1
|
Cini NT, Pennisi M, Genc S, Spandidos DA, Falzone L, Mitsias PD, Tsatsakis A, Taghizadehghalehjoughi A. Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). Oncol Rep 2024; 52:139. [PMID: 39155859 PMCID: PMC11358673 DOI: 10.3892/or.2024.8798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.
Collapse
Affiliation(s)
- Nilgun Tuncel Cini
- Department of Anatomy, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
2
|
Hnilicova P, Grendar M, Turcanova Koprusakova M, Trancikova Kralova A, Harsanyiova J, Krssak M, Just I, Misovicova N, Hikkelova M, Grossmann J, Spalek P, Meciarova I, Kurca E, Zilka N, Zelenak K, Bogner W, Kolisek M. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies. Sci Rep 2024; 14:19267. [PMID: 39164335 PMCID: PMC11336102 DOI: 10.1038/s41598-024-69966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.
Collapse
Affiliation(s)
- Petra Hnilicova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Marian Grendar
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Monika Turcanova Koprusakova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Alzbeta Trancikova Kralova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Jana Harsanyiova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Martin Krssak
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Jan Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Peter Spalek
- Center for Neuromuscular Disease, Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, Pazitkova 4, 83303, Bratislava, Slovakia
| | - Iveta Meciarova
- Department of Pathology, Unilabs Slovensko Patologia s.r.o., Ruzinovska 6, 82606, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 5779/9, 84510, Bratislava, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Kolisek
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia.
| |
Collapse
|
3
|
Sprang M, Möllmann J, Andrade-Navarro MA, Fontaine JF. Overlooked poor-quality patient samples in sequencing data impair reproducibility of published clinically relevant datasets. Genome Biol 2024; 25:222. [PMID: 39152483 PMCID: PMC11328481 DOI: 10.1186/s13059-024-03331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Reproducibility is a major concern in biomedical studies, and existing publication guidelines do not solve the problem. Batch effects and quality imbalances between groups of biological samples are major factors hampering reproducibility. Yet, the latter is rarely considered in the scientific literature. RESULTS Our analysis uses 40 clinically relevant RNA-seq datasets to quantify the impact of quality imbalance between groups of samples on the reproducibility of gene expression studies. High-quality imbalance is frequent (14 datasets; 35%), and hundreds of quality markers are present in more than 50% of the datasets. Enrichment analysis suggests common stress-driven effects among the low-quality samples and highlights a complementary role of transcription factors and miRNAs to regulate stress response. Preliminary ChIP-seq results show similar trends. Quality imbalance has an impact on the number of differential genes derived by comparing control to disease samples (the higher the imbalance, the higher the number of genes), on the proportion of quality markers in top differential genes (the higher the imbalance, the higher the proportion; up to 22%) and on the proportion of known disease genes in top differential genes (the higher the imbalance, the lower the proportion). We show that removing outliers based on their quality score improves the resulting downstream analysis. CONCLUSIONS Thanks to a stringent selection of well-designed datasets, we demonstrate that quality imbalance between groups of samples can significantly reduce the relevance of differential genes, consequently reducing reproducibility between studies. Appropriate experimental design and analysis methods can substantially reduce the problem.
Collapse
Affiliation(s)
- Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Jannik Möllmann
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany.
| | - Jean-Fred Fontaine
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), Rüdesheimer Str. 60-68, Bad Kreuznach, 55545, Germany
| |
Collapse
|
4
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated shifts between DNA methylation and DNA hydroxymethylation in human brain in PD-related genes, including PARK19 (DNAJC6) and PTPRN2 (IA-2β). RESEARCH SQUARE 2024:rs.3.rs-4572401. [PMID: 39070644 PMCID: PMC11275970 DOI: 10.21203/rs.3.rs-4572401/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The majority of Parkinson's disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing βmC and βhmC data. Results We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including PARK19 (DNAJC6), a familial PD gene, and PTPRN2 (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS. Conclusions These data potentially link epigenetic regulation of the PARK19 and PTPRN2 loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.
Collapse
|
5
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
6
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Gan Y, Su D, Zhang Z, Zhang Z, Yan R, Liu Z, Wang Z, Zhou J, Lam JST, Wu T, Jing J, Feng T. Microstructural and functional alterations of the ventral pallidum are associated with levodopa-induced dyskinesia in Parkinson's disease. Eur J Neurol 2024; 31:e16147. [PMID: 37975786 PMCID: PMC11235694 DOI: 10.1111/ene.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE The ventral pallidum (VP) regulates involuntary movements, but it is unclear whether the VP regulates the abnormal involuntary movements in Parkinson's disease (PD) patients who have levodopa-induced dyskinesia (LID). To further understand the role of the VP in PD patients with LID (PD-LID), we explored the structural and functional characteristics of the VP in such patients using multimodal magnetic resonance imaging (MRI). METHODS Thirty-one PD-LID patients, 39 PD patients without LID (PD-nLID), and 28 healthy controls (HCs) underwent T1-weighted MRI, quantitative susceptibility mapping, multi-shell diffusion MRI, and resting-state functional MRI (rs-fMRI). Different measures characterizing the VP were obtained using a region-of-interest-based approach. RESULTS The left VP in the PD-LID group showed significantly higher intracellular volume fraction (ICVF) and isotropic volume fraction (IsoVF) compared with the PD-nLID and HC groups. Rs-MRI revealed that, compared with the PD-nLID group, the PD-LID group in the medication 'off' state had higher functional connectivity (FC) between the left VP and the left anterior caudate, left middle frontal gyrus and left precentral gyrus, as well as between the right VP and the right posterior ventral putamen and right mediodorsal thalamus. In addition, the ICVF values of the left VP, the FC between the left VP and the left anterior caudate and left middle frontal gyrus were positively correlated with Unified Dyskinesia Rating Scale scores. CONCLUSION Our multimodal imaging findings show that the microstructural changes of the VP (i.e., the higher ICVF and IsoVF) and the functional change in the ventral striatum-VP-mediodorsal thalamus-cortex network may be associated with pathophysiological mechanisms of PD-LID.
