marine hosts remains poorly known. Using whole-body and shell-surface microbiomes of closely related gastropod species from opposite sides of the Isthmus, we show that divergences of microbial taxa after the formation of the Isthmus are often not concordant with those of their gastropod hosts. Our results show that evolutionary responses of marine gastropod-associated microbiomes to major environmental perturbations are complex and are shaped more by local environments than host evolutionary history.
Collapse
Affiliation(s)
- Alexander T Neu
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Smithsonian Tropical Research Institute, Ancon, Balboa, Panama
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Ancon, Balboa, Panama
| | - Eric E Allen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Kaustuv Roy
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
3
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2024:S0966-842X(24)00214-2. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
4
|
Soto-Cortés E, Marroquín-Rodríguez M, Basanta MD, Maldonado-López Y, Parra-Olea G, Rebollar EA. Host Species and Environment Shape the Skin Microbiota of Mexican Axolotls. MICROBIAL ECOLOGY 2024; 87:98. [PMID: 39046491 PMCID: PMC11269437 DOI: 10.1007/s00248-024-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.
Collapse
Affiliation(s)
- Enrique Soto-Cortés
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Maria Delia Basanta
- Department of Biology, University of Nevada Reno, Reno, NV, USA
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Yurixhi Maldonado-López
- Cátedras CONAHCYT - Instituto de Investigaciones Sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México.
| |
Collapse
|
5
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Neely WJ, Souza KMC, Martins RA, Marshall VM, Buttimer SM, Brito de Assis A, Medina D, Whetstone RD, Lyra ML, Ribeiro JW, Greenspan SE, Haddad CFB, Alves dos Anjos L, Becker CG. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240530. [PMID: 39100162 PMCID: PMC11296196 DOI: 10.1098/rsos.240530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.
Collapse
Affiliation(s)
- Wesley J. Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Kassia M. C. Souza
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Renato A. Martins
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | | | - Shannon M. Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | - Ananda Brito de Assis
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Daniel Medina
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- Sistema Nacional de Investigación, SENACYT, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Ross D. Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mariana L. Lyra
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - José Wagner Ribeiro
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Sasha E. Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
| | - Célio F. B. Haddad
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Luciano Alves dos Anjos
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huch Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16803, USA
| |
Collapse
|
7
|
Krueger Q, Phippen B, Reitzel A. Antibiotics alter development and gene expression in the model cnidarian Nematostella vectensis. PeerJ 2024; 12:e17349. [PMID: 38784394 PMCID: PMC11114123 DOI: 10.7717/peerj.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.
Collapse
Affiliation(s)
- Quinton Krueger
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Britney Phippen
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Adam Reitzel
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Center, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| |
Collapse
|
8
|
Tokash-Peters AG, Niyonzima JD, Kayirangwa M, Muhayimana S, Tokash IW, Jabon JD, Lopez SG, Kearns PJ, Woodhams DC. Mosquito Microbiomes of Rwanda: Characterizing Mosquito Host and Microbial Communities in the Land of a Thousand Hills. MICROBIAL ECOLOGY 2024; 87:64. [PMID: 38691215 PMCID: PMC11062966 DOI: 10.1007/s00248-024-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.
Collapse
Affiliation(s)
- Amanda G Tokash-Peters
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | | | | | - Simon Muhayimana
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | - Ivan W Tokash
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Jaimy D Jabon
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Sergio G Lopez
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Patrick J Kearns
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Douglas C Woodhams
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
9
|
Gupta VVSR, Tiedje JM. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales. MLIFE 2024; 3:21-41. [PMID: 38827504 PMCID: PMC11139212 DOI: 10.1002/mlf2.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.
Collapse
Affiliation(s)
| | - James M. Tiedje
- Centre for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
10
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
11
|
Dallas JW, Kazarina A, Lee STM, Warne RW. Cross-species gut microbiota transplantation predictably affects host heat tolerance. J Exp Biol 2024; 227:jeb246735. [PMID: 38073469 PMCID: PMC10906491 DOI: 10.1242/jeb.246735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.
Collapse
Affiliation(s)
- Jason W. Dallas
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Anna Kazarina
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Sonny T. M. Lee
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Robin W. Warne
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| |
Collapse
|
12
|
Maire J, Deore P, Jameson VJ, Sakkas M, Perez-Gonzalez A, Blackall LL, van Oppen MJH. Assessing the contribution of bacteria to the heat tolerance of experimentally evolved coral photosymbionts. Environ Microbiol 2023; 25:3298-3318. [PMID: 37849020 DOI: 10.1111/1462-2920.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Coral reefs are extremely vulnerable to ocean warming, which triggers coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, often leading to death. To enhance coral climate resilience, the symbiont, Cladocopium proliferum was experimentally evolved for >10 years under elevated temperatures resulting in increased heat tolerance. Bacterial 16S rRNA gene metabarcoding showed the composition of intra- and extracellular bacterial communities of heat-evolved strains was significantly different from that of wild-type strains, suggesting bacteria responded to elevated temperatures, and may even play a role in C. proliferum thermal tolerance. To assess whether microbiome transplantation could enhance heat tolerance of the sensitive wild-type C. proliferum, we transplanted bacterial communities from heat-evolved to the wild-type strain and subjected it to acute heat stress. Microbiome transplantation resulted in the incorporation of only 30 low-abundance strains into the microbiome of wild-type cultures, while the relative abundance of 14 pre-existing strains doubled in inoculated versus uninoculated samples. Inoculation with either wild-type or heat-evolved bacterial communities boosted C. proliferum growth, although no difference in heat tolerance was observed between the two inoculation treatments. This study provides evidence that Symbiodiniaceae-associated bacterial communities respond to heat selection and may contribute to coral adaptation to climate change.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pranali Deore
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Vanta J Jameson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Magdaline Sakkas
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexis Perez-Gonzalez
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Cytometry Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
13
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
14
|
Ramírez-Barahona S, González-Serrano FM, Martínez-Ugalde E, Soto-Pozos A, Parra-Olea G, Rebollar EA. Host phylogeny and environment shape the diversity of salamander skin bacterial communities. Anim Microbiome 2023; 5:52. [PMID: 37828573 PMCID: PMC10571319 DOI: 10.1186/s42523-023-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The composition and diversity of animal-associated microbial communities are shaped by multiple ecological and evolutionary processes acting at different spatial and temporal scales. Skin microbiomes are thought to be strongly influenced by the environment due to the direct interaction of the host's skin with the external media. As expected, the diversity of amphibian skin microbiomes is shaped by climate and host sampling habitats, whereas phylogenetic effects appear to be weak. However, the relative strength of phylogenetic and environmental effects on salamander skin microbiomes remains poorly understood. Here, we analysed sequence data from 1164 adult salamanders of 44 species to characterise and compare the diversity and composition of skin bacteria. We assessed the relative contribution of climate, host sampling habitat, and host phylogeny to the observed patterns of bacterial diversity. We found that bacterial alpha diversity was mainly associated with host sampling habitat and climate, but that bacterial beta diversity was more strongly associated with host taxonomy and phylogeny. This phylogenetic effect predominantly occurred at intermediate levels of host divergence (0-50 Mya). Our results support the importance of environmental factors shaping the diversity of salamander skin microbiota, but also support host phylogenetic history as a major factor shaping these bacterial communities.
