1
|
Kayal E, Lavrov DV. One Ring does not rule them all: Linear mtDNA in Metazoa. Gene 2025; 933:148999. [PMID: 39396556 DOI: 10.1016/j.gene.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in genome sequencing technologies have facilitated the exploration of the architecture of genomes, including mitochondrial genomes (mtDNA). In particular, whole genome sequencing has provided easier access to mitochondrial genomes with unusual organizations, which were difficult to obtain using traditional PCR-based approaches. As a consequence, there has been a steep increase in complete mtDNA sequences, particularly for Metazoa. The popular view of metazoan mtDNA is that of a small gene-dense circular chromosome. This view clashes with discoveries of a number of linear mtDNAs, particularly in non-bilaterian animals. Here, we review the distribution of linear mtDNA in Metazoa, namely in isopods, cnidarians, and sponges. We discuss the multiple origins of linear mitogenomes in these clades, where linearity has been linked to the likely insertion of a linear plasmid in cnidarians and the demosponge Acanthella acuta, while fixation of a heteroplasmy in the anticodon site of a tRNA might be responsible for the monolinear form of the mtDNA in some isopods. We also summarize our current knowledge of mechanisms that maintain the integrity of linear mitochromosomes, where a recurrent theme is the presence of terminal repeats that likely play the role of telomeres. We caution in defining a linear chromosome as complete, particularly when coding sequences and key features of linear DNA are missing. Finally, we encourage authors interested in mitogenome science to utilize all available data for linear mtDNA, including those tagged as "incomplete" or "unverified" in public databases, as they can still provide useful information such as phylogenetic characters and gene order.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Tapanainen R, Aasumets K, Fekete Z, Goffart S, Dufour E, L O Pohjoismäki J. Species-specific variation in mitochondrial genome tandem repeat polymorphisms in hares (Lepus spp., Lagomorpha, Leporidae) provides insight into their evolution. Gene 2024; 926:148644. [PMID: 38851366 DOI: 10.1016/j.gene.2024.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The non-coding regions of the mitochondrial DNAs (mtDNAs) of hares, rabbits, and pikas (Lagomorpha) contain short (∼20 bp) and long (130-160 bp) tandem repeats, absent in related mammalian orders. In the presented study, we provide in-depth analysis for mountain hare (Lepus timidus) and brown hare (L. europaeus) mtDNA non-coding regions, together with a species- and population-level analysis of tandem repeat variation. Mountain hare short tandem repeats (SRs) as well as other analyzed hare species consist of two conserved 10 bp motifs, with only brown hares exhibiting a single, more variable motif. Long tandem repeats (LRs) also differ in sequence and copy number between species. Mountain hares have four to seven LRs, median value five, while brown hares exhibit five to nine LRs, median value six. Interestingly, introgressed mountain hare mtDNA in brown hares obtained an intermediate LR length distribution, with median copy number being the same as with conspecific brown hare mtDNA. In contrast, transfer of brown hare mtDNA into cultured mtDNA-less mountain hare cells maintained the original LR number, whereas the reciprocal transfer caused copy number instability, suggesting that cellular environment rather than the nuclear genomic background plays a role in the LR maintenance. Due to their dynamic nature and separation from other known conserved sequence elements on the non-coding region of hare mitochondrial genomes, the tandem repeat elements likely to represent signatures of ancient genetic rearrangements. clarifying the nature and dynamics of these rearrangements may shed light on the possible role of NCR repeated elements in mitochondria and in species evolution.
Collapse
Affiliation(s)
- Riikka Tapanainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Koit Aasumets
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Zsófia Fekete
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland; Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Steffi Goffart
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Jaakko L O Pohjoismäki
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland.
| |
Collapse
|
3
|
Chromosomal-level genome assembly and single-nucleotide polymorphism sites of black-faced spoonbill Platalea minor. GIGABYTE 2024; 2024:1-13. [PMID: 39071178 PMCID: PMC11273517 DOI: 10.46471/gigabyte.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Platalea minor, or black-faced spoonbill (Threskiornithidae), is a wading bird confined to coastal areas in East Asia. Due to habitat destruction, it was classified as globally endangered by the International Union for Conservation of Nature. However, the lack of genomic resources for this species hinders the understanding of its biology and diversity, and the development of conservation measures. Here, we report the first chromosomal-level genome assembly of P. minor using a combination of PacBio SMRT and Omni-C scaffolding technologies. The assembled genome (1.24 Gb) contains 95.33% of the sequences anchored to 31 pseudomolecules. The genome assembly has high sequence continuity with scaffold length N50 = 53 Mb. We predicted 18,780 protein-coding genes and measured high BUSCO score completeness (97.3%). Finally, we revealed 6,155,417 bi-allelic single nucleotide polymorphisms, accounting for ∼5% of the genome. This resource offers new opportunities for studying the black-faced spoonbill and developing conservation measures for this species.
Collapse
|
4
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA-Seq for the discovery of long noncoding and antisense RNAs in plant organelles. PHYSIOLOGIA PLANTARUM 2024; 176:e14418. [PMID: 39004808 DOI: 10.1111/ppl.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.
Collapse
Affiliation(s)
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology-Paraná-UTFPR, Cornélio Procópio, PR, Brazil
| | - David Roy Smith
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024:elae026. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Estrada R, Figueroa D, Romero Y, Alvarez-García WY, Rojas D, Alvarado W, Maicelo JL, Quilcate C, Arbizu CI. Complete Mitogenome of "Pumpo" ( Bos taurus), a Top Bull from a Peruvian Genetic Nucleus, and Its Phylogenetic Analysis. Curr Issues Mol Biol 2024; 46:5352-5363. [PMID: 38920992 PMCID: PMC11201737 DOI: 10.3390/cimb46060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Wuesley Yusmein Alvarez-García
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Diorman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (J.L.M.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (J.L.M.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (D.F.); (Y.R.); (W.Y.A.-G.); (D.R.); (C.Q.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Amazonas 01001, Peru
| |
Collapse
|
7
|
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Antunes A, Balacco JR, Chaisson MJP, Cheng H, Collins J, Couture M, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Horan K, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Williams RW, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, Formenti G. Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy. Nat Biotechnol 2024; 42:367-370. [PMID: 38278971 PMCID: PMC11462542 DOI: 10.1038/s41587-023-02100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Delphine Larivière
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Nadolina Brajuka
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Cristóbal Gallardo-Alba
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Bjorn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Alex Ostrovsky
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Marc Palmada-Flores
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | - Brandon D Pickett
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jennifer R Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Melanie Couture
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Alexandra Denisova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | | | - Kathleen Horan
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Cassidy Johnson
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Brian O'Toole
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | - Marius van den Beek
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| | - Michael C Schatz
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
9
|
Alvarenga M, D'Elia AKP, Rocha G, Arantes CA, Henning F, de Vasconcelos ATR, Solé-Cava AM. Mitochondrial genome structure and composition in 70 fishes: a key resource for fisheries management in the South Atlantic. BMC Genomics 2024; 25:215. [PMID: 38413941 PMCID: PMC10898094 DOI: 10.1186/s12864-024-10035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.
