1
|
Shreesha L, Levin M. Stress sharing as cognitive glue for collective intelligences: A computational model of stress as a coordinator for morphogenesis. Biochem Biophys Res Commun 2024; 731:150396. [PMID: 39018974 PMCID: PMC11356093 DOI: 10.1016/j.bbrc.2024.150396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Individual cells have numerous competencies in physiological and metabolic spaces. However, multicellular collectives can reliably navigate anatomical morphospace towards much larger, reliable endpoints. Understanding the robustness and control properties of this process is critical for evolutionary developmental biology, bioengineering, and regenerative medicine. One mechanism that has been proposed for enabling individual cells to coordinate toward specific morphological outcomes is the sharing of stress (where stress is a physiological parameter that reflects the current amount of error in the context of a homeostatic loop). Here, we construct and analyze a multiscale agent-based model of morphogenesis in which we quantitatively examine the impact of stress sharing on the ability to reach target morphology. We found that stress sharing improves the morphogenetic efficiency of multicellular collectives; populations with stress sharing reached anatomical targets faster. Moreover, stress sharing influenced the future fate of distant cells in the multi-cellular collective, enhancing cells' movement and their radius of influence, consistent with the hypothesis that stress sharing works to increase cohesiveness of collectives. During development, anatomical goal states could not be inferred from observation of stress states, revealing the limitations of knowledge of goals by an extern observer outside the system itself. Taken together, our analyses support an important role for stress sharing in natural and engineered systems that seek robust large-scale behaviors to emerge from the activity of their competent components.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Buckley CL, Lewens T, Levin M, Millidge B, Tschantz A, Watson RA. Natural Induction: Spontaneous Adaptive Organisation without Natural Selection. ENTROPY (BASEL, SWITZERLAND) 2024; 26:765. [PMID: 39330098 PMCID: PMC11431681 DOI: 10.3390/e26090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Evolution by natural selection is believed to be the only possible source of spontaneous adaptive organisation in the natural world. This places strict limits on the kinds of systems that can exhibit adaptation spontaneously, i.e., without design. Physical systems can show some properties relevant to adaptation without natural selection or design. (1) The relaxation, or local energy minimisation, of a physical system constitutes a natural form of optimisation insomuch as it finds locally optimal solutions to the frustrated forces acting on it or between its components. (2) When internal structure 'gives way' or accommodates a pattern of forcing on a system, this constitutes learning insomuch, as it can store, recall, and generalise past configurations. Both these effects are quite natural and general, but in themselves insufficient to constitute non-trivial adaptation. However, here we show that the recurrent interaction of physical optimisation and physical learning together results in significant spontaneous adaptive organisation. We call this adaptation by natural induction. The effect occurs in dynamical systems described by a network of viscoelastic connections subject to occasional disturbances. When the internal structure of such a system accommodates slowly across many disturbances and relaxations, it spontaneously learns to preferentially visit solutions of increasingly greater quality (exceptionally low energy). We show that adaptation by natural induction thus produces network organisations that improve problem-solving competency with experience (without supervised training or system-level reward). We note that the conditions for adaptation by natural induction, and its adaptive competency, are different from those of natural selection. We therefore suggest that natural selection is not the only possible source of spontaneous adaptive organisation in the natural world.
Collapse
Affiliation(s)
- Christopher L. Buckley
- Department of Informatics, University of Sussex, Brighton BN1 9RH, UK; (C.L.B.); (B.M.); (A.T.)
| | - Tim Lewens
- History and Philosophy of Science, Cambridge University, Cambridge CB2 1TN, UK;
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA;
| | - Beren Millidge
- Department of Informatics, University of Sussex, Brighton BN1 9RH, UK; (C.L.B.); (B.M.); (A.T.)
| | - Alexander Tschantz
- Department of Informatics, University of Sussex, Brighton BN1 9RH, UK; (C.L.B.); (B.M.); (A.T.)
| | - Richard A. Watson
- Electronics and Computer Science/Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
3
|
Hartl B, Risi S, Levin M. Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales. ENTROPY (BASEL, SWITZERLAND) 2024; 26:532. [PMID: 39056895 PMCID: PMC11275831 DOI: 10.3390/e26070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In recent years, the scientific community has increasingly recognized the complex multi-scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the structural and functional plasticity of the layer(s) below. The question of how natural selection could give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects of such decision-making competencies of MCA agential components on the process of evolution itself, using in silico neuroevolution experiments of simulated, minimal developmental biology. We specifically model the process of morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis). Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA can regulate their cell states (simulating stochastic processes and noise during development). This allows us to continuously scale the agents' competency levels from a direct encoding scheme (no competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an evolutionary process proceeds much more rapidly when evolving the functional parameters of an MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well toward system parameter changes and even modified objective functions of the evolutionary process. Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico morphogenesis model strongly affect the evolutionary process, suggesting significant functional implications of the near-ubiquitous competency seen in living matter.