Collapse
Affiliation(s)
- S Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - E Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - A Soto-Pozos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Williams CE, Williams CL, Logan ML. Climate change is not just global warming: Multidimensional impacts on animal gut microbiota. Microb Biotechnol 2023; 16:1736-1744. [PMID: 37247194 PMCID: PMC10443335 DOI: 10.1111/1751-7915.14276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.
Collapse
|
16
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
17
|
Emerson KJ, Fontaine SS, Kohl KD, Woodley SK. Temperature and the microbial environment alter brain morphology in a larval amphibian. J Exp Biol 2023; 226:jeb245333. [PMID: 37232216 DOI: 10.1242/jeb.245333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Understanding how the global climate impacts the physiology of wildlife animals is of importance. Amphibians are particularly sensitive to climate change, and it is hypothesized that rising temperatures impair their neurodevelopment. Temperature influences the composition of the gut microbiota, which is critical to host neurodevelopment through the microbiota-gut-brain (MGB) axis. Most research investigating the link between the gut microbiota and neurodevelopment occurs in germ-free mammalian model systems, leaving the nature of the MGB axis in non-mammalian wildlife unclear. Here, we tested the hypothesis that the temperature and the microbial environment in which tadpoles were raised shapes neurodevelopment, possibly through the MGB axis. Newly hatched green frog tadpoles (Lithobates clamitans) were raised in natural pond water or autoclaved pond water, serving as an experimental manipulation of the microbiota by reducing colonizing microbes, at three different water temperatures: 14, 22 and 28°C. Neurodevelopment was analyzed through measures of relative brain mass and morphology of brain structures of interest. We found that tadpole development in warmer temperatures increased relative brain mass and optic tectum width and length. Further, tadpole development in autoclaved pond water increased relative optic tectum width and length. Additionally, the interaction of treatments altered relative diencephalon length. Lastly, we found that variation in brain morphology was associated with gut microbial diversity and the relative abundance of individual bacterial taxa. Our results indicate that both environmental temperature and microbial communities influence relative brain mass and shape. Furthermore, we provide some of the first evidence for the MGB axis in amphibians.
Collapse
Affiliation(s)
- Kyle J Emerson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
18
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
19
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
20
|
Kuang L, Li T, Wang B, Peng J, Li J, Li P, Jiang J. Diseased-induced multifaceted variations in community assembly and functions of plant-associated microbiomes. Front Microbiol 2023; 14:1141585. [PMID: 37007500 PMCID: PMC10060855 DOI: 10.3389/fmicb.2023.1141585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Plant-associated microorganisms are believed to be part of the so-called extended plant phenotypes, affecting plant growth and health. Understanding how plant-associated microorganisms respond to pathogen invasion is crucial to controlling plant diseases through microbiome manipulation. In this study, healthy and diseased (bacterial wilt disease, BWD) tomato (Solanum lycopersicum L.) plants were harvested, and variations in the rhizosphere and root endosphere microbial communities were subsequently investigated using amplicon and shotgun metagenome sequencing. BWD led to a significant increase in rhizosphere bacterial diversity in the rhizosphere but reduced bacterial diversity in the root endosphere. The ecological null model indicated that BWD enhanced the bacterial deterministic processes in both the rhizosphere and root endosphere. Network analysis showed that microbial co-occurrence complexity was increased in BWD-infected plants. Moreover, higher universal ecological dynamics of microbial communities were observed in the diseased rhizosphere. Metagenomic analysis revealed the enrichment of more functional gene pathways in the infected rhizosphere. More importantly, when tomato plants were infected with BWD, some plant-harmful pathways such as quorum sensing were significantly enriched, while some plant-beneficial pathways such as streptomycin biosynthesis were depleted. These findings broaden the understanding of plant–microbiome interactions and provide new clues to the underlying mechanism behind the interaction between the plant microbiome and BWD.
Collapse
Affiliation(s)
- Lu Kuang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Li
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baozhan Wang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junwei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiangang Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Pengfa Li
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Pengfa Li
| | - Jiandong Jiang
- Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiandong Jiang
| |
Collapse
|
21
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
22
|
Joakim RL, Irham M, Haryoko T, Rowe KMC, Dalimunthe Y, Anita S, Achmadi AS, McGuire JA, Perkins S, Bowie RCK. Geography and elevation as drivers of cloacal microbiome assemblages of a passerine bird distributed across Sulawesi, Indonesia. Anim Microbiome 2023; 5:4. [PMID: 36647179 PMCID: PMC9841722 DOI: 10.1186/s42523-022-00219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler, Pellorneum celebense, from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition. RESULTS The five most prevalent bacterial phyla within the gut microbiome of P. celebense were Proteobacteria (32.6%), Actinobacteria (25.2%), Firmicutes (22.1%), Bacteroidetes (8.7%), and Plantomycetes (2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV of Clostridium was enriched in higher elevation samples, while lower elevation samples were enriched with the genera Perlucidibaca (Family Moraxellaceae), Lachnoclostridium (Family Lachnospiraceae), and an unidentified species in the Family Pseudonocardiaceae. CONCLUSIONS While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance of Clostridium at high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.