Collapse
Affiliation(s)
- Yawen Gan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dongning Su
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhe Zhang
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhijin Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Rui Yan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhu Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhan Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeRoslindaleMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Joyce S. T. Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Tao Wu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jing Jing
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Feng
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
8
|
Salin P, Melon C, Chassain C, Gubellini P, Pages G, Pereira B, Le Fur Y, Durif F, Kerkerian-Le Goff L. Interhemispheric reactivity of the subthalamic nucleus sustains progressive dopamine neuron loss in asymmetrical parkinsonism. Neurobiol Dis 2024; 191:106398. [PMID: 38182075 DOI: 10.1016/j.nbd.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.
Collapse
Affiliation(s)
- Pascal Salin
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Carine Chassain
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | | | - Guilhem Pages
- INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Bruno Pereira
- University Hospital Clermont-Ferrand, Biostatisticis Unit (DRCI), Clermont-Ferrand, France
| | - Yann Le Fur
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Franck Durif
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | | |
Collapse
|
9
|
Korbmacher M, van der Meer D, Beck D, de Lange AMG, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain asymmetries from mid- to late life and hemispheric brain age. Nat Commun 2024; 15:956. [PMID: 38302499 PMCID: PMC10834516 DOI: 10.1038/s41467-024-45282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Bettencourt C, Skene N, Bandres-Ciga S, Anderson E, Winchester LM, Foote IF, Schwartzentruber J, Botia JA, Nalls M, Singleton A, Schilder BM, Humphrey J, Marzi SJ, Toomey CE, Kleifat AA, Harshfield EL, Garfield V, Sandor C, Keat S, Tamburin S, Frigerio CS, Lourida I, Ranson JM, Llewellyn DJ. Artificial intelligence for dementia genetics and omics. Alzheimers Dement 2023; 19:5905-5921. [PMID: 37606627 PMCID: PMC10841325 DOI: 10.1002/alz.13427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between dementia subtypes? Can high-dimensional omics data identify improved biomarkers? How can genetics inform our understanding of causal status of dementia risk factors? And which biological processes are altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning approaches give us powerful new tools in helping us to tackle these challenges, and we review possible solutions and examples of best practice. However, their limitations also need to be considered, as well as the need for coordinated multidisciplinary research and diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and omics data for precision dementia medicine. HIGHLIGHTS: We have identified five key challenges in dementia genetics and omics studies. AI can enable detection of undiscovered patterns in dementia genetics and omics data. Enhanced and more diverse genetics and omics datasets are still needed. Multidisciplinary collaborative efforts using AI can boost dementia research.
Collapse
Affiliation(s)
- Conceicao Bettencourt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Nathan Skene
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Anderson
- Department of Mental Health of Older People, Division of Psychiatry, University College London, London, UK
| | | | - Isabelle F Foote
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Schwartzentruber
- Open Targets, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, California, USA
| | - Juan A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Mike Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Ahmad Al Kleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eric L Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, UK
| | - Cynthia Sandor
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Samuel Keat
- UK Dementia Research Institute. School of Medicine, Cardiff University, Cardiff, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Verona, Italy
| | - Carlo Sala Frigerio
- UK Dementia Research Institute, Queen Square Institute of Neurology, University College London, London, UK
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
11
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
12
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
13
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
14
|
Lu J, Zhang Z, Wu P, Liang X, Zhang H, Hong J, Clement C, Yen TC, Ding S, Wang M, Xiao Z, Rominger A, Shi K, Guan Y, Zuo C, Zhao Q. The heterogeneity of asymmetric tau distribution is associated with an early age at onset and poor prognosis in Alzheimer's disease. Neuroimage Clin 2023; 38:103416. [PMID: 37137254 PMCID: PMC10176076 DOI: 10.1016/j.nicl.2023.103416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Left-right asymmetry, an important feature of brain development, has been implicated in neurodegenerative diseases, although it's less discussed in typical Alzheimer's disease (AD). We sought to investigate whether asymmetric tau deposition plays a potential role in AD heterogeneity. METHODS Two independent cohorts consisting of patients with mild cognitive impairment due to AD and AD dementia with tau PET imaging were enrolled [the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with 18F-Flortaucipir, the Shanghai Memory Study (SMS) cohort with 18F-Florzolotau]. Based on the absolute global tau interhemispheric differences, each cohort was divided into two groups (asymmetric versus symmetric tau distribution). The two groups were cross-sectionally compared in terms of demographic, cognitive characteristics, and pathological burden. The cognitive decline trajectories were analyzed longitudinally. RESULTS Fourteen (23.3%) and 42 (48.3%) patients in the ADNI and SMS cohorts showed an asymmetric tau distribution, respectively. An asymmetric tau distribution was associated with an earlier age at disease onset (proportion of early-onset AD: ADNI/SMS/combined cohorts, p = 0.093/0.026/0.001) and more severe pathological burden (i.e., global tau burden: ADNI/SMS cohorts, p < 0.001/= 0.007). And patients with an asymmetric tau distribution were characterized by a steeper cognitive decline longitudinally (i.e., the annual decline of Mini-Mental Status Examination score: ADNI/SMS/combined cohorts, p = 0.053 / 0.035 / < 0.001). CONCLUSIONS Asymmetry in tau deposition, which may be associated with an earlier age at onset, more severe pathological burden, and a steeper cognitive decline, is potentially an important characteristic of AD heterogeneity.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; Department of Nuclear Medicine, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Zhengwei Zhang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jimin Hong
- Department of Nuclear Medicine, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Clement
- Department of Nuclear Medicine, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | | | - Saineng Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Department of Informatics, Technische Universität München, Munich, Germany
| | - Zhenxu Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland; Department of Informatics, Technische Universität München, Munich, Germany
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Fisher DW, Tulloch J, Yu CE, Tsuang D. A Preliminary Comparison of the Methylome and Transcriptome from the Prefrontal Cortex Across Alzheimer’s Disease and Lewy Body Dementia. J Alzheimers Dis Rep 2023; 7:279-297. [PMID: 37220618 PMCID: PMC10200238 DOI: 10.3233/adr220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Pathological amyloid-β and α-synuclein are associated with a spectrum of related dementias, ranging from Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), to Parkinson disease dementia (PDD). While these diseases share clinical and pathological features, they also have unique patterns of pathology. However, epigenetic factors that contribute to these pathological differences remain unknown. Objective: In this preliminary study, we explore differences in DNA methylation and transcription in five neuropathologically defined groups: cognitively unimpaired controls, AD, pure DLB, DLB with concomitant AD (DLBAD), and PDD. Methods: We employed an Illumina Infinium 850k array and RNA-seq to quantify these differences in DNA methylation and transcription, respectively. We then used Weighted Gene Co-Network Expression Analysis (WGCNA) to determine transcriptional modules and correlated these with DNA methylation. Results: We found that PDD was transcriptionally unique and correlated with an unexpected hypomethylation pattern compared to the other dementias and controls. Surprisingly, differences between PDD and DLB were especially notable with 197 differentially methylated regions. WGCNA yielded numerous modules associated with controls and the four dementias: one module was associated with transcriptional differences between controls and all the dementias as well as having significant overlap with differentially methylated probes. Functional enrichment demonstrated that this module was associated with responses to oxidative stress. Conclusion: Future work that extends these joint DNA methylation and transcription analyses will be critical to better understanding of differences that contribute to varying clinical presentation across dementias.