Collapse
Affiliation(s)
- Marcela Alvarenga
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Ananda Krishna Pereira D'Elia
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Graciane Rocha
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Clara Alvarez Arantes
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| | - Frederico Henning
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.
| | | | - Antonio Mateo Solé-Cava
- CENIMP, Centro Nacional para a Identificação Molecular do Pescado, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
10
|
Bukhman YV, Meyer S, Chu LF, Abueg L, Antosiewicz-Bourget J, Balacco J, Brecht M, Dinatale E, Fedrigo O, Formenti G, Fungtammasan A, Giri SJ, Hiller M, Howe K, Kihara D, Mamott D, Mountcastle J, Pelan S, Rabbani K, Sims Y, Tracey A, Wood JMD, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. Chromosome level genome assembly of the Etruscan shrew Suncus etruscus. Sci Data 2024; 11:176. [PMID: 38326333 PMCID: PMC10850158 DOI: 10.1038/s41597-024-03011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA.
| | - Susanne Meyer
- Neuroscience Research Institute, University of California - Santa Barbara, 494 UCEN Rd, Isla Vista, CA, 93117, USA
| | - Li-Fang Chu
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Linelle Abueg
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michael Brecht
- BCCN/Humboldt University Berlin, Philippstr, 13 House 6, 10115, Berlin, Germany
| | - Erica Dinatale
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Swagarika Jaharlal Giri
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, 249 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| | - Jacquelyn Mountcastle
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| |
Collapse
|
11
|
Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol 2024; 22:15. [PMID: 38273274 PMCID: PMC10809612 DOI: 10.1186/s12915-024-01824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
12
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
13
|
Destanović D, Schultz DT, Styfhals R, Cruz F, Gómez-Garrido J, Gut M, Gut I, Fiorito G, Simakov O, Alioto TS, Ponte G, Seuntjens E. A chromosome-level reference genome for the common octopus, Octopus vulgaris (Cuvier, 1797). G3 (BETHESDA, MD.) 2023; 13:jkad220. [PMID: 37850903 PMCID: PMC10700109 DOI: 10.1093/g3journal/jkad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.
Collapse
Affiliation(s)
- Dalila Destanović
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Ruth Styfhals
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | | | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Eve Seuntjens
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
14
|
Gomes-dos-Santos A, Vilas-Arrondo N, Machado AM, Román-Marcote E, Del Río Iglesias JL, Baldó F, Pérez M, Fonseca MM, Castro LFC, Froufe E. Mitochondrial replication's role in vertebrate mtDNA strand asymmetry. Open Biol 2023; 13:230181. [PMID: 38113934 PMCID: PMC10730292 DOI: 10.1098/rsob.230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Mitogenomes are defined as compact and structurally stable over aeons. This perception results from a vertebrate-centric vision, where few types of mtDNA rearrangements are described. Here, we bring a new light to the involvement of mitochondrial replication in the strand asymmetry of the vertebrate mtDNA. Using several species of deep-sea hatchetfish (Sternoptychidae) displaying distinct mtDNA structural arrangements, we unravel the inversion of the coding direction of protein-coding genes (PCGs). This unexpected change is coupled with a strand asymmetry nucleotide composition reversal and is shown to be directly related to the strand location of the Control Region (CR). An analysis of the fourfold redundant sites of the PCGs (greater than 6000 vertebrates), revealed the rarity of this phenomenon, found in nine fish species (five deep-sea hatchetfish). Curiously, in Antarctic notothenioid fishes (Trematominae), where a single PCG inversion (the only other record in fish) is coupled with the inversion of the CR, the standard asymmetry is disrupted for the remaining PCGs but not yet reversed, suggesting a transitory state. Our results hint that a relaxation of the classic vertebrate mitochondrial structural stasis promotes disruption of the natural balance of asymmetry of the mtDNA. These findings support the long-lasting hypothesis that replication is the main molecular mechanism promoting the strand-specific compositional bias of this unique and indispensable molecule.
Collapse
Affiliation(s)
- André Gomes-dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Nair Vilas-Arrondo
- Programa de Doctorado ‘Ciencias marinas, Tecnología y Gestión’ (Do*MAR), Universidad de Vigo, Vigo, Spain
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - André M. Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Esther Román-Marcote
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Jose Luís Del Río Iglesias
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Francisco Baldó
- Centro Oceanográfico de Cádiz (COCAD), Instituto Español de Oceanografía (IEO-CSIC), Puerto Pesquero, Muelle de Levante s/n, Cádiz, 11006, Spain
| | - Montse Pérez
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Miguel M. Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - L. Filipe C. Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
15
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Kersten O, Star B, Krabberød AK, Atmore LM, Tørresen OK, Anker-Nilssen T, Descamps S, Strøm H, Johansson US, Sweet PR, Jakobsen KS, Boessenkool S. Hybridization of Atlantic puffins in the Arctic coincides with 20th-century climate change. SCIENCE ADVANCES 2023; 9:eadh1407. [PMID: 37801495 PMCID: PMC10558128 DOI: 10.1126/sciadv.adh1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The Arctic is experiencing the fastest rates of global warming, leading to shifts in the distribution of its biota and increasing the potential for hybridization. However, genomic evidence of recent hybridization events in the Arctic remains unexpectedly rare. Here, we use whole-genome sequencing of contemporary and 122-year-old historical specimens to investigate the origin of an Arctic hybrid population of Atlantic puffins (Fratercula arctica) on Bjørnøya, Norway. We show that the hybridization between the High Arctic, large-bodied subspecies F. a. naumanni and the temperate, smaller-sized subspecies F. a. arctica began as recently as six generations ago due to an unexpected southward range expansion of F. a. naumanni. Moreover, we find a significant temporal loss of genetic diversity across Arctic and temperate puffin populations. Our observations provide compelling genomic evidence of the impacts of recent distributional shifts and loss of diversity in Arctic communities during the 20th century.
Collapse
Affiliation(s)
- Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders K. Krabberød
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M. Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Langnes, Tromsø, Norway
| | | | - Paul R. Sweet
- American Museum of Natural History, New York, NY, USA
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sanne Boessenkool
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Cruz F, Gómez-Garrido J, Gut M, Alioto TS, Pons J, Alós J, Barcelo-Serra M. Chromosome-level assembly and annotation of the Xyrichtys novacula (Linnaeus, 1758) genome. DNA Res 2023; 30:dsad021. [PMID: 37797305 PMCID: PMC10590160 DOI: 10.1093/dnares/dsad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pearly razorfish (Xyrichtys novacula), commonly known as raor in the Balearic Islands, is a wrasse within the family Labridae. This fish species has particular biological and socio-cultural characteristics making it an ideal model organism in the fields of behavioural ecology, molecular ecology and conservation biology. In this study, we present the first annotated chromosome-level assembly for this species. Sequencing involved a combination of long reads with Oxford Nanopore Technologies, Illumina paired-end short reads (2 × 151 bp), Hi-C and RNA-seq from different tissues. The nuclear genome assembly has a scaffold N50 of 34.33 Mb, a total assembly span of 775.53 Mb and 99.63% of the sequence assembled into 24 superscaffolds, consistent with its known karyotype. Quality metrics revealed a consensus accuracy (QV) of 42.92 and gene completeness > 98%. The genome annotation resulted in 26,690 protein-coding genes and 12,737 non-coding transcripts. The coding regions encoded 39,613 unique protein products, 93% of them with assigned function. Overall, the publication of the X. novacula's reference genome will broaden the scope and impact of genomic research conducted on this iconic and colourful species.