Collapse
Affiliation(s)
- Rachael L Joakim
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Karen M C Rowe
- Sciences Department, Museums Victoria, Carlton, VIC, Australia
- BioSciences Department, University of Melbourne, Parkville, VIC, Australia
| | - Yohanna Dalimunthe
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Syahfitri Anita
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Susan Perkins
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Li J, Bates KA, Hoang KL, Hector TE, Knowles SCL, King KC. Experimental temperatures shape host microbiome diversity and composition. GLOBAL CHANGE BIOLOGY 2023; 29:41-56. [PMID: 36251487 PMCID: PMC10092218 DOI: 10.1111/gcb.16429] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 05/10/2023]
Abstract
Global climate change has led to more extreme thermal events. Plants and animals harbour diverse microbial communities, which may be vital for their physiological performance and help them survive stressful climatic conditions. The extent to which microbiome communities change in response to warming or cooling may be important for predicting host performance under global change. Using a meta-analysis of 1377 microbiomes from 43 terrestrial and aquatic species, we found a decrease in the amplicon sequence variant-level microbiome phylogenetic diversity and alteration of microbiome composition under both experimental warming and cooling. Microbiome beta dispersion was not affected by temperature changes. We showed that the host habitat and experimental factors affected microbiome diversity and composition more than host biological traits. In particular, aquatic organisms-especially in marine habitats-experienced a greater depletion in microbiome diversity under cold conditions, compared to terrestrial hosts. Exposure involving a sudden long and static temperature shift was associated with microbiome diversity loss, but this reduction was attenuated by prior-experimental lab acclimation or when a ramped regime (i.e., warming) was used. Microbial differential abundance and co-occurrence network analyses revealed several potential indicator bacterial classes for hosts in heated environments and on different biome levels. Overall, our findings improve our understanding on the impact of global temperature changes on animal and plant microbiome structures across a diverse range of habitats. The next step is to link these changes to measures of host fitness, as well as microbial community functions, to determine whether microbiomes can buffer some species against a more thermally variable and extreme world.
Collapse
Affiliation(s)
- Jingdi Li
- Department of BiologyUniversity of OxfordOxfordUK
| | | | - Kim L. Hoang
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | | | |
Collapse
|
24
|
González R, Henríquez-Castillo C, Lohrmann KB, Romero MS, Ramajo L, Schmitt P, Brokordt K. The Gill Microbiota of Argopecten purpuratus Scallop Is Dominated by Symbiotic Campylobacterota and Upwelling Intensification Differentially Affects Their Abundance. Microorganisms 2022; 10:2330. [PMID: 36557583 PMCID: PMC9781997 DOI: 10.3390/microorganisms10122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Despite the great importance of gills for bivalve mollusks (respiration, feeding, immunity), the microbiota associated with this tissue has barely been characterized in scallops. The scallop Argopecten purpuratus is an important economic resource that is cultivated in areas where coastal upwelling is intensifying by climate change, potentially affecting host-microbiota interactions. Thus, we first characterized the bacterial community present in gills from cultivated scallops (by 16S rRNA gene amplicon sequencing) and assessed their stability and functional potential in animals under farm and laboratory conditions. Results showed that under both conditions the gill bacterial community is dominated by the phylum Campylobacterota (57%), which displays a chemoautotrophic potential that could contribute to scallop nutrition. Within this phylum, two phylotypes, namely symbionts A and B, were the most abundant; being, respectively, taxonomically affiliated to symbionts with nutritional functions in mussel gills, and to uncultured bacteria present in coral mucus. Additionally, in situ hybridization and scanning electron microscopy analyses allowed us to detect these symbionts in the gills of A. purpuratus. Given that shifts in upwelling phenology can cause disturbances to ecosystems, affecting bacteria that provide beneficial functions to the host, we further assessed the changes in the abundance of the two symbionts (via qPCR) in response to a simulated upwelling intensification. The exposure to combined decreasing values in the temperature, pH, and oxygen levels (upwelling conditions) favored the dominance of symbiont B over symbiont A; suggesting that symbiont abundances are modulated by these environmental changes. Overall, results showed that changes in the main Campylobacterota phylotypes in response to upwelling intensification could affect its symbiotic function in A. purpuratus under future climate change scenarios. These results provide the first insight into understanding how scallop gill-microbial systems adapt and respond to climate change stressors, which could be critical for managing health, nutrition, and scallop aquaculture productivity.
Collapse
Affiliation(s)
- Roxana González
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - Carlos Henríquez-Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
| | - Karin B. Lohrmann
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
| | - María Soledad Romero
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
| | - Laura Ramajo
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Innovación Acuícola (AquaPacífico), Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| |
Collapse
|
25
|
Minich JJ, Härer A, Vechinski J, Frable BW, Skelton ZR, Kunselman E, Shane MA, Perry DS, Gonzalez A, McDonald D, Knight R, Michael TP, Allen EE. Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species. Nat Commun 2022; 13:6978. [PMID: 36396943 PMCID: PMC9671965 DOI: 10.1038/s41467-022-34557-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management.
Collapse
Affiliation(s)
- Jeremiah J Minich
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Vechinski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Zachary R Skelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily Kunselman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Michael A Shane
- Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, CA, 92109, USA
| | - Daniela S Perry
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Computer Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd P Michael
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
27
|
Qadri QR, Zhao Q, Lai X, Zhang Z, Zhao W, Pan Y, Wang Q. Estimation of Complex-Trait Prediction Accuracy from the Different Holo-Omics Interaction Models. Genes (Basel) 2022; 13:genes13091580. [PMID: 36140748 PMCID: PMC9498715 DOI: 10.3390/genes13091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Statistical models play a significant role in designing competent breeding programs related to complex traits. Recently; the holo-omics framework has been productively utilized in trait prediction; but it contains many complexities. Therefore; it is desirable to establish prediction accuracy while combining the host’s genome and microbiome data. Several methods can be used to combine the two data in the model and study their effectiveness by estimating the prediction accuracy. We validate our holo-omics interaction models with analysis from two publicly available datasets and compare them with genomic and microbiome prediction models. We illustrate that the holo-omics interactive models achieved the highest prediction accuracy in ten out of eleven traits. In particular; the holo-omics interaction matrix estimated using the Hadamard product displayed the highest accuracy in nine out of eleven traits, with the direct holo-omics model and microbiome model showing the highest prediction accuracy in the remaining two traits. We conclude that comparing prediction accuracy in different traits using real data showed important intuitions into the holo-omics architecture of complex traits.