Collapse
Affiliation(s)
- Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Jessica Tulloch
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Debby Tsuang
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
16
|
Prakash A, García-Seisdedos D, Wang S, Kundu DJ, Collins A, George N, Moreno P, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated View of Baseline Protein Expression in Human Tissues. J Proteome Res 2023; 22:729-742. [PMID: 36577097 PMCID: PMC9990129 DOI: 10.1021/acs.jproteome.2c00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The availability of proteomics datasets in the public domain, and in the PRIDE database, in particular, has increased dramatically in recent years. This unprecedented large-scale availability of data provides an opportunity for combined analyses of datasets to get organism-wide protein abundance data in a consistent manner. We have reanalyzed 24 public proteomics datasets from healthy human individuals to assess baseline protein abundance in 31 organs. We defined tissue as a distinct functional or structural region within an organ. Overall, the aggregated dataset contains 67 healthy tissues, corresponding to 3,119 mass spectrometry runs covering 498 samples from 489 individuals. We compared protein abundances between different organs and studied the distribution of proteins across these organs. We also compared the results with data generated in analogous studies. Additionally, we performed gene ontology and pathway-enrichment analyses to identify organ-specific enriched biological processes and pathways. As a key point, we have integrated the protein abundance results into the resource Expression Atlas, where they can be accessed and visualized either individually or together with gene expression data coming from transcriptomics datasets. We believe this is a good mechanism to make proteomics data more accessible for life scientists.
Collapse
Affiliation(s)
- Ananth Prakash
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - David García-Seisdedos
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Shengbo Wang
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Deepti Jaiswal Kundu
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew Collins
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| |
Collapse
|
17
|
Difference Asymmetry between Preferred Dominant and Non-Dominant Legs in Muscular Power and Balance among Sub-Elite Soccer Players in Qatar. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The objective of this study was to determine and compare leg asymmetry between preferred dominant and non-dominant legs in muscular power and balance among sub-elite soccer (football) players in Qatar. Thirty-two professional local soccer players from the Qatar Stars League (Second Division) participated in the study (23.1 ± 6.1 years). They were classified according to their preferred dominant leg (preferred leg to kick the ball). Twenty-two players had a right dominant leg, and the remaining ten had a left dominant leg. Countermovement jump (CMJ) was used to measure unilateral and bilateral vertical jump performances. The Y-balance test (YBT) was used to assess dynamic balance. No significant differences were found between the dominant and non-dominant leg for CMJ flight height (p > 0.05; asymmetry index (AI) = 1.83 ± 11.46) or the relative and absolute reach distance derived from the YBT (p > 0.05; AI (relative) = −0.45 ± 9.68, AI (absolute) = −0.60 ± 12.3). Bilateral asymmetry in dynamic balance was not significant for any of the anterior, posteromedial, or the posterolateral reaching directions (p > 0.05). The selected football players demonstrated an acceptable level of leg symmetry for power and dynamic balance. These findings may prove helpful for the assessment and evaluation of talents and should help to develop and optimize training regimes.