Collapse
Affiliation(s)
- Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Joan Pons
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| | - Josep Alós
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| | - Margarida Barcelo-Serra
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| |
Collapse
|
18
|
Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Formenti G, Abueg L, Torrance J, Myers EW, Durbin R, Blaxter M, McCarthy SA. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics 2023; 24:288. [PMID: 37464285 PMCID: PMC10354987 DOI: 10.1186/s12859-023-05385-y] [Citation(s) in RCA: 340] [Impact Index Per Article: 340.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND PacBio high fidelity (HiFi) sequencing reads are both long (15-20 kb) and highly accurate (> Q20). Because of these properties, they have revolutionised genome assembly leading to more accurate and contiguous genomes. In eukaryotes the mitochondrial genome is sequenced alongside the nuclear genome often at very high coverage. A dedicated tool for mitochondrial genome assembly using HiFi reads is still missing. RESULTS MitoHiFi was developed within the Darwin Tree of Life Project to assemble mitochondrial genomes from the HiFi reads generated for target species. The input for MitoHiFi is either the raw reads or the assembled contigs, and the tool outputs a mitochondrial genome sequence fasta file along with annotation of protein and RNA genes. Variants arising from heteroplasmy are assembled independently, and nuclear insertions of mitochondrial sequences are identified and not used in organellar genome assembly. MitoHiFi has been used to assemble 374 mitochondrial genomes (368 Metazoa and 6 Fungi species) for the Darwin Tree of Life Project, the Vertebrate Genomes Project and the Aquatic Symbiosis Genome Project. Inspection of 60 mitochondrial genomes assembled with MitoHiFi for species that already have reference sequences in public databases showed the widespread presence of previously unreported repeats. CONCLUSIONS MitoHiFi is able to assemble mitochondrial genomes from a wide phylogenetic range of taxa from Pacbio HiFi data. MitoHiFi is written in python and is freely available on GitHub ( https://github.com/marcelauliano/MitoHiFi ). MitoHiFi is available with its dependencies as a Docker container on GitHub (ghcr.io/marcelauliano/mitohifi:master).
Collapse
Affiliation(s)
| | - João Gabriel R. N. Ferreira
- Bio Bureau Biotecnologia, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, UniversidadeFederal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - James Torrance
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA UK
| | - Eugene W. Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Richard Durbin
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA UK
| | - Shane A. McCarthy
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| |
Collapse
|
19
|
Kim J, Kim JA, Min MS, Choi JP, Kim MS, Bhak J, An J. The complete mitochondrial genome of Rana coreana (Anura: Ranidae). Mitochondrial DNA B Resour 2023; 8:742-745. [PMID: 37435316 PMCID: PMC10332202 DOI: 10.1080/23802359.2023.2231587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Rana coreana is a brown frog species native to the Korean Peninsula. We characterized the complete mitochondrial genome of the species. The mitochondrial genome sequence of R. coreana is 22,262 bp and comprises 13 protein-coding genes, two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and two control regions (CRs). The CR duplication and gene organization were identical to those observed in Rana kunyuensis and Rana amurensis. A total of 13 protein-coding genes were used to examine the phylogenetic relationships between this species and the genus Rana. R. coreana living on the Korean Peninsula, formed a cluster with R. kunyuensis and R. amurensis, with R. coreana showing the closest phylogenetic affinity for R. kunyuensis.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju, Republic of Korea
| | - Jung A. Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Mi-Sook Min
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Pil Choi
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju, Republic of Korea
| | - Min Sun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju, Republic of Korea
| | - Jong Bhak
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju, Republic of Korea
- Clinomics, Inc., Ulsan, Republic of Korea
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Junghwa An
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| |
Collapse
|
20
|
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Balacco JR, Chaisson M, Cheng H, Collins J, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, Formenti G. Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546576. [PMID: 37425881 PMCID: PMC10327048 DOI: 10.1101/2023.06.28.546576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).
Collapse
Affiliation(s)
- Delphine Larivière
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | - Cristóbal Gallardo-Alba
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bjorn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Alex Ostrovsky
- Departments of Biology and Computer Science, Johns Hopkins University, USA
| | - Marc Palmada-Flores
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Brandon D Pickett
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California
| | | | - Mark Chaisson
- Department of Quantitative and Computational Biology, University of Southern California
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Joanna Collins
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Alexandra Denisova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | | | | | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Cassidy Johnson
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, NY, 10065, USA
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Brian O'Toole
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Marcella Sozzoni
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino (FI)
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | - Marius van den Beek
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Michael C Schatz
- Departments of Biology and Computer Science, Johns Hopkins University, USA
| | - Anton Nekrutenko
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| |
Collapse
|
21
|
Gomez-Garrido J, Cruz F, Alioto TS, Feiner N, Uller T, Gut M, Sanchez Escudero I, Tavecchia G, Rotger A, Otalora Acevedo KE, Baldo L. Chromosome-level genome assembly of Lilford's wall lizard, Podarcis lilfordi (Günther, 1874) from the Balearic Islands (Spain). DNA Res 2023; 30:dsad008. [PMID: 37137526 PMCID: PMC10214862 DOI: 10.1093/dnares/dsad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
The Mediterranean lizard Podarcis lilfordi is an emblematic species of the Balearic Islands. The extensive phenotypic diversity among extant isolated populations makes the species a great insular model system for eco-evolutionary studies, as well as a challenging target for conservation management plans. Here we report the first high-quality chromosome-level assembly and annotation of the P. lilfordi genome, along with its mitogenome, based on a mixed sequencing strategy (10X Genomics linked reads, Oxford Nanopore Technologies long reads and Hi-C scaffolding) coupled with extensive transcriptomic data (Illumina and PacBio). The genome assembly (1.5 Gb) is highly contiguous (N50 = 90 Mb) and complete, with 99% of the sequence assigned to candidate chromosomal sequences and >97% gene completeness. We annotated a total of 25,663 protein-coding genes translating into 38,615 proteins. Comparison to the genome of the related species Podarcis muralis revealed substantial similarity in genome size, annotation metrics, repeat content, and a strong collinearity, despite their evolutionary distance (~18-20 MYA). This genome expands the repertoire of available reptilian genomes and will facilitate the exploration of the molecular and evolutionary processes underlying the extraordinary phenotypic diversity of this insular species, while providing a critical resource for conservation genomics.