Collapse
Affiliation(s)
- Qamar Raza Qadri
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingbo Zhao
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueshuang Lai
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Wei Zhao
- School of Agriculture and Biology, Department of Animal Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou 310030, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou 310030, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Zhejiang Key Laboratory of Dairy Cattle Genetic Improvement and Milk Quality Research, Hangzhou 310030, China
- Correspondence:
| |
Collapse
|
28
|
Kanjer L, Filek K, Mucko M, Majewska R, Gračan R, Trotta A, Panagopoulou A, Corrente M, Di Bello A, Bosak S. Surface microbiota of Mediterranean loggerhead sea turtles unraveled by 16S and 18S amplicon sequencing. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The loggerhead sea turtle is considered a keystone species with a major ecological role in Mediterranean marine environment. As is the case with other wild reptiles, their outer microbiome is rarely studied. Although there are several studies on sea turtle’s macro-epibionts and endo-microbiota, there has been little research on epibiotic microbiota associated with turtle skin and carapace. Therefore we aimed to provide the identification of combined epibiotic eukaryotic, bacterial and archaeal microbiota on Mediterranean loggerhead sea turtles. In this study, we sampled skins and carapaces of 26 loggerheads from the Mediterranean Sea during 2018 and 2019. To investigate the overall microbial diversity and composition, amplicon sequencing of 16S and 18S rRNA genes was performed. We found that the Mediterranean loggerhead sea turtle epibiotic microbiota is a reservoir of a vast variety of microbial species. Microbial communities mostly varied by different locations and seas, while within bacterial communities’ significant difference was observed between sampled body sites (carapace vs. skin). In terms of relative abundance, Proteobacteria and Bacteroidota were the most represented phyla within prokaryotes, while Alveolata and Stramenopiles thrived among eukaryotes. This study, besides providing a first survey of microbial eukaryotes on loggerheads via metabarcoding, identifies fine differences within both bacterial and eukaryotic microbial communities that seem to reflect the host anatomy and habitat. Multi-domain epi-microbiome surveys provide additional layers of information that are complementary with previous morphological studies and enable better understanding of the biology and ecology of these vulnerable marine reptiles.
Collapse
|
29
|
Xie W, Zhang H, Ni Y, Peng Y. Contrasting Diversity and Composition of Human Colostrum Microbiota in a Maternal Cohort With Different Ethnic Origins but Shared Physical Geography (Island Scale). Front Microbiol 2022; 13:934232. [PMID: 35903466 PMCID: PMC9315263 DOI: 10.3389/fmicb.2022.934232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Colostrum represents an important source for the transfer of important commensal bacteria from mother to newborn and has a strong impact on the newborn’s health after birth. However, the composition of the colostrum microbiome is highly heterogeneous due to geographic factors and ethnicity (maternal, cultural, and subsistence factors). By analyzing the colostrum 16S rRNA gene full-length sequencing dataset in 97 healthy mothers (60 from Han, 37 from Li) from the Hainan island of China, we showed that the ethnic differences of the colostrum microbiome in a maternal cohort with different ethnic origins shared physical geography. Results indicated that the richness of microbial community in colostrum of Han women was higher than that of Li women, but there was no significant difference in Shannon index and invsimpson index between the two groups. Visualization analysis based on the distance showed an obvious ethnicity-associated structural segregation of colostrum microbiota. The relative abundance of Firmicutes was higher in the microbiota of the Han group than in Li’s, while Proteobacteria was on the contrary. At the genus level, the most dominant members of the Han and Li ethnic groups were Acinetobacter and Cupriavidus, two common environmental bacteria, respectively, although skin-derived Staphylococcus and Streptococcus were still subdominant taxa. Cupriavidus lacunae was the most dominant species in the Li group, accounting for 26.10% of the total bacterial community, but only 3.43% for the Han group with the most dominant Staphylococcus petrasii (25.54%), indicating that human colostrum microbiome was more susceptible to local living environmental factors. Hence, the ethnic origin of individuals may be an important factor to consider in human milk microbiome research and its potential clinical significance during the perinatal period in ethnic-diverse societies, even within a small geographic scale.
Collapse
Affiliation(s)
- Wanying Xie
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Xinjiang, China
- *Correspondence: Yongqing Ni,
| | - Yunhua Peng
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Yunhua Peng,
| |
Collapse
|
30
|
Hector TE, Hoang KL, Li J, King KC. Symbiosis and host responses to heating. Trends Ecol Evol 2022; 37:611-624. [PMID: 35491290 DOI: 10.1016/j.tree.2022.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/31/2022]
Abstract
Virtually all organisms are colonized by microbes. Average temperatures are rising because of global climate change - accompanied by increases in extreme climatic events and heat shock - and symbioses with microbes may determine species persistence in the 21st century. Although parasite infection typically reduces host upper thermal limits, interactions with beneficial microbes can facilitate host adaptation to warming. The effects of warming on the ecology and evolution of the microbial symbionts remain understudied but are important for understanding how climate change might affect host health and disease. We present a framework for untangling the contributions of symbiosis to predictions of host persistence in the face of global change.