Collapse
|
18
|
Shi D, Ren Z, Zhang H, Wang G, Guo Q, Wang S, Ding J, Yao X, Li Y, Ren K. Amplitude of low-frequency fluctuation-based regional radiomics similarity network: Biomarker for Parkinson's disease. Heliyon 2023; 9:e14325. [PMID: 36950566 PMCID: PMC10025115 DOI: 10.1016/j.heliyon.2023.e14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder that is difficult to diagnose. Therefore, reliable biomarkers are needed. We implemented a method constructing a regional radiomics similarity network (R2SN) based on the amplitude of low-frequency fluctuation (ALFF). We classified patients with PD and healthy individuals by using a machine learning approach in accordance with the R2SN connectome. The ALFF-based R2SN exhibited great reproducibility with different brain atlases and datasets. Great classification performances were achieved both in primary (AUC = 0.85 ± 0.02 and accuracy = 0.81 ± 0.03) and independent external validation (AUC = 0.77 and accuracy = 0.70) datasets. The discriminative R2SN edges correlated with the clinical evaluations of patients with PD. The nodes of discriminative R2SN edges were primarily located in the default mode, sensorimotor, executive control, visual and frontoparietal network, cerebellum and striatum. These findings demonstrate that ALFF-based R2SN is a robust potential neuroimaging biomarker for PD and could provide new insights into connectome reorganization in PD.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhendong Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ding
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Corresponding author. Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
19
|
Fundamental Cause of Bio-Chirality: Space-Time Symmetry—Concept Review. Symmetry (Basel) 2022. [DOI: 10.3390/sym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The search for fundamental determinants of bio-molecular chirality is a hot topic in biology, clarifying the meaning of evolution and the enigma of life’s origin. The question of origin may be resolved assuming that non-biological and biological entities obey nature’s universal laws grounded on space-time symmetry (STS) and space-time relativity (SPR). The fabric of STS is our review’s primary subject. This symmetry, encompassing the behavior of elementary particles and galaxy structure, imposes its fundamental laws on all hierarchical levels of the biological world. From the perspective of STS, objects across spatial scales may be classified as chiral or achiral concerning a specific space-related symmetry transformation: mirror reflection. The chiral object is not identical (i.e., not superimposable) to its mirror image. In geometry, distinguish two kinds of chiral objects. The first one does not have any reflective symmetry elements (a point or plane of symmetry) but may have rotational symmetry axes (dissymmetry). The second one does not have any symmetry elements (asymmetry). As the form symmetry deficiency, Chirality is the critical structural feature of natural systems, including sub-atomic particles and living matter. According to the Standard Model (SM) theory and String Theory (StrT), elementary particles associated with the four fundamental forces of nature determine the existence of micro- and galaxy scales of nature. Therefore, the inheritance of molecular symmetry from the symmetry of elementary particles indicates a bi-directional (internal [(micro-scale) and external (galaxy sale)] causal pathway of prevalent bio-chirality. We assume that the laws of the physical world impact the biological matter’s appearance through both extremities of spatial dimensions. The extended network of multi-disciplinary experimental evidence supports this hypothesis. However, many experimental results are derived and interpreted based on the narrow-view prerogative and highly specific terminology. The current review promotes a holistic approach to experimental results in two fast-developing, seemingly unrelated, divergent branches of STS and biological chirality. The generalized view on the origin of prevalent bio-molecular chirality is necessary for understanding the link between a diverse range of biological events. The chain of chirality transfer links ribosomal protein synthesis, cell morphology, and neuronal signaling with the laterality of cognitive functions.
Collapse
|
20
|
Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:174. [PMID: 36543809 PMCID: PMC9772196 DOI: 10.1038/s41531-022-00437-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
The brain glymphatic system is involved in the clearance of misfolding α-synuclein, the impaired glymphatic system may contribute to the progression of Parkinson's disease (PD). We aimed to analyze the diffusion tensor image along the perivascular space (DTI-ALPS) and perivascular space (PVS) burden to reveal the relationship between the glymphatic system and PD. A cross-sectional study using a 7 T MRI of 76 PD patients and 48 controls was performed to evaluate the brain's glymphatic system. The DTI-ALPS and PVS burden in basal ganglia were calculated. Correlation analyses were conducted between DTI-ALPS, PVS burden and clinical features. We detected lower DTI-ALPS in the PD subgroup relative to controls, and the differences were more pronounced in patients with Hoehn & Yahr stage greater than two. The decreased DTI-ALPS was only evident in the left hemisphere in patients in the early stage but involved both hemispheres in more advanced PD patients. Decreased DTI-ALPS were also correlated with longer disease duration, higher Unified Parkinson's Disease Rating Scale motor score (UPDRS III) and UPDRS total scores, as well as higher levodopa equivalent daily dose. Moreover, the decreased DTI-ALPS correlated with increased PVS burden, and both indexes correlated with PD disease severity. This study demonstrated decreased DTI-ALPS in PD, which might initiate from the left hemisphere and progressively involve right hemisphere with the disease progression. Decreased DTI-ALPS index correlated with increased PVS burden, indicating that both metrics could provide supporting evidence of an impaired glymphatic system. MRI evaluation of the PVS burden and diffusion along PVS are potential imaging biomarkers for PD for disease progression.
Collapse
|
21
|
Angelopoulou E, Bozi M, Simitsi AM, Koros C, Antonelou R, Papagiannakis N, Maniati M, Poula D, Stamelou M, Vassilatis DK, Michalopoulos I, Geronikolou S, Scarmeas N, Stefanis L. Clinical differences between early-onset and mid-and-late-onset Parkinson's disease: Data analysis of the Hellenic Biobank of Parkinson's disease. J Neurol Sci 2022; 442:120405. [PMID: 36081304 DOI: 10.1016/j.jns.2022.120405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Age at onset is one of the most critical factors contributing to the clinical heterogeneity of Parkinson's disease (PD), and available evidence is rather conflicting. OBJECTIVE The aim of this study is to investigate the clinical differences between early-onset PD (EOPD) and mid-and-late-onset PD (MLOPD) in the Greek population, based on the existing data of the Hellenic Biobank of PD (HBPD). METHODS HBPD contains information of PD cases from two centers in Greece during 2006-2017. Patients with the A53T mutation in the SNCA gene or mutations in the GBA1 gene were excluded. Associations between clinical characteristics (motor and non-motor symptoms, side of onset, first symptom, motor complications) and MLOPD versus EOPD were explored with a single logistic regression model adjusting for gender, family history of PD, disease and dopaminergic therapy duration, disease severity (UPDRS III), levodopa equivalent daily dose, as well as each of the other clinical characteristics. RESULTS 675 patients (129 EOPD, 546 MLOPD) were included. EOPD was more frequently associated with dystonia (OR 0.19, 95% CI 0.08-0.50, p < 0.01) and motor complications (0.23, 0.07-0.76, 0.02), compared to MLOPD. Bilateral onset (9.38, 1.05-84.04, 0.045) and autonomic dysfunction (2.31, 1.04-5.11, 0.04) were more frequently associated with MLOPD. CONCLUSIONS EOPD and MLOPD display distinct clinical profiles, regarding motor and non-motor symptoms, side of onset and motor complications in the Greek population. These differences may reflect diverse pathophysiological backgrounds, potentially attributed to genetic or age-related epigenetic influences.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece; Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Maria Bozi
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece
| | - Christos Koros
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece
| | - Roubina Antonelou
- 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Matina Maniati
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Dafni Poula
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Maria Stamelou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece
| | - Demetrios K Vassilatis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Styliani Geronikolou
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 72-74, Athens 115 28, Greece; 2nd Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari 124 62, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece.