Collapse
Affiliation(s)
- Jessica Gomez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ignacio Sanchez Escudero
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, CSIC-UIB, Esporles, Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, CSIC-UIB, Esporles, Spain
| | - Katherin Eliana Otalora Acevedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Fundación Motiva Inteligencia Colectiva, Biodiversity Branch, Tunja, Boyacá, Colombia
| | - Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Minhas BF, Beck EA, Cheng CHC, Catchen J. Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Sci Rep 2023; 13:6939. [PMID: 37117267 PMCID: PMC10147917 DOI: 10.1038/s41598-023-34237-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Mitochondrial genomes are known for their compact size and conserved gene order, however, recent studies employing long-read sequencing technologies have revealed the presence of atypical mitogenomes in some species. In this study, we assembled and annotated the mitogenomes of five Antarctic notothenioids, including four icefishes (Champsocephalus gunnari, C. esox, Chaenocephalus aceratus, and Pseudochaenichthys georgianus) and the cold-specialized Trematomus borchgrevinki. Antarctic notothenioids are known to harbor some rearrangements in their mt genomes, however the extensive duplications in icefishes observed in our study have never been reported before. In the icefishes, we observed duplications of the protein coding gene ND6, two transfer RNAs, and the control region with different copy number variants present within the same individuals and with some ND6 duplications appearing to follow the canonical Duplication-Degeneration-Complementation (DDC) model in C. esox and C. gunnari. In addition, using long-read sequencing and k-mer analysis, we were able to detect extensive heteroplasmy in C. aceratus and C. esox. We also observed a large inversion in the mitogenome of T. borchgrevinki, along with the presence of tandem repeats in its control region. This study is the first in using long-read sequencing to assemble and identify structural variants and heteroplasmy in notothenioid mitogenomes and signifies the importance of long-reads in resolving complex mitochondrial architectures. Identification of such wide-ranging structural variants in the mitogenomes of these fishes could provide insight into the genetic basis of the atypical icefish mitochondrial physiology and more generally may provide insights about their potential role in cold adaptation.
Collapse
Affiliation(s)
- Bushra Fazal Minhas
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Emily A Beck
- Data Science Initiative, University of Oregon, Eugene, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Julian Catchen
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA.
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
23
|
Jia GS, Zhang WC, Liang Y, Liu XH, Rhind N, Pidoux A, Brysch-Herzberg M, Du LL. A high-quality reference genome for the fission yeast Schizosaccharomyces osmophilus. G3 (BETHESDA, MD.) 2023; 13:jkad028. [PMID: 36748990 PMCID: PMC10085805 DOI: 10.1093/g3journal/jkad028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.
Collapse
Affiliation(s)
- Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Han Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Pidoux
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn 74081, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
24
|
Baltazar-Soares M, Karell P, Wright D, Nilsson JÅ, Brommer JE. Bringing to light nuclear-mitochondrial insertions in the genomes of nocturnal predatory birds. Mol Phylogenet Evol 2023; 181:107722. [PMID: 36720422 DOI: 10.1016/j.ympev.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Mito-nuclear insertions, or NUMTs, relate to genetic material of mitochondrial origin that have been transferred to the nuclear DNA molecule. The increasing amounts of genomic data currently being produced presents an opportunity to investigate this type of patterns in genome evolution of non-model organisms. Identifying NUMTs across a range of closely related taxa allows one to generalize patterns of insertion and maintenance in autosomes, which is ultimately relevant to the understanding of genome biology and evolution. Here we collected existing pairwise genome-mitogenome data of the order Strigiformes, a group that includes all the nocturnal bird predators. We identified NUMTs by applying percent similarity thresholds after blasting mitochondrial genomes against nuclear genome assemblies. We identified NUMTsin all genomes with numbers ranging from 4 in Bubo bubo to 24 in Ciccaba nigrolineata. Statistical analyses revealed NUMT size to negatively correlate with NUMT's sequence similarity to with original mtDNA region. Lastly, characterizing these nuclear insertions of mitochondrial origin in a comparative genomics framework produced variable phylogenetic patterns, suggesting in some cases that insertions might pre-date speciation events within Strigiformes.
Collapse
Affiliation(s)
| | - Patrik Karell
- Bioeconomy Research Team, Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600 Raseborg, Finland; Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 39 (Ecology Building), SE-223 62 Lund, Sweden
| | - Dominic Wright
- IFM Biology, Linköping University, Linköping 58183, Sweden
| | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Jon E Brommer
- Department of Biology, University of Turku, Turku 20500, Finland
| |
Collapse
|
25
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Chang J, Stahlke AR, Chudalayandi S, Rosen BD, Childers AK, Severin AJ. polishCLR: A Nextflow Workflow for Polishing PacBio CLR Genome Assemblies. Genome Biol Evol 2023; 15:7040681. [PMID: 36792366 PMCID: PMC9985148 DOI: 10.1093/gbe/evad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Long-read sequencing has revolutionized genome assembly, yielding highly contiguous, chromosome-level contigs. However, assemblies from some third generation long read technologies, such as Pacific Biosciences (PacBio) continuous long reads (CLR), have a high error rate. Such errors can be corrected with short reads through a process called polishing. Although best practices for polishing non-model de novo genome assemblies were recently described by the Vertebrate Genome Project (VGP) Assembly community, there is a need for a publicly available, reproducible workflow that can be easily implemented and run on a conventional high performance computing environment. Here, we describe polishCLR (https://github.com/isugifNF/polishCLR), a reproducible Nextflow workflow that implements best practices for polishing assemblies made from CLR data. PolishCLR can be initiated from several input options that extend best practices to suboptimal cases. It also provides re-entry points throughout several key processes, including identifying duplicate haplotypes in purge_dups, allowing a break for scaffolding if data are available, and throughout multiple rounds of polishing and evaluation with Arrow and FreeBayes. PolishCLR is containerized and publicly available for the greater assembly community as a tool to complete assemblies from existing, error-prone long-read data.
Collapse
Affiliation(s)
- Jennifer Chang
- USDA, Agricultural Research Service, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames
| | - Amanda R Stahlke
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, Beltsville Maryland
| | | | - Benjamin D Rosen
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Genomics and Improvement Laboratory, Beltsville, Maryland
| | - Anna K Childers
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, Beltsville Maryland
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames
| |
Collapse
|
27
|
Stahlke AR, Chang J, Tembrock LR, Sim SB, Chudalayandi S, Geib SM, Scheffler BE, Perera OP, Gilligan TM, Childers AK, Hackett KJ, Coates BS. A Chromosome-Scale Genome Assembly of a Helicoverpa zea Strain Resistant to Bacillus thuringiensis Cry1Ac Insecticidal Protein. Genome Biol Evol 2023; 15:evac131. [PMID: 35959935 PMCID: PMC9990077 DOI: 10.1093/gbe/evac131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. Helicoverpa zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt-resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea, ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices.