Collapse
Affiliation(s)
- Tobias E Hector
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jingdi Li
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
31
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
32
|
Tokash-Peters AG, Jabon JD, Fung ME, Peters JA, Lopez SG, Woodhams DC. Trans-Generational Symbiont Transmission Reduced at High Temperatures in a West Nile Virus Vector Mosquito Culex quinquefasciatus. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.762132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of environmental factors on the efficacy of the endosymbiont Wolbachia used in mosquito and pathogen control are poorly characterized and may be critical for disease control. We studied the vector mosquito Culex pipiens quinquefasciatus (Say) to determine the effect of temperature on the composition of the relative abundance of Wolbachia spp. and the microbiome, as well as key immune genes of interest in the Toll and IMD pathways. 16S barcode sequencing was used to determine the microbiome composition and qPCR was used to determine the relative abundance of Wolbachia spp. based on the highly utilized marker Wolbachia surface protein (wsp) gene. We found no effect of temperature within a single generation on the relative abundance of Wolbachia or immune gene expression, nor on the alpha or beta diversity of the microbiome. However, there was a significant difference in the abundance of Wolbachia between generations at high temperatures (≥ 28°C), but not at lower temperatures (≤ 23°C). These results support the idea that Wolbachia are reduced at higher temperatures between generations, which has an influence on the establishment of pathogens including West Nile Virus (WNV). Modulation of the Toll or IMD mosquito immune pathways was not indicated. Wolbachia endosymbiosis and trans-generation transmission appears especially sensitive to high temperatures, which may have implications for Wolbachia-based vector control strategies under climate change scenarios.
Collapse
|
33
|
Hu R, Zhang Y, Qian W, Leng Y, Long Y, Liu X, Li J, Wan X, Wei X. Pediococcus acidilactici Promotes the Longevity of C. elegans by Regulating the Insulin/IGF-1 and JNK/MAPK Signaling, Fat Accumulation and Chloride Ion. Front Nutr 2022; 9:821685. [PMID: 35433778 PMCID: PMC9010657 DOI: 10.3389/fnut.2022.821685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are known to contribute to the anti-oxidation, immunoregulation, and aging delay. Here, we investigated the extension of lifespan by fermented pickles-origin Pediococcus acidilactici (PA) in Caenorhabditis elegans (C. elegans), and found that PA promoted a significantly extended longevity of wild-type C. elegans. The further results revealed that PA regulated the longevity via promoting the insulin/IGF-1 signaling, JNK/MAPK signaling but not TOR signaling in C. elegans, and that PA reduced the reactive oxygen species (ROS) levels and modulated expression of genes involved in fatty acids uptake and lipolysis, thus reducing the fat accumulation in C. elegans. Moreover, this study identified the nrfl-1 as the key regulator of the PA-mediated longevity, and the nrfl-1/daf-18 signaling might be activated. Further, we highlighted the roles of one chloride ion exchanger gene sulp-6 in the survival of C. elegans and other two chloride ion channel genes clh-1 and clh-4 in the prolonged lifespan by PA-feeding through the modulating expression of genes involved in inflammation. Therefore, these findings reveal the detailed and novel molecular mechanisms on the longevity of C. elegans promoted by PA.
Collapse
|
34
|
Organismal and cellular interactions in vertebrate-alga symbioses. Biochem Soc Trans 2022; 50:609-620. [PMID: 35225336 DOI: 10.1042/bst20210153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
Abstract
Photosymbioses, intimate interactions between photosynthetic algal symbionts and heterotrophic hosts, are well known in invertebrate and protist systems. Vertebrate animals are an exception where photosynthetic microorganisms are not often considered part of the normal vertebrate microbiome, with a few exceptions in amphibian eggs. Here, we review the breadth of vertebrate diversity and explore where algae have taken hold in vertebrate fur, on vertebrate surfaces, in vertebrate tissues, and within vertebrate cells. We find that algae have myriad partnerships with vertebrate animals, from fishes to mammals, and that those symbioses range from apparent mutualisms to commensalisms to parasitisms. The exception in vertebrates, compared with other groups of eukaryotes, is that intracellular mutualisms and commensalisms with algae or other microbes are notably rare. We currently have no clear cell-in-cell (endosymbiotic) examples of a trophic mutualism in any vertebrate, while there is a broad diversity of such interactions in invertebrate animals and protists. This functional divergence in vertebrate symbioses may be related to vertebrate physiology or a byproduct of our adaptive immune system. Overall, we see that diverse algae are part of the vertebrate microbiome, broadly, with numerous symbiotic interactions occurring across all vertebrate and many algal clades. These interactions are being studied for their ecological, organismal, and cellular implications. This synthesis of vertebrate-algal associations may prove useful for the development of novel therapeutics: pairing algae with medical devices, tissue cultures, and artificial ecto- and endosymbioses.
Collapse
|
35
|
Banker RMW, Lipovac J, Stachowicz JJ, Gold DA. Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS One 2022; 17:e0262939. [PMID: 35139090 PMCID: PMC8827440 DOI: 10.1371/journal.pone.0262939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Recent work on microbe-host interactions has revealed an important nexus between the environment, microbiome, and host fitness. Marine invertebrates that build carbonate skeletons are of particular interest in this regard because of predicted effects of ocean acidification on calcified organisms, and the potential of microbes to buffer these impacts. Here we investigate the role of sulfate-reducing bacteria, a group well known to affect carbonate chemistry, in Pacific oyster (Magallana gigas) shell formation. We reared oyster larvae to 51 days post fertilization and exposed organisms to control and sodium molybdate conditions, the latter of which is thought to inhibit bacterial sulfate reduction. Contrary to expectations, we found that sodium molybdate did not uniformly inhibit sulfate-reducing bacteria in oysters, and oysters exposed to molybdate grew larger shells over the experimental period. Additionally, we show that microbiome composition, host gene expression, and shell size were distinct between treatments earlier in ontogeny, but became more similar by the end of the experiment. Although additional testing is required to fully elucidate the mechanisms, our work provides preliminary evidence that M. gigas is capable of regulating microbiome dysbiosis caused by environmental perturbations, which is reflected in shell development.
Collapse
Affiliation(s)
- Roxanne M. W. Banker
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - Jacob Lipovac
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David A. Gold
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
36
|
Microbial Ecology and Evolution Are Essential for Understanding Pandemics. mBio 2021; 12:e0214421. [PMID: 34579579 PMCID: PMC8546628 DOI: 10.1128/mbio.02144-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecology and evolution, especially of microbes, have never been more relevant than in our global fight against SARS-CoV-2, the virus that causes COVID-19. Understanding how populations of SARS-CoV-2 grow, disperse, and evolve is of critical importance to managing the COVID-19 pandemic, and these questions are fundamentally ecological and evolutionary in nature. We compiled data from bioRxiv and medRxiv preprint abstracts and US National Institutes of Health Research Project grant abstracts to visualize the impact that the pivot to COVID-19 research has had on the study of microbes across biological disciplines. Finding that the pivot appears weaker in ecology and evolutionary biology than in other areas of biology, we discuss why the ecology and evolution of microbes, both pathogenic and otherwise, need renewed attention and investment going forward.