| |
Collapse
|
22
|
Yu Z, Huang L, Xia Y, Cheng S, Yang C, Chen C, Zou Z, Wang X, Tian X, Jiang X, Zhou L. Analysis of m6A modification regulators in the substantia nigra and striatum of MPTP-induced Parkinson’s disease mice. Neurosci Lett 2022; 791:136907. [DOI: 10.1016/j.neulet.2022.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
23
|
Southwood D, Singh S, Chatterton Z. Brain-derived cell-free DNA. Neural Regen Res 2022; 17:2213-2214. [PMID: 35259835 PMCID: PMC9083148 DOI: 10.4103/1673-5374.335794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dean Southwood
- Brain and Mind Center, School of Medical Sciences, Department of Neuroscience, The University of Sydney, Camperdown, NSW, Australia
| | - Sanyukta Singh
- Brain and Mind Center, School of Medical Sciences, Department of Neuroscience, The University of Sydney, Camperdown, NSW, Australia
| | - Zac Chatterton
- Brain and Mind Center, School of Medical Sciences, Department of Neuroscience, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
24
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Mesulam MM, Coventry CA, Bigio EH, Sridhar J, Gill N, Fought AJ, Zhang H, Thompson CK, Geula C, Gefen T, Flanagan M, Mao Q, Weintraub S, Rogalski EJ. Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain 2022; 145:2133-2148. [PMID: 35441216 PMCID: PMC9246707 DOI: 10.1093/brain/awab410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Primary progressive aphasia is a neurodegenerative disease that selectively impairs language without equivalent impairment of speech, memory or comportment. In 118 consecutive autopsies on patients with primary progressive aphasia, primary diagnosis was Alzheimer's disease neuropathological changes (ADNC) in 42%, corticobasal degeneration or progressive supranuclear palsy neuropathology in 24%, Pick's disease neuropathology in 10%, transactive response DNA binding proteinopathy type A [TDP(A)] in 10%, TDP(C) in 11% and infrequent entities in 3%. Survival was longest in TDP(C) (13.2 ± 2.6 years) and shortest in TDP(A) (7.1 ± 2.4 years). A subset of 68 right-handed participants entered longitudinal investigations. They were classified as logopenic, agrammatic/non-fluent or semantic by quantitative algorithms. Each variant had a preferred but not invariant neuropathological correlate. Seventy-seven per cent of logopenics had ADNC, 56% of agrammatics had corticobasal degeneration/progressive supranuclear palsy or Pick's disease and 89% of semantics had TDP(C). Word comprehension impairments had strong predictive power for determining underlying neuropathology positively for TDP(C) and negatively for ADNC. Cortical atrophy was smallest in corticobasal degeneration/progressive supranuclear palsy and largest in TDP(A). Atrophy encompassed posterior frontal but not temporoparietal cortex in corticobasal degeneration/progressive supranuclear palsy, anterior temporal but not frontoparietal cortex in TDP(C), temporofrontal but not parietal cortex in Pick's disease and all three lobes with ADNC or TDP(A). There were individual deviations from these group patterns, accounting for less frequent clinicopathologic associations. The one common denominator was progressive asymmetric atrophy overwhelmingly favouring the left hemisphere language network. Comparisons of ADNC in typical amnestic versus atypical aphasic dementia and of TDP in type A versus type C revealed fundamental biological and clinical differences, suggesting that members of each pair may constitute distinct clinicopathologic entities despite identical downstream proteinopathies. Individual TDP(C) participants with unilateral left temporal atrophy displayed word comprehension impairments without additional object recognition deficits, helping to dissociate semantic primary progressive aphasia from semantic dementia. When common and uncommon associations were considered in the set of 68 participants, one neuropathology was found to cause multiple clinical subtypes, and one subtype of primary progressive aphasia to be caused by multiple neuropathologies, but with different probabilities. Occasionally, expected clinical manifestations of atrophy sites were absent, probably reflecting individual peculiarities of language organization. The hemispheric asymmetry of neurodegeneration and resultant language impairment in primary progressive aphasia reflect complex interactions among the cellular affinities of the degenerative disease, the constitutive biology of language cortex, familial or developmental vulnerabilities of this network and potential idiosyncrasies of functional anatomy in the affected individual.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Davee Department of Neurology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christina A Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Angela J Fought
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- School of Communication, Northwestern University, Evanston, IL 60208, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Margaret Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, Pospisilik JA, Aho VTE, Houser MC, Pereira PAB, Rudi K, Paulin L, Tansey MG, Auvinen P, Brundin P, Brundin L, Labrie V, Scheperjans F. Bacterial Butyrate in Parkinson's Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov Disord 2022; 37:1644-1653. [PMID: 35723531 PMCID: PMC9545646 DOI: 10.1002/mds.29128] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aoji Xie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Elizabeth Ensink
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Peipei Li
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Juozas Gordevičius
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Lee L Marshall
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | | | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pedro A B Pereira
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Patrik Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lena Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Viviane Labrie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Guo X, Tang P, Hou C, Chong L, Zhang X, Liu P, Chen L, Liu Y, Zhang L, Li R. Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain. Front Microbiol 2022; 13:875101. [PMID: 35722294 PMCID: PMC9204254 DOI: 10.3389/fmicb.2022.875101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