Collapse
Affiliation(s)
- Amanda R Stahlke
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| | - Jennifer Chang
- USDA, Agricultural Research Service, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, 141 Experiment Station Road, Stoneville, Mississippi 38776
- USDOE, Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, Tennessee 37831
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50010
| | - Luke R Tembrock
- USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science & Technology, Identification Technology Program, 2301 Research Boulevard, Fort Collins, Colorado 80526
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Sheina B Sim
- USDA, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, 64 Nowelo Street, Hilo, Hawaii 96720
| | - Sivanandan Chudalayandi
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50010
| | - Scott M Geib
- USDA, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, 64 Nowelo Street, Hilo, Hawaii 96720
| | - Brian E Scheffler
- USDA, Agricultural Research Service, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, 141 Experiment Station Road, Stoneville, Mississippi 38776
| | - Omaththage P Perera
- USDA, Agricultural Research Service, Jamie Whitten Delta States Research Center, Southern Insect Management Research Unit, 141 Experiment Station Road, Stoneville, Mississippi 38776
| | - Todd M Gilligan
- USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science & Technology, Identification Technology Program, 2301 Research Boulevard, Fort Collins, Colorado 80526
| | - Anna K Childers
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| | - Kevin J Hackett
- USDA, Agricultural Research Service, Office of National Programs, Crop Production and Protection, 5601 Sunnyside Avenue, Beltsville, Maryland 20705
| | - Brad S Coates
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, Iowa 50011
| |
Collapse
|
28
|
Brasseur MV, Astrin JJ, Geiger MF, Mayer C. MitoGeneExtractor
: Efficient extraction of mitochondrial genes from next‐generation sequencing libraries. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Marie V. Brasseur
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Jonas J. Astrin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Matthias F. Geiger
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Christoph Mayer
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| |
Collapse
|
29
|
Secomandi S, Gallo GR, Sozzoni M, Iannucci A, Galati E, Abueg L, Balacco J, Caprioli M, Chow W, Ciofi C, Collins J, Fedrigo O, Ferretti L, Fungtammasan A, Haase B, Howe K, Kwak W, Lombardo G, Masterson P, Messina G, Møller AP, Mountcastle J, Mousseau TA, Ferrer Obiol J, Olivieri A, Rhie A, Rubolini D, Saclier M, Stanyon R, Stucki D, Thibaud-Nissen F, Torrance J, Torroni A, Weber K, Ambrosini R, Bonisoli-Alquati A, Jarvis ED, Gianfranceschi L, Formenti G. A chromosome-level reference genome and pangenome for barn swallow population genomics. Cell Rep 2023; 42:111992. [PMID: 36662619 PMCID: PMC10044405 DOI: 10.1016/j.celrep.2023.111992] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.
Collapse
Affiliation(s)
- Simona Secomandi
- Department of Biosciences, University of Milan, Milan, Italy; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Alessio Iannucci
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - Elena Galati
- Department of Biosciences, University of Milan, Milan, Italy
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Manuela Caprioli
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luca Ferretti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Anders P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay Cedex, France
| | | | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Joan Ferrer Obiol
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego Rubolini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | | | - Roscoe Stanyon
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Sharbrough J, Bankers L, Cook E, Fields PD, Jalinsky J, McElroy KE, Neiman M, Logsdon JM, Boore JL. Single-molecule Sequencing of an Animal Mitochondrial Genome Reveals Chloroplast-like Architecture and Repeat-mediated Recombination. Mol Biol Evol 2023; 40:6980790. [PMID: 36625177 PMCID: PMC9874032 DOI: 10.1093/molbev/msad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.
Collapse
Affiliation(s)
| | - Laura Bankers
- Department of Biology, University of Iowa, Iowa City, IA
| | - Emily Cook
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Peter D Fields
- Zoologisches Institut, University of Basel, Basel, Switzerland
| | | | - Kyle E McElroy
- Department of Biology, University of Iowa, Iowa City, IA,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, IA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jeffrey L Boore
- Phenome Health and Institute for Systems Biology, Seattle, WA
| |
Collapse
|
31
|
Zhang N, Li Y, Halanych KM, Kong L, Li Q. A comparative analysis of mitochondrial ORFs provides new insights on expansion of mitochondrial genome size in Arcidae. BMC Genomics 2022; 23:809. [PMID: 36474182 PMCID: PMC9727918 DOI: 10.1186/s12864-022-09040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Arcidae, comprising about 260 species of ark shells, is an ecologically and economically important lineage of bivalve mollusks. Interestingly, mitochondrial genomes of several Arcidae species are 2-3 times larger than those of most bilaterians, and are among the largest bilaterian mitochondrial genomes reported to date. The large mitochondrial genome size is mainly due to expansion of unassigned regions (regions that are functionally unassigned). Previous work on unassigned regions of Arcidae mtDNA genomes has focused on nucleotide-level analyses to observe sequence characteristics, however the origin of expansion remains unclear. RESULTS We assembled six new mitogenomes and sequenced six transcriptomes of Scapharca broughtonii to identify conserved functional ORFs that are transcribed in unassigned regions. Sixteen lineage-specific ORFs with different copy numbers were identified from seven Arcidae species, and 11 of 16 ORFs were expressed and likely biologically active. Unassigned regions of 32 Arcidae mitogenomes were compared to verify the presence of these novel mitochondrial ORFs and their distribution. Strikingly, multiple structural analyses and functional prediction suggested that these additional mtDNA-encoded proteins have potential functional significance. In addition, our results also revealed that the ORFs have a strong connection to the expansion of Arcidae mitochondrial genomes and their large-scale duplication play an important role in multiple expansion events. We discussed the possible origin of ORFs and hypothesized that these ORFs may originate from duplication of mitochondrial genes. CONCLUSIONS The presence of lineage-specific mitochondrial ORFs with transcriptional activity and potential functional significance supports novel features for Arcidae mitochondrial genomes. Given our observation and analyses, these ORFs may be products of mitochondrial gene duplication. These findings shed light on the origin and function of novel mitochondrial genes in bivalves and provide new insights into evolution of mitochondrial genome size in metazoans.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
33
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
34
|
Jarvis ED, Formenti G, Rhie A, Guarracino A, Yang C, Wood J, Tracey A, Thibaud-Nissen F, Vollger MR, Porubsky D, Cheng H, Asri M, Logsdon GA, Carnevali P, Chaisson MJP, Chin CS, Cody S, Collins J, Ebert P, Escalona M, Fedrigo O, Fulton RS, Fulton LL, Garg S, Gerton JL, Ghurye J, Granat A, Green RE, Harvey W, Hasenfeld P, Hastie A, Haukness M, Jaeger EB, Jain M, Kirsche M, Kolmogorov M, Korbel JO, Koren S, Korlach J, Lee J, Li D, Lindsay T, Lucas J, Luo F, Marschall T, Mitchell MW, McDaniel J, Nie F, Olsen HE, Olson ND, Pesout T, Potapova T, Puiu D, Regier A, Ruan J, Salzberg SL, Sanders AD, Schatz MC, Schmitt A, Schneider VA, Selvaraj S, Shafin K, Shumate A, Stitziel NO, Stober C, Torrance J, Wagner J, Wang J, Wenger A, Xiao C, Zimin AV, Zhang G, Wang T, Li H, Garrison E, Haussler D, Hall I, Zook JM, Eichler EE, Phillippy AM, Paten B, Howe K, Miga KH. Semi-automated assembly of high-quality diploid human reference genomes. Nature 2022; 611:519-531. [PMID: 36261518 PMCID: PMC9668749 DOI: 10.1038/s41586-022-05325-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/06/2022] [Indexed: 01/01/2023]
Abstract
The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.