Collapse
|
37
|
Wang Y, Smith HK, Goossens E, Hertzog L, Bletz MC, Bonte D, Verheyen K, Lens L, Vences M, Pasmans F, Martel A. Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Sci Rep 2021; 11:20493. [PMID: 34650115 PMCID: PMC8516891 DOI: 10.1038/s41598-021-98995-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fire salamanders, with potential health implications.
Collapse
Affiliation(s)
- Yu Wang
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hannah K. Smith
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Evy Goossens
- grid.5342.00000 0001 2069 7798Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lionel Hertzog
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium ,Thünen Institute for Biodiversity, Bundesallee 68, 38116 Brunswick, Germany
| | - Molly C. Bletz
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Dries Bonte
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kris Verheyen
- grid.5342.00000 0001 2069 7798Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg 267, 9090 Gontrode, Belgium
| | - Luc Lens
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Miguel Vences
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Frank Pasmans
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
38
|
Ingala MR, Albert L, Addesso A, Watkins MJ, Knutie SA. Differential effects of elevated nest temperature and parasitism on the gut microbiota of wild avian hosts. Anim Microbiome 2021; 3:67. [PMID: 34600588 PMCID: PMC8487522 DOI: 10.1186/s42523-021-00130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Changes in wild animal gut microbiotas may influence host health and fitness. While many studies have shown correlations between gut microbiota structure and external factors, few studies demonstrate causal links between environmental variables and microbiota shifts. Here, we use a fully factorial experiment to test the effects of elevated ambient temperature and natural nest parasitism by nest flies (Protocalliphora sialia) on the gut microbiotas of two species of wild birds, the eastern bluebird (Sialia sialis) and the tree swallow (Tachycineta bicolor). RESULTS We find that bacterial communities from the nestlings of each host species show idiosyncratic responses to both heat and parasitism, with gut microbiotas of eastern bluebirds more disrupted by heat and parasitism than those of tree swallows. Thus, we find that eastern bluebirds are unable to maintain stable associations with their gut bacteria in the face of both elevated temperature and parasitism. In contrast, tree swallow gut microbiotas are not significantly impacted by either heat or nest parasitism. CONCLUSIONS Our results suggest that excess heat (e.g., as a result of climate change) may destabilize natural host-parasite-microbiota systems, with the potential to affect host fitness and survival in the Anthropocene.
Collapse
Affiliation(s)
- Melissa R Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, D.C., USA.
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alyssa Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Mackenzie J Watkins
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
39
|
Mallott EK, Amato KR. Host specificity of the gut microbiome. Nat Rev Microbiol 2021; 19:639-653. [PMID: 34045709 DOI: 10.1038/s41579-021-00562-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
40
|
Timmins-Schiffman E, White SJ, Thompson RE, Vadopalas B, Eudeline B, Nunn BL, Roberts SB. Coupled microbiome analyses highlights relative functional roles of bacteria in a bivalve hatchery. ENVIRONMENTAL MICROBIOME 2021; 16:7. [PMID: 33902744 PMCID: PMC8066469 DOI: 10.1186/s40793-021-00376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities are ubiquitous throughout ecosystems and are commensal with hosts across taxonomic boundaries. Environmental and species-specific microbiomes are instrumental in maintaining ecosystem and host health, respectively. The introduction of pathogenic microbes that shift microbiome community structure can lead to illness and death. Understanding the dynamics of microbiomes across a diversity of environments and hosts will help us to better understand which taxa forecast survival and which forecast mortality events. RESULTS We characterized the bacterial community microbiome in the water of a commercial shellfish hatchery in Washington state, USA, where the hatchery has been plagued by recurring and unexplained larval mortality events. By applying the complementary methods of metagenomics and metaproteomics we were able to more fully characterize the bacterial taxa in the hatchery at high (pH 8.2) and low (pH 7.1) pH that were metabolically active versus present but not contributing metabolically. There were shifts in the taxonomy and functional profile of the microbiome between pH and over time. Based on detected metagenomic reads and metaproteomic peptide spectral matches, some taxa were more metabolically active than expected based on presence alone (Deltaproteobacteria, Alphaproteobacteria) and some were less metabolically active than expected (e.g., Betaproteobacteria, Cytophagia). There was little correlation between potential and realized metabolic function based on Gene Ontology analysis of detected genes and peptides. CONCLUSION The complementary methods of metagenomics and metaproteomics contribute to a more full characterization of bacterial taxa that are potentially active versus truly metabolically active and thus impact water quality and inter-trophic relationships.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Samuel J. White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| | - Rhonda Elliott Thompson
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
- Mason County Public Health, 415 N 6th St., Shelton, WA 98584 USA
| | - Brent Vadopalas
- Washington Sea Grant, University of Washington, 3716 Brooklyn Ave NE, Seattle, WA 98105 USA
| | - Benoit Eudeline
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA 98376 USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 Boat St., Seattle, WA 98195 USA
| |
Collapse
|
41
|
Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modelling spatial patterns in host-associated microbial communities. Environ Microbiol 2021; 23:2374-2388. [PMID: 33734553 DOI: 10.1111/1462-2920.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities exhibit spatial structure at different scales, due to constant interactions with their environment and dispersal limitation. While this spatial structure is often considered in studies focusing on free-living environmental communities, it has received less attention in the context of host-associated microbial communities or microbiota. The wider adoption of methods accounting for spatial variation in these communities will help to address open questions in basic microbial ecology as well as realize the full potential of microbiome-aided medicine. Here, we first overview known factors affecting the composition of microbiota across diverse host types and at different scales, with a focus on the human gut as one of the most actively studied microbiota. We outline a number of topical open questions in the field related to spatial variation and patterns. We then review the existing methodology for the spatial modelling of microbiota. We suggest that methodology from related fields, such as systems biology and macro-organismal ecology, could be adapted to obtain more accurate models of spatial structure. We further posit that methodological developments in the spatial modelling and analysis of microbiota could in turn broadly benefit theoretical and applied ecology and contribute to the development of novel industrial and clinical applications.