A link between the gut microbiome and Parkinson’s disease (PD) has been intensively studied, and more than 100 differential genera were identified across the studies. However, the predominant genera contributing to PD remain poorly understood. Inspired by recent advances showing microbiota distribution in the blood and brain, we, here, comprehensively investigated currently available fecal microbiome data (1,914 samples) to identify significantly altered genera, which were further validated by comparison to the results from microbiome analysis of blood (85 samples) and brain (268 samples). Our data showed that the composition of fecal microbiota was different from that of blood and brain. We found that Blautia was the unique genus consistently depleted across feces, blood, and brain samples of PD patients (P < 0.05), despite using rigorous criteria to remove contaminants. Moreover, enrichment analyses revealed that host genes correlated with Blautia genus abundance were mainly involved in mitochondrial function and energy metabolism, and mapped to neurodegenerative diseases (NDDs) and metabolic diseases. A random forest classifier constructed with fecal microbiota data demonstrated that Blautia genus was an important feature contributing to discriminating PD patients from controls [receiver operating characteristic (ROC)-area under curve (AUC) = 0.704, precision-recall curve (PRC)-AUC = 0.787]. Through the integration of microbiome and transcriptome, our study depicted microbial profiles in the feces, blood, and brain of PD patients, and identified Blautia genus as a potential genus linked to PD. Further studies are greatly encouraged to determine the role of Blautia genus in the pathogenesis of PD.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chong
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Xin Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Peng Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chen
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Yue Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Lina Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Rui Li,
| |
Collapse
|
28
|
Termine A, Fabrizio C, Strafella C, Caputo V, Petrosini L, Caltagirone C, Cascella R, Giardina E. A Hybrid Machine Learning and Network Analysis Approach Reveals Two Parkinson's Disease Subtypes from 115 RNA-Seq Post-Mortem Brain Samples. Int J Mol Sci 2022; 23:2557. [PMID: 35269707 PMCID: PMC8910747 DOI: 10.3390/ijms23052557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Precision medicine emphasizes fine-grained diagnostics, taking individual variability into account to enhance treatment effectiveness. Parkinson’s disease (PD) heterogeneity among individuals proves the existence of disease subtypes, so subgrouping patients is vital for better understanding disease mechanisms and designing precise treatment. The purpose of this study was to identify PD subtypes using RNA-Seq data in a combined pipeline including unsupervised machine learning, bioinformatics, and network analysis. Two hundred and ten post mortem brain RNA-Seq samples from PD (n = 115) and normal controls (NCs, n = 95) were obtained with systematic data retrieval following PRISMA statements and a fully data-driven clustering pipeline was performed to identify PD subtypes. Bioinformatics and network analyses were performed to characterize the disease mechanisms of the identified PD subtypes and to identify target genes for drug repurposing. Two PD clusters were identified and 42 DEGs were found (p adjusted ≤ 0.01). PD clusters had significantly different gene network structures (p < 0.0001) and phenotype-specific disease mechanisms, highlighting the differential involvement of the Wnt/β-catenin pathway regulating adult neurogenesis. NEUROD1 was identified as a key regulator of gene networks and ISX9 and PD98059 were identified as NEUROD1-interacting compounds with disease-modifying potential, reducing the effects of dopaminergic neurodegeneration. This hybrid data analysis approach could enable precision medicine applications by providing insights for the identification and characterization of pathological subtypes. This workflow has proven useful on PD brain RNA-Seq, but its application to other neurodegenerative diseases is encouraged.
Collapse
Affiliation(s)
- Andrea Termine
- Data Science Unit, IRCCS Santa Lucia Foundation c/o CERC, 00143 Rome, Italy; (A.T.); (C.F.)
| | - Carlo Fabrizio
- Data Science Unit, IRCCS Santa Lucia Foundation c/o CERC, 00143 Rome, Italy; (A.T.); (C.F.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.S.); (V.C.)
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.S.); (V.C.)
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy;
| | - Laura Petrosini
- Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation c/o CERC, 00143 Rome, Italy;
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy;
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.S.); (V.C.)
- UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
29
|
Miyamoto T, Akaiwa Y, Numahata K, Yoshizawa K, Sairenchi T, Miyamoto M. Striatal dopamine transporter degeneration in right-handed REM sleep behavior disorder patients progresses faster in the left hemisphere. Parkinsonism Relat Disord 2022; 95:107-112. [DOI: 10.1016/j.parkreldis.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
30
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
31
|
Tak YW, Knights E, Henson R, Zeidman P. Ageing and the Ipsilateral M1 BOLD Response: A Connectivity Study. Brain Sci 2021; 11:1130. [PMID: 34573152 PMCID: PMC8470146 DOI: 10.3390/brainsci11091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. In this study, we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI data from 635 participants aged 18-88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD-while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.