Collapse
Affiliation(s)
- Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Guarracino
- Genomics Research Centre, Human Technopole, Viale Rita Levi-Montalcini, Milan, Italy
| | | | - Jonathan Wood
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Mark J P Chaisson
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Sarah Cody
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucinda L Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpa Garg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jay Ghurye
- Dovetail Genomics, Scotts Valley, CA, USA
| | | | - Richard E Green
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - William Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | - Miten Jain
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tina Lindsay
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Julian Lucas
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Jennifer McDaniel
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Fan Nie
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hugh E Olsen
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Nathan D Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Trevor Pesout
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ashley D Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Kishwar Shafin
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Catherine Stober
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | | | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Wang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David Haussler
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ira Hall
- Yale School of Medicine, New Haven, CT, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Evan E Eichler
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
35
|
Andaman local goat: mitochondrial genome characterization and lineage analysis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
The whole mitochondrial genome signature of Teressa goat, an indigenous goat germplasm of Andaman and Nicobar Islands, India. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Milián-García Y, Hempel CA, Janke LAA, Young RG, Furukawa-Stoffer T, Ambagala A, Steinke D, Hanner RH. Mitochondrial genome sequencing, mapping, and assembly benchmarking for Culicoides species (Diptera: Ceratopogonidae). BMC Genomics 2022; 23:584. [PMID: 35962326 PMCID: PMC9375341 DOI: 10.1186/s12864-022-08743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.
Collapse
Affiliation(s)
- Yoamel Milián-García
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Christopher A Hempel
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Lauren A A Janke
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.,John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, 33 Willcocks Street, Toronto, ON, M5S 3B3, Canada
| | - Robert G Young
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Tara Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Disease, 225090 Township Road 9-1, Lethbridge LaboratoryLethbridge, AB, T1J 0P3, Canada
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, 1015, Arlington Street, Winnipeg, MB, R3E 3M4, Canada
| | - Dirk Steinke
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
38
|
Dahn HA, Mountcastle J, Balacco J, Winkler S, Bista I, Schmitt AD, Pettersson OV, Formenti G, Oliver K, Smith M, Tan W, Kraus A, Mac S, Komoroske LM, Lama T, Crawford AJ, Murphy RW, Brown S, Scott AF, Morin PA, Jarvis ED, Fedrigo O. Benchmarking ultra-high molecular weight DNA preservation methods for long-read and long-range sequencing. Gigascience 2022; 11:giac068. [PMID: 35946988 PMCID: PMC9364683 DOI: 10.1093/gigascience/giac068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/26/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types. RESULTS We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20-25% DMSO-EDTA showed little fragment length degradation when stored at 4°C for 6 hours. Samples in 95% EtOH or 20-25% DMSO-EDTA kept at 4°C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield. CONCLUSION We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all ∼70,000 extant vertebrate species.
Collapse
Affiliation(s)
- Hollis A Dahn
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Iliana Bista
- Tree of Life Program, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, Cambridgeshire CB2 3EH, UK
| | | | | | | | - Karen Oliver
- Tree of Life Program, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michelle Smith
- Tree of Life Program, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Wenhua Tan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Anne Kraus
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Stephen Mac
- Arima Genomics, Inc., San Diego, CA 92121, USA
| | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Tanya Lama
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| | - Robert W Murphy
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Samara Brown
- The Rockefeller University, New York, NY 10065, USA
| | - Alan F Scott
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA 92037, USA
| | - Erich D Jarvis
- The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | |
Collapse
|
39
|
Vendrami DLJ, Gossmann TI, Chakarov N, Paijmans AJ, Eyre-Walker A, Forcada J, Hoffman JI. Signatures of selection on mitonuclear integrated genes uncover hidden mitogenomic variation in fur seals. Genome Biol Evol 2022; 14:6637498. [PMID: 35809042 PMCID: PMC9338431 DOI: 10.1093/gbe/evac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear copies of mitochondrial genes (numts) are commonplace in vertebrate genomes and have been characterized in many species. However, relatively little attention has been paid to understanding their evolutionary origins and to disentangling alternative sources of insertions. Numts containing genes with intact mitochondrial reading frames represent good candidates for this purpose. The sequences of the genes they contain can be compared to their mitochondrial homologs to characterize synonymous to non-synonymous substitution rates, which can shed light on the selection pressures these genes have been subjected to. Here, we characterise 25 numts in the Antarctic fur seal (Arctocephalus gazella) genome. Among those containing genes with intact mitochondrial reading frames, three carry multiple substitutions in comparison to their mitochondrial homologs. Our analyses reveal that one represents a historic insertion subjected to strong purifying selection since it colonized the Otarioidea in a genomic region enriched in retrotransposons. By contrast, the other two numts appear to be more recent and their large number of substitutions can be attributed to non-canonical insertions, either the integration of heteroplasmic mtDNA or hybridization. Our study sheds new light on the evolutionary history of pinniped numts and uncovers the presence of hidden sources of mitonuclear variation.
Collapse
Affiliation(s)
- David L J Vendrami
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Toni I Gossmann
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Anneke J Paijmans
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Adam Eyre-Walker
- School of Life Science, University of Sussex, Brighton, BN1 9QG, UK
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany.,British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
40
|
De Vivo M, Lee HH, Huang YS, Dreyer N, Fong CL, de Mattos FMG, Jain D, Wen YHV, Mwihaki JK, Wang TY, Machida RJ, Wang J, Chan BKK, Tsai IJ. Utilisation of Oxford Nanopore sequencing to generate six complete gastropod mitochondrial genomes as part of a biodiversity curriculum. Sci Rep 2022; 12:9973. [PMID: 35705661 PMCID: PMC9200733 DOI: 10.1038/s41598-022-14121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing has enabled genome skimming approaches to produce complete mitochondrial genomes (mitogenomes) for species identification and phylogenomics purposes. In particular, the portable sequencing device from Oxford Nanopore Technologies (ONT) has the potential to facilitate hands-on training from sampling to sequencing and interpretation of mitogenomes. In this study, we present the results from sampling and sequencing of six gastropod mitogenomes (Aplysia argus, Cellana orientalis, Cellana toreuma, Conus ebraeus, Conus miles and Tylothais aculeata) from a graduate level biodiversity course. The students were able to produce mitogenomes from sampling to annotation using existing protocols and programs. Approximately 4 Gb of sequence was produced from 16 Flongle and one MinION flow cells, averaging 235 Mb and N50 = 4.4 kb per flow cell. Five of the six 14.1-18 kb mitogenomes were circlised containing all 13 core protein coding genes. Additional Illumina sequencing revealed that the ONT assemblies spanned over highly AT rich sequences in the control region that were otherwise missing in Illumina-assembled mitogenomes, but still contained a base error of one every 70.8-346.7 bp under the fast mode basecalling with the majority occurring at homopolymer regions. Our findings suggest that the portable MinION device can be used to rapidly produce low-cost mitogenomes onsite and tailored to genomics-based training in biodiversity research.