Collapse
Affiliation(s)
- Matti O Ruuskanen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Aki S Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu J Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 2021; 30:1545-1558. [PMID: 33484584 DOI: 10.1111/mec.15815] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The association with microbes in plants and animals is known to be beneficial for host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to co-evolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that available knowledge is highly dominated by microbiomes from model species. Here, we addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis was present, and that the proportion of "core" microbial taxa, stable and consistent within each species, was very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of co-evolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is probably redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.
Collapse
Affiliation(s)
- Ester M Eckert
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Nikoleta Anicic
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy.,Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Diego Fontaneto
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| |
Collapse
|
43
|
Malmuthuge N, Guan LL. Noncoding RNAs: Regulatory Molecules of Host-Microbiome Crosstalk. Trends Microbiol 2021; 29:713-724. [PMID: 33419590 DOI: 10.1016/j.tim.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Recent emerging evidence has revealed that regulatory noncoding RNAs (microRNAs, circular RNAs) modulate host-microbe interactions and they have been proposed as potential biomarkers of the host's response to microbiome-linked pathologies such as cancers, obesity, and neurodegenerative diseases. Interactions between microRNAs and circular RNAs, however, increase the complexity of the mechanisms that modulate host-microbe interactions. Current knowledge on these noncoding RNAs (ncRNAs) is mainly generated from well controlled germ-free or knockout (small) animal models. Application of such knowledge to effective modulation outcomes in humans (and livestock) is challenging due to the complex nature of microbiome-linked pathologies in larger outbred animals that constantly interact with the changing environment. This review critically discusses the findings of regulatory noncoding RNAs and their roles in microbiome-linked pathologies in small and large animals and provides insights on their roles as potential therapeutic agents to improve human (and livestock) health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Ave S, Lethbridge, Alberta, Canada T1J 4B1
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
44
|
Consistent patterns in 16S and 18S microbial diversity from the shells of the common and widespread red-eared slider turtle (Trachemys scripta). PLoS One 2020; 15:e0244489. [PMID: 33370423 PMCID: PMC7769255 DOI: 10.1371/journal.pone.0244489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial communities associated with freshwater aquatic habitats and resident species are both critical to and indicative of ecosystem status and organismal health. External surfaces of turtle shells readily accumulate microbial growth and could carry representation of habitat-wide microbial diversity, since they are in regular contact with multiple elements of freshwater environments. Yet, microbial diversity residing on freshwater turtle shells is poorly understood. We applied 16S and 18S metabarcoding to characterize microbiota associated with external shell surfaces of 20 red-eared slider (Trachemys scripta) turtles collected from varied habitats in central and western Oklahoma, and ranging to southeast Iowa. Shell-associated microbial communities were highly diverse, with samples dominated by Bacteroidia and alpha-/gamma-proteobacteria, and ciliophoran alveolates. Alpha diversity was lower on turtle shells compared to shallow-water-associated environmental samples, likely resulting from basking-drying behavior and seasonal scute shedding, while alpha diversity was higher on carapace than plastron surfaces. Beta diversity of turtle shells was similarly differentiated from environmental samples, although sampling site was consistently a significant factor. Deinococcus-Thermus bacteria and ciliophoran alveolates were recovered with significantly higher abundance on turtle shells versus environmental samples, while bacterial taxa known to include human-pathogenic species were variably more abundant between shell and environmental samples. Microbial communities from a single, shared-site collection of the ecologically similar river cooter (P. concinna) largely overlapped with those of T. scripta. These data add to a foundation for further characterization of turtle shell microbial communities across species and habitats, with implications for freshwater habitat assessment, microbial ecology and wildlife conservation efforts.
Collapse
|
45
|
Ruthsatz K, Lyra ML, Lambertini C, Belasen AM, Jenkinson TS, da Silva Leite D, Becker CG, Haddad CFB, James TY, Zamudio KR, Toledo LF, Vences M. Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Sci Rep 2020; 10:22311. [PMID: 33339839 PMCID: PMC7749163 DOI: 10.1038/s41598-020-79130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
In Brazil’s Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host–pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host–pathogen interactions in the AF.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany.
| | - Mariana L Lyra
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anat M Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Thomas S Jenkinson
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Domingos da Silva Leite
- Laboratório de Antígenos Bacterianos II, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, CEP 13083-862, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35847, USA
| | - Célio F B Haddad
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany
| |
Collapse
|
46
|
Pearson AL, Pechal J, Lin Z, Benbow ME, Schmidt C, Mavoa S. Associations detected between measures of neighborhood environmental conditions and human microbiome diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141029. [PMID: 32721621 DOI: 10.1016/j.scitotenv.2020.141029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
While emerging research suggests urban green space revegetation increases soil microbiota diversity and native plant species affect skin microbiome diversity, there is still a paucity of knowledge on relationships between neighborhood environmental conditions and the human microbiome. This study leveraged data on human microbiome samples (nose, mouth, rectum) taken at autopsy at the Wayne County Medical Examiner's Office (2014-2015). We evaluated relationships between the microbiome and five measures of environmental conditions (NDVI standard deviation, NDVI mean, percent trees, percent grassland and soil type) near the home of 126 decedents. For the rectum microbiome, NDVI sd had negative, significant associations with diversity (ASVs β = -0.20, p = 0.045; Faith PD β = -0.22, p = 0.026). In contrast, while insignificant, there were consistent, positive associations between diversity and NDVI sd for the mouth microbiome (ASVs β = 0.09, p = 0.337, Faith PD β = 0.14, p = 0.149, Shannon diversity β = 0.14, p = 0.159, Heip's evenness β = 0.11, p = 0.259) and a significant association for the nose microbiome (eigenvalues 3 β = 0.18, p = 0.057). We found consistent, significant, negative associations between percent grassland and diversity of the nose microbiome (ASVs β = -0.25, p = 0.008, Faith PD β = -0.25, p = 0.009, Shannon diversity β = -0.17, p = 0.062). For the mouth microbiome, we found a small effect of percent trees on diversity (eigenvalues 1 β = -0.08, p = 0.053). Clay loam soil was negatively (eigenvalues 2 β = -0.47, p = 0.053) and positively associated (eigenvalues 3 β = 0.65, p = 0.008) with rectum microbiome diversity, compared to loam soil. There was no potential indicator taxon among NDVI quartiles. These findings may be relevant for urban planning and management of urban outdoor spaces in ways that may support healthy human microbiomes. Still, future research is needed to link variation in NDVI, vegetation, plant and/or soil microbe diversity and to confirm or negate our findings that environmental conditions may have contrasting influence on the microbiome of the rectum versus the nose and mouth and that grasslands affect the nose microbiome.