Collapse
Affiliation(s)
- Yae Won Tak
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| | - Ethan Knights
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| |
Collapse
|
32
|
Sun J, Gao X, Hua Q, Du R, Liu P, Liu T, Yang J, Qiu B, Ji GJ, Hu P, Wang K. Brain functional specialization and cooperation in Parkinson's disease. Brain Imaging Behav 2021; 16:565-573. [PMID: 34427879 DOI: 10.1007/s11682-021-00526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Cerebral specialization and inter-hemispheric cooperation are two of the most prominent functional architectures of the human brain. Their dysfunctions may be related to pathophysiological changes in patients with Parkinson's disease (PD), who are characterized by unbalanced onset and progression of motor symptoms. This study aimed to characterize the two intrinsic architectures of hemispheric functions in PD using resting-state functional magnetic resonance imaging. Seventy idiopathic PD patients and 70 age-, sex-, and education-matched healthy subjects were recruited. All participants underwent magnetic resonance image scanning and clinical evaluations. The cerebral specialization (Autonomy index, AI) and inter-hemispheric cooperation (Connectivity between Functionally Homotopic voxels, CFH) were calculated and compared between groups. Compared with healthy controls, PD patients showed stronger AI in the left angular gyrus. Specifically, this difference in specialization resulted from increased functional connectivity (FC) of the ipsilateral areas (e.g., the left prefrontal area), and decreased FC in the contralateral area (e.g., the right supramarginal gyrus). Imaging-cognitive correlation analysis indicated that these connectivity were positively related to the score of Montreal Cognitive Assessment in PD patients. CFH between the bilateral sensorimotor regions was significantly decreased in PD patients compared with controls. No significant correlation between CFH and cognitive scores was found in PD patients. This study illustrated a strong leftward specialization but weak inter-hemispheric coordination in PD patients. It provided new insights to further clarify the pathological mechanism of PD.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xiaoran Gao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Qiang Hua
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Rongrong Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Pingping Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
33
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
34
|
Koç B, Fucile G, Schmucki R, Giroud N, Bergauer T, Hall BJ. Identification of Natural Antisense Transcripts in Mouse Brain and Their Association With Autism Spectrum Disorder Risk Genes. Front Mol Neurosci 2021; 14:624881. [PMID: 33716665 PMCID: PMC7947803 DOI: 10.3389/fnmol.2021.624881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide sequencing technologies have greatly contributed to our understanding of the genetic basis of neurodevelopmental disorders such as autism spectrum disorder (ASD). Interestingly, a number of ASD-related genes express natural antisense transcripts (NATs). In some cases, these NATs have been shown to play a regulatory role in sense strand gene expression and thus contribute to brain function. However, a detailed study examining the transcriptional relationship between ASD-related genes and their NAT partners is lacking. We performed strand-specific, deep RNA sequencing to profile expression of sense and antisense reads with a focus on 100 ASD-related genes in medial prefrontal cortex (mPFC) and striatum across mouse post-natal development (P7, P14, and P56). Using de novo transcriptome assembly, we generated a comprehensive long non-coding RNA (lncRNA) transcriptome. We conducted BLAST analyses to compare the resultant transcripts with the human genome and identified transcripts with high sequence similarity and coverage. We assembled 32861 de novo antisense transcripts mapped to 12182 genes, of which 1018 are annotated by Ensembl as lncRNA. We validated the expression of a subset of selected ASD-related transcripts by PCR, including Syngap1 and Cntnap2. Our analyses revealed that more than 70% (72/100) of the examined ASD-related genes have one or more expressed antisense transcripts, suggesting more ASD-related genes than previously thought could be subject to NAT-mediated regulation in mice. We found that expression levels of antisense contigs were mostly positively correlated with their cognate coding sense strand RNA transcripts across developmental age. A small fraction of the examined transcripts showed brain region specific enrichment, indicating possible circuit-specific roles. Our BLAST analyses identified 110 of 271 ASD-related de novo transcripts with >90% identity to the human genome at >90% coverage. These findings, which include an assembled de novo antisense transcriptome, contribute to the understanding of NAT regulation of ASD-related genes in mice and can guide NAT-mediated gene regulation strategies in preclinical investigations toward the ultimate goal of developing novel therapeutic targets for ASD.
Collapse
Affiliation(s)
- Baran Koç
- Faculty of Science, University of Basel, Basel, Switzerland.,Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE Computing Center, University of Basel, Basel, Switzerland
| | - Roland Schmucki
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Giroud
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Bergauer
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Benjamin J Hall
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
35
|
AbdelRazek MA, Hillis JM, Guo Y, Martinez-Lage M, Gholipour T, Sloane J, Cho T, Matiello M. Unilateral Relapsing Primary Angiitis of the CNS: An Entity Suggesting Differences in the Immune Response Between the Cerebral Hemispheres. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e936. [PMID: 33402525 PMCID: PMC7862090 DOI: 10.1212/nxi.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine whether studying patients with strictly unilateral relapsing primary angiitis of the CNS (UR-PACNS) can support hemispheric differences in immune response mechanisms, we reviewed characteristics of a group of such patients. METHODS We surveiled our institution for patients with UR-PACNS, after characterizing one such case. We defined UR-PACNS as PACNS with clinical and radiographic relapses strictly recurring in 1 brain hemisphere, with or without hemiatrophy. PACNS must have been biopsy proven. Three total cases were identified at our institution. A literature search for similar reports yielded 4 additional cases. The combined 7 cases were reviewed for demographic, clinical, imaging, and pathologic trends. RESULTS The median age at time of clinical onset among the 7 cases was 26 years (range 10-49 years); 5 were male (71%). All 7 patients presented with seizures. The mean follow-up duration was 7.5 years (4-14.1 years). The annualized relapse rate ranged between 0.2 and 1. UR-PACNS involved the left cerebral hemisphere in 5 of the 7 patients. There was no consistent relationship between the patient's dominant hand and the diseased side. When performed (5 cases), conventional angiogram was nondiagnostic. CSF examination showed nucleated cells and protein levels in normal range in 3 cases and ranged from 6 to 11 cells/μL and 49 to 110 mg/dL in 4 cases, respectively. All cases were diagnosed with lesional biopsy, showing lymphocytic type of vasculitis of the small- and medium-sized vessels. Patients treated with steroids alone showed progression. Induction therapy with cyclophosphamide or rituximab followed by a steroid sparing agent resulted in the most consistent disease remission. CONCLUSIONS Combining our 3 cases with others reported in the literature allows better clinical understanding about this rare and extremely puzzling disease entity. We hypothesize that a functional difference in immune responses, caused by such discrepancies as basal levels of cytokines, asymmetric distribution of microglia, and differences in modulation of the systemic immune functions, rather than a structural antigenic difference, between the right and left brain may explain this phenomenon, but this is speculative.