Collapse
Affiliation(s)
- Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yu-Sin Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Niklas Dreyer
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Natural History Museum of Denmark, University of Copenhagen, Faculty of Science, Copenhagen, Denmark
| | - Chia-Ling Fong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Felipe Monteiro Gomes de Mattos
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Dharmesh Jain
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
| | - Yung-Hui Victoria Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
| | - John Karichu Mwihaki
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryuji J Machida
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
41
|
Patel S, Evans CW, Stuckey A, Matzke NJ, Millar CD. A Unique Mitochondrial Gene Block Inversion in Antarctic Trematomin Fishes: A Cautionary Tale. J Hered 2022; 113:414-420. [PMID: 35657776 PMCID: PMC9308043 DOI: 10.1093/jhered/esac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Many Antarctic notothenioid fishes have major rearrangements in their mitochondrial (mt) genomes. Here, we report the complete mt genomes of 3 trematomin notothenioids: the bald notothen (Trematomus (Pagothenia) borchgrevinki), the spotted notothen (T. nicolai), and the emerald notothen (T. bernacchii). The 3 mt genomes were sequenced using next-generation Illumina technology, and the assemblies verified by Sanger sequencing. When compared with the canonical mt gene order of the Antarctic silverfish (Pleuragramma antarctica), we found a large gene inversion in the 3 trematomin mt genomes that included tRNAIle, ND1, tRNALeu2, 16S, tRNAVal, 12S, tRNAPhe, and the control region. The trematomin mt genomes contained 3 intergenic spacers, which are thought to be the remnants of previous gene and control region duplications. All control regions included the characteristic conserved regulatory sequence motifs. Although short-read next-generation DNA sequencing technology has allowed the rapid and cost-effective sequencing of a large number of complete mt genomes, it is essential in all cases to verify the assembly in order to prevent the publication and use of erroneous data.
Collapse
Affiliation(s)
- Selina Patel
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Clive W Evans
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, Dawson Hall, London EC1M 6BQ, United Kingdom
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
42
|
Cuevas-Caballé C, Ferrer Obiol J, Vizueta J, Genovart M, Gonzalez-Solís J, Riutort M, Rozas J. The First Genome of the Balearic Shearwater (Puffinus mauretanicus) Provides a Valuable Resource for Conservation Genomics and Sheds Light on Adaptation to a Pelagic lifestyle. Genome Biol Evol 2022; 14:evac067. [PMID: 35524941 PMCID: PMC9117697 DOI: 10.1093/gbe/evac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Collapse
Affiliation(s)
- Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Department of Environmental Science and Policy, Università degli Studi di Milano (UniMi), Milan, Italy
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meritxell Genovart
- Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB & Centre for Advanced Studies of Blanes (CEAB), CSIC, Esporles, Spain
| | - Jacob Gonzalez-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
43
|
Gould AL, Henderson JB, Lam AW. Chromosome-Level Genome Assembly of the Bioluminescent Cardinalfish Siphamia tubifer: An Emerging Model for Symbiosis Research. Genome Biol Evol 2022; 14:evac044. [PMID: 35349687 PMCID: PMC9035438 DOI: 10.1093/gbe/evac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The bioluminescent symbiosis involving the sea urchin cardinalfish Siphamia tubifer and the luminous bacterium Photobacterium mandapamensis is an emerging vertebrate model for the study of microbial symbiosis. However, little genetic data are available for the host, limiting the scope of research that can be implemented with this association. We present a chromosome-level genome assembly for S. tubifer using a combination of PacBio HiFi sequencing and Hi-C technologies. The final assembly was 1.2 Gb distributed on 23 chromosomes and contained 32,365 protein coding genes with a BUSCO score of 99%. A comparison of the S. tubifer genome to that of another nonluminous species of cardinalfish revealed a high degree of synteny, whereas a comparison to a more distant relative in the sister order Gobiiformes revealed the fusion of two chromosomes in the cardinalfish genomes. The complete mitogenome of S. tubifer was also assembled, and an inversion in the vertebrate WANCY tRNA genes as well as heteroplasmy in the length of the control region were discovered. A phylogenetic analysis based on whole the mitochondrial genome indicated that S. tubifer is divergent from the rest of the cardinalfish family, highlighting the potential role of the bioluminescent symbiosis in the initial divergence of Siphamia. This high-quality reference genome will provide novel opportunities for the bioluminescent S. tubifer-P. mandapamensis association to be used as a model for symbiosis research.
Collapse
Affiliation(s)
- A. L. Gould
- Ichthyology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| | - J. B. Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| | - A. W. Lam
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| |
Collapse
|
44
|
Palmada-Flores M, Orkin JD, Haase B, Mountcastle J, Bertelsen MF, Fedrigo O, Kuderna LFK, Jarvis ED, Marques-Bonet T. A high-quality, long-read genome assembly of the endangered ring-tailed lemur (Lemur catta). Gigascience 2022; 11:6562532. [PMID: 35365833 PMCID: PMC8975718 DOI: 10.1093/gigascience/giac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 02/19/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The ring-tailed lemur (Lemur catta) is a charismatic strepsirrhine primate endemic to Madagascar. These lemurs are of particular interest, given their status as a flagship species and widespread publicity in the popular media. Unfortunately, a recent population decline has resulted in the census population decreasing to <2,500 individuals in the wild, and the species's classification as an endangered species by the IUCN. As is the case for most strepsirrhine primates, only a limited amount of genomic research has been conducted on L. catta, in part owing to the lack of genomic resources. RESULTS We generated a new high-quality reference genome assembly for L. catta (mLemCat1) that conforms to the standards of the Vertebrate Genomes Project. This new long-read assembly is composed of Pacific Biosciences continuous long reads (CLR data), Optical Mapping Bionano reads, Arima HiC data, and 10X linked reads. The contiguity and completeness of the assembly are extremely high, with scaffold and contig N50 values of 90.982 and 10.570 Mb, respectively. Additionally, when compared to other high-quality primate assemblies, L. catta has the lowest reported number of Alu elements, which results predominantly from a lack of AluS and AluY elements. CONCLUSIONS mLemCat1 is an excellent genomic resource not only for the ring-tailed lemur community, but also for other members of the Lemuridae family, and is the first very long read assembly for a strepsirrhine.