Collapse
Affiliation(s)
- Amber L Pearson
- Michigan State University, Department of Geography, Environment & Spatial Sciences, East Lansing, MI 48824, USA; University of Otago, Department of Public Health, Wellington 6242, New Zealand.
| | - Jennifer Pechal
- Michigan State University, Department of Entomology, East Lansing, MI 48824, USA
| | - Zihan Lin
- Michigan State University, Department of Geography, Environment & Spatial Sciences, East Lansing, MI 48824, USA
| | - M Eric Benbow
- Michigan State University, Department of Entomology, East Lansing, MI 48824, USA; Michigan Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Carl Schmidt
- Wayne County Medical Examiner's Office, Detroit, MI 48207, USA; University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
| | - Suzanne Mavoa
- University of Melbourne, Melbourne School of Population and Global Health, Melbourne, VIC 3010, Australia
| |
Collapse
|
47
|
Friday B, Holzheuser C, Lips KR, Longo AV. Preparing for invasion: Assessing risk of infection by chytrid fungi in southeastern plethodontid salamanders. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:829-840. [PMID: 33174393 DOI: 10.1002/jez.2427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022]
Abstract
Understanding the responses of naïve communities to the invasion of multihost pathogens requires accurate estimates of susceptibility across taxa. In the Americas, the likely emergence of a second amphibian pathogenic fungus (Batrachochytrium salamandrivorans, Bsal) calls for new ways of prioritizing disease mitigation among species due to the high diversity of naïve hosts with prior B. dendrobatidis (Bd) infections. Here, we applied the concept of pathogenic potential to quantify the virulence of chytrid fungi on naïve amphibians and evaluate species for conservation efforts in the event of an outbreak. The benefit of this measure is that it combines and summarizes the variation in disease effects into a single numerical index, allowing for comparisons across species, populations or groups of individuals that may inherently exhibit differences in susceptibility. As a proof of concept, we obtained standardized responses of disease severity by performing experimental infections with Bsal on five plethodontid salamanders from southeastern United States. Four out of five species carried natural infections of Bd at the start of the experiments. We showed that Bsal exhibited its highest value of pathogenic potential in a species that is already declining (Desmognathus auriculatus). We find that this index provides additional information beyond the standard measures of disease prevalence, intensity, and mortality, because it leveraged these disease parameters within each categorical group. Scientists and practitioners could use this measure to justify research, funding, trade, or conservation measures.
Collapse
Affiliation(s)
- Brenna Friday
- Department of Biology, University of Maryland, College Park, Maryland, USA.,Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Chace Holzheuser
- Department of Biology, University of Maryland, College Park, Maryland, USA.,Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
48
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
49
|
Risely A. Applying the core microbiome to understand host-microbe systems. J Anim Ecol 2020; 89:1549-1558. [PMID: 32248522 DOI: 10.1111/1365-2656.13229] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
The host-associated core microbiome was originally coined to refer to common groups of microbes or genes that were likely to be particularly important for host biological function. However, the term has evolved to encompass variable definitions across studies, often identifying key microbes with respect to their spatial distribution, temporal stability or ecological influence, as well as their contribution to host function and fitness. A major barrier to reaching a consensus over how to define the core microbiome and its relevance to biological, ecological and evolutionary theory is a lack of precise terminology and associated definitions, as well the persistent association of the core microbiome with host function. Common, temporal and ecological core microbiomes can together generate insights into ecological processes that act independently of host function, while functional and host-adapted cores distinguish between facultative and near-obligate symbionts that differ in their effects on host fitness. This commentary summarizes five broad definitions of the core microbiome that have been applied across the literature, highlighting their strengths and limitations for advancing our understanding of host-microbe systems, noting where they are likely to overlap, and discussing their potential relevance to host function and fitness. No one definition of the core microbiome is likely to capture the range of key microbes across a host population. Applied together, they have the potential to reveal different layers of microbial organization from which we can begin to understand the ecological and evolutionary processes that govern host-microbe interactions.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
50
|
Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, Huynh R, Kearns PJ, Kueneman J, Kurosawa E, LaBumbard BC, Lyons C, McNally K, Schliep K, Shankar N, Tokash-Peters AG, Vences M, Whetstone R. Publisher Correction: Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol 2020; 21:40. [PMID: 32079535 PMCID: PMC7033928 DOI: 10.1186/s13059-020-01955-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Following publication of the original paper [1], it was reported that an error in the processing of Fig. 8 occurred. In the online HTML version of the article, Fig. 8 was presented as a duplication of Fig. 7. The original article [1] has been corrected.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA. .,Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, 0843-03092, Panamá, Panama.
| | - Molly C Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Hayden A Bender
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Daniel Buitrago-Rosas
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.,Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, 0843-03092, Panamá, Panama
| | - Hannah Diebboll
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Patrick J Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jordan Kueneman
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, 0843-03092, Panamá, Panama
| | - Emmi Kurosawa
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Brandon C LaBumbard
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Casandra Lyons
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kerry McNally
- School for the Environment, University of Massachusetts, Boston, MA, 02125, USA.,Animal Health Department, New England Aquarium, Boston, MA, 02110, USA
| | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Nachiket Shankar
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Amanda G Tokash-Peters
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.,Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, RN1, Butare, Rwanda
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|