Collapse
Affiliation(s)
- Mahmoud A AbdelRazek
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa.
| | - James M Hillis
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Yanjun Guo
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Maria Martinez-Lage
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Taha Gholipour
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Jacob Sloane
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Tracey Cho
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| | - Marcelo Matiello
- From the Neurology Department (M.A.A.), Mount Auburn Hospital, Harvard Medical School, Cambridge, MA; Neurology Department (J.M.H., M.M.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (Y.G.), Beijing Tongren Hospital, Capital Medical University, China; Department of Pathology (M.M.-L.), Massachusetts General Hospital, Harvard Medical School, Boston; Neurology Department (T.G.), The George Washington University, DC; Neurology Department (J.S.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Neurology Department (T.C.), University of Iowa
| |
Collapse
|
36
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Khan NA, Waheeb SA, Riaz A, Shang X. A Three-Stage Teacher, Student Neural Networks and Sequential Feed Forward Selection-Based Feature Selection Approach for the Classification of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10100754. [PMID: 33086634 PMCID: PMC7603385 DOI: 10.3390/brainsci10100754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Autism disorder, generally known as Autism Spectrum Disorder (ASD) is a brain disorder characterized by lack of communication skills, social aloofness and repetitions in the actions in the patients, which is affecting millions of the people across the globe. Accurate identification of autistic patients is considered a challenging task in the domain of brain disorder science. To address this problem, we have proposed a three-stage feature selection approach for the classification of ASD on the preprocessed Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI Dataset. In the first stage, a large neural network which we call a “Teacher ” was trained on the correlation-based connectivity matrix to learn the latent representation of the input. In the second stage an autoencoder which we call a “Student” autoencoder was given the task to learn those trained “Teacher” embeddings using the connectivity matrix input. Lastly, an SFFS-based algorithm was employed to select the subset of most discriminating features between the autistic and healthy controls. On the combined site data across 17 sites, we achieved the maximum 10-fold accuracy of 82% and for the individual site-wise data, based on 5-fold accuracy, our results outperformed other state of the art methods in 13 out of the total 17 site-wise comparisons.
Collapse
Affiliation(s)
- Naseer Ahmed Khan
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
| | - Samer Abdulateef Waheeb
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
| | - Atif Riaz
- Department of Computer Science, University of London, London WC1E 7HU, UK;
| | - Xuequn Shang
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
- Correspondence: ; Tel.: +86-133-1927-3686
| |
Collapse
|
38
|
Epigenomic analysis of Parkinson's disease neurons identifies Tet2 loss as neuroprotective. Nat Neurosci 2020; 23:1203-1214. [PMID: 32807949 DOI: 10.1038/s41593-020-0690-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) pathogenesis may involve the epigenetic control of enhancers that modify neuronal functions. Here, we comprehensively examine DNA methylation at enhancers, genome-wide, in neurons of patients with PD and of control individuals. We find a widespread increase in cytosine modifications at enhancers in PD neurons, which is partly explained by elevated hydroxymethylation levels. In particular, patients with PD exhibit an epigenetic and transcriptional upregulation of TET2, a master-regulator of cytosine modification status. TET2 depletion in a neuronal cell model results in cytosine modification changes that are reciprocal to those observed in PD neurons. Moreover, Tet2 inactivation in mice fully prevents nigral dopaminergic neuronal loss induced by previous inflammation. Tet2 loss also attenuates transcriptional immune responses to an inflammatory trigger. Thus, widespread epigenetic dysregulation of enhancers in PD neurons may, in part, be mediated by increased TET2 expression. Decreased Tet2 activity is neuroprotective, in vivo, and may be a new therapeutic target for PD.
Collapse
|
39
|
Ocklenburg S, Berretz G, Packheiser J, Friedrich P. Laterality 2020: entering the next decade. Laterality 2020; 26:265-297. [DOI: 10.1080/1357650x.2020.1804396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Berretz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
40
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
41
|
Li P, Ensink E, Lang S, Marshall L, Schilthuis M, Lamp J, Vega I, Labrie V. Hemispheric asymmetry in the human brain and in Parkinson's disease is linked to divergent epigenetic patterns in neurons. Genome Biol 2020; 21:61. [PMID: 32151270 PMCID: PMC7063821 DOI: 10.1186/s13059-020-01960-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hemispheric asymmetry in neuronal processes is a fundamental feature of the human brain and drives symptom lateralization in Parkinson's disease (PD), but its molecular determinants are unknown. Here, we identify divergent epigenetic patterns involved in hemispheric asymmetry by profiling DNA methylation in isolated prefrontal cortex neurons from control and PD brain hemispheres. DNA methylation is fine-mapped at enhancers and promoters, genome-wide, by targeted bisulfite sequencing in two independent sample cohorts. RESULTS We find that neurons of the human prefrontal cortex exhibit hemispheric differences in DNA methylation. Hemispheric asymmetry in neuronal DNA methylation patterns is largely mediated by differential CpH methylation, and chromatin conformation analysis finds that it targets thousands of genes. With aging, there is a loss of hemispheric asymmetry in neuronal epigenomes, such that hemispheres epigenetically converge in late life. In neurons of PD patients, hemispheric asymmetry in DNA methylation is greater than in controls and involves many PD risk genes. Epigenetic, transcriptomic, and proteomic differences between PD hemispheres correspond to the lateralization of PD symptoms, with abnormalities being most prevalent in the hemisphere matched to side of symptom predominance. Hemispheric asymmetry and symptom lateralization in PD is linked to genes affecting neurodevelopment, immune activation, and synaptic transmission. PD patients with a long disease course have greater hemispheric asymmetry in neuronal epigenomes than those with a short disease course. CONCLUSIONS Hemispheric differences in DNA methylation patterns are prevalent in neurons and may affect the progression and symptoms of PD.
Collapse
Affiliation(s)
- Peipei Li
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Elizabeth Ensink
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Sean Lang
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Lee Marshall
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Meghan Schilthuis
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Irving Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
- Integrated Mass Spectrometry Unit, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| |
Collapse
|