Collapse
Affiliation(s)
- Marc Palmada-Flores
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Joseph D Orkin
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain.,Département d'anthropologie, Université de Montréal, Montréal, QC H3T 1N8, Canada
| | - Bettina Haase
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA
| | | | - Mads F Bertelsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksber 1870, Denmark
| | - Olivier Fedrigo
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA
| | - Lukas F K Kuderna
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Erich D Jarvis
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY 10065, USA.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksber 1870, Denmark.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Laboratory of Neurogenetics of Language, The Rockefeller University, NY 10065, USA
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelon 08028a, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
45
|
Montaña-Lozano P, Moreno-Carmona M, Ochoa-Capera M, Medina NS, Boore JL, Prada CF. Comparative genomic analysis of vertebrate mitochondrial reveals a differential of rearrangements rate between taxonomic class. Sci Rep 2022; 12:5479. [PMID: 35361853 PMCID: PMC8971445 DOI: 10.1038/s41598-022-09512-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrate mitochondrial genomes have been extensively studied for genetic and evolutionary purposes, these are normally believed to be extremely conserved, however, different cases of gene rearrangements have been reported. To verify the level of rearrangement and the mitogenome evolution, we performed a comparative genomic analysis of the 2831 vertebrate mitochondrial genomes representing 12 classes available in the NCBI database. Using a combination of bioinformatics methods, we determined there is a high number of errors in the annotation of mitochondrial genes, especially in tRNAs. We determined there is a large variation in the proportion of rearrangements per gene and per taxonomic class, with higher values observed in Actinopteri, Amphibia and Reptilia. We highlight that these are results for currently available vertebrate sequences, so an increase in sequence representativeness in some groups may alter the rearrangement rates, so in a few years it would be interesting to see if these rates are maintained or altered with the new mitogenome sequences. In addition, within each vertebrate class, different patterns in rearrangement proportion with distinct hotspots in the mitochondrial genome were found. We also determined that there are eleven convergence events in gene rearrangement, nine of which are new reports to the scientific community.
Collapse
Affiliation(s)
- Paula Montaña-Lozano
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Manuela Moreno-Carmona
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Mauricio Ochoa-Capera
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Natalia S Medina
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Jeffrey L Boore
- Providence St. Joseph Health and Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA, 98109, USA
| | - Carlos F Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia.
| |
Collapse
|
46
|
Genner M, Collins R. The genome sequence of the Atlantic horse mackerel, Trachurus trachurus (Linnaeus 1758). Wellcome Open Res 2022; 7:118. [PMID: 36874570 PMCID: PMC9975430 DOI: 10.12688/wellcomeopenres.17813.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
We present a genome assembly from an individual Trachurus trachurus (the Atlantic horse mackerel; Chordata; Actinopteri; Carangiformes; Carangidae). The genome sequence is 801 megabases in span. The majority of the assembly, 98.68%, is scaffolded into 24 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl has identified 25,797 protein coding genes.
Collapse
|
47
|
Vilas-Arrondo N, Gomes-dos-Santos A, Pérez M, Baldó F, Veríssimo A, Catarino D, Machado AM, Román-Marcote E, Bañón R, Froufe E, Castro LFC. A mitochondrial genome assembly of the opal chimaera, Chimaera opalescens Luchetti, Iglésias et Sellos 2011, using PacBio HiFi long reads. Mitochondrial DNA B Resour 2022; 7:434-437. [PMID: 35274036 PMCID: PMC8903783 DOI: 10.1080/23802359.2022.2044403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chondrichthyans (sharks, rays and chimeras) are a fascinating and highly vulnerable group of early branching gnathostomes. However, they remain comparatively poorly sampled from the point of view of molecular resources, with deep water taxa being particularly data deficient. The development of long-read sequencing technologies enables the analysis of phylogenetic relationships through a precise and reliable assembly of complete mtDNA genomes. The sequencing and characterization of the complete mitogenome of the opal chimera Chimera opalescens Luchetti, Iglésias et Sellos 2011, using the long-read technique PacBio HiFi is presented. The entire mitogenome was 23,411 bp long and shows the same overall content, i.e. 13 protein-coding genes, 22 transfer RNA and 2 ribosomal RNA genes, as all other examined Chondrichthyan mitogenomes. Phylogenetic reconstructions using all available Chondrichthyan mitogenomes, including 11 Holocephali (chimeras and ratfishes), places C. opalescens within the Chimaeridae family. Furthermore, the results reinforce previous findings, showing the genus Chimera as paraphyletic and thus highlighting the need to expand molecular approaches in this group of cartilaginous fishes.
Collapse
Affiliation(s)
- Nair Vilas-Arrondo
- AQUACOV, Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
- UVIGO, PhD Program “Marine Science, Technology and Management” (Do*MAR), Faculty of Biology, University of Vigo, Vigo, Spain
| | - André Gomes-dos-Santos
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Montse Pérez
- AQUACOV, Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
| | - Francisco Baldó
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Cádiz, Cádiz, Spain
| | - Ana Veríssimo
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Diana Catarino
- Ocean Sciences Institute - Okeanos, Universidade dos Açores, Horta, Portugal
| | - André M. Machado
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Esther Román-Marcote
- Servizo de Planificación, Consellería do Mar, Xunta de Galicia, Santiago de Compostela, Spain; BIOPESLE, Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
| | - Rafael Bañón
- Ocean Sciences Institute - Okeanos, Universidade dos Açores, Horta, Portugal
- Grupo de Estudos do Medio Mariño (GEMM), Ribeira, Spain
| | - Elsa Froufe
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - L. Filipe C. Castro
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Skorupski J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes (Basel) 2022; 13:genes13010125. [PMID: 35052465 PMCID: PMC8774856 DOI: 10.3390/genes13010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-91-444-16-85
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- The European Mink Centre, 71-415 Szczecin, Poland
| |
Collapse
|
49
|
Emser SV, Schaschl H, Millesi E, Steinborn R. Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators. Front Genet 2021; 12:685806. [PMID: 35027919 PMCID: PMC8749263 DOI: 10.3389/fgene.2021.685806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.
Collapse
Affiliation(s)
- Sarah V. Emser
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
50
|
Secomandi S, Spina F, Formenti G, Gallo GR, Caprioli M, Ambrosini R, Riello S. The genome sequence of the European nightjar, Caprimulgus europaeus (Linnaeus, 1758). Wellcome Open Res 2021; 6:332. [PMID: 35028428 PMCID: PMC8729189 DOI: 10.12688/wellcomeopenres.17451.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
We present a genome assembly from an individual female Caprimulgus europaeus (the European nightjar; Chordata; Aves; Caprimulgiformes; Caprimulgidae). The genome sequence is 1,178 megabases in span. The majority of the assembly (99.33%) is scaffolded into 37 chromosomal pseudomolecules, including the W and Z sex chromosomes.
Collapse
Affiliation(s)
| | - Fernando Spina
- Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Italy
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Manuela Caprioli
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Sara Riello
- Riserva Naturale Statale “Isole di Ventotene e S. Stefano”, Ventotene, Italy
| | - Wellcome Sanger Institute Tree of Life programme
- Department of Biosciences, University of Milan, Milan, Italy
- Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Italy
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
- Riserva Naturale Statale “Isole di Ventotene e S. Stefano”, Ventotene, Italy
| | - Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective
- Department of Biosciences, University of Milan, Milan, Italy
- Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Italy
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
- Riserva Naturale Statale “Isole di Ventotene e S. Stefano”, Ventotene, Italy
| | - Tree of Life Core Informatics collective
- Department of Biosciences, University of Milan, Milan, Italy
- Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Italy
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
- Riserva Naturale Statale “Isole di Ventotene e S. Stefano”, Ventotene, Italy
| | | |
Collapse
|