Collapse
Affiliation(s)
- Benedikt Hartl
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Institute for Theoretical Physics, Center for Computational Materials Science (CMS), TU Wien, 1040 Wien, Austria
| | - Sebastian Risi
- Digital Design, IT University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Snir O, Elgart M, Gnainsky Y, Goldsmith M, Ciabrelli F, Dagan S, Aviezer I, Stoops E, Cavalli G, Soen Y. Organ transformation by environmental disruption of protein integrity and epigenetic memory in Drosophila. PLoS Biol 2024; 22:e3002629. [PMID: 38805504 PMCID: PMC11161060 DOI: 10.1371/journal.pbio.3002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/07/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
Collapse
Affiliation(s)
- Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elgart
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Filippo Ciabrelli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Kim D, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Khoury S, Shapira M. Microbiome remodeling through bacterial competition and host behavior enables rapid adaptation to environmental toxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545768. [PMID: 37646003 PMCID: PMC10462140 DOI: 10.1101/2023.06.21.545768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Human activity is altering the environment in a rapid pace, challenging the adaptive capacities of genetic variation within animal populations. Animals also harbor extensive gut microbiomes, which play diverse roles in host health and fitness and may help expanding host capabilities. The unprecedented scale of human usage of xenobiotics and contamination with environmental toxins describes one challenge against which bacteria with their immense biochemical diversity would be useful, by increasing detoxification capacities. To explore the potential of bacteria-assisted rapid adaptation, we used Caenorhabditis elegans worms harboring a defined microbiome, and neomycin as a model toxin, harmful for the worm host and neutralized to different extents by some microbiome members. Worms raised in the presence of neomycin showed delayed development and decreased survival but were protected when colonized by neomycin-resistant members of the microbiome. Two distinct mechanisms facilitated this protection: gut enrichment driven by altered bacterial competition for the strain best capable of modifying neomycin; and host avoidance behavior, which depended on the conserved JNK homolog KGB-1, enabling preference and acquisition of neomycin-protective bacteria. We further tested the consequences of adaptation, considering that enrichment for protective strains may represent dysbiosis. We found that neomycin-adapted gut microbiomes caused increased susceptibility to infection as well as an increase in gut lipid storage, suggesting metabolic remodeling. Our proof-of-concept experiments support the feasibility of bacteria-assisted host adaptation and suggest that it may be prevalent. The results also highlight trade-offs between toxin adaptation and other traits of fitness.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Sarah Khoury
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
7
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Bongard J, Levin M. There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines. Biomimetics (Basel) 2023; 8:110. [PMID: 36975340 PMCID: PMC10046700 DOI: 10.3390/biomimetics8010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
Collapse
Affiliation(s)
- Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
9
|
Edelaar P, Otsuka J, Luque VJ. A generalised approach to the study and understanding of adaptive evolution. Biol Rev Camb Philos Soc 2023; 98:352-375. [PMID: 36223883 PMCID: PMC10091731 DOI: 10.1111/brv.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
Collapse
Affiliation(s)
- Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera Utrera km.1, 41013, Seville, Spain.,Swedish Collegium for Advanced Study, Thunbergsvägen 2, SE-75238, Uppsala, Sweden
| | - Jun Otsuka
- Department of Philosophy, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto, 606-8501, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Tokyo, 103-0027, Japan
| | - Victor J Luque
- Department of Philosophy, University of Valencia, Av. de Blasco Ibáñez, 30, 46010, València, Spain
| |
Collapse
|
10
|
Fields C, Levin M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:819. [PMID: 35741540 PMCID: PMC9222757 DOI: 10.3390/e24060819] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022]
Abstract
One of the most salient features of life is its capacity to handle novelty and namely to thrive and adapt to new circumstances and changes in both the environment and internal components. An understanding of this capacity is central to several fields: the evolution of form and function, the design of effective strategies for biomedicine, and the creation of novel life forms via chimeric and bioengineering technologies. Here, we review instructive examples of living organisms solving diverse problems and propose competent navigation in arbitrary spaces as an invariant for thinking about the scaling of cognition during evolution. We argue that our innate capacity to recognize agency and intelligence in unfamiliar guises lags far behind our ability to detect it in familiar behavioral contexts. The multi-scale competency of life is essential to adaptive function, potentiating evolution and providing strategies for top-down control (not micromanagement) to address complex disease and injury. We propose an observer-focused viewpoint that is agnostic about scale and implementation, illustrating how evolution pivoted similar strategies to explore and exploit metabolic, transcriptional, morphological, and finally 3D motion spaces. By generalizing the concept of behavior, we gain novel perspectives on evolution, strategies for system-level biomedical interventions, and the construction of bioengineered intelligences. This framework is a first step toward relating to intelligence in highly unfamiliar embodiments, which will be essential for progress in artificial intelligence and regenerative medicine and for thriving in a world increasingly populated by synthetic, bio-robotic, and hybrid beings.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
| | - Michael Levin
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
12
|
Abstract
Drug resistance and metastasis-the major complications in cancer-both entail adaptation of cancer cells to stress, whether a drug or a lethal new environment. Intriguingly, these adaptive processes share similar features that cannot be explained by a pure Darwinian scheme, including dormancy, increased heterogeneity, and stress-induced plasticity. Here, we propose that learning theory offers a framework to explain these features and may shed light on these two intricate processes. In this framework, learning is performed at the single-cell level, by stress-driven exploratory trial-and-error. Such a process is not contingent on pre-existing pathways but on a random search for a state that diminishes the stress. We review underlying mechanisms that may support this search, and show by using a learning model that such exploratory learning is feasible in a high-dimensional system as the cell. At the population level, we view the tissue as a network of exploring agents that communicate, restraining cancer formation in health. In this view, disease results from the breakdown of homeostasis between cellular exploratory drive and tissue homeostasis.
Collapse
Affiliation(s)
- Aseel Shomar
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Barak
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
- Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Gene regulatory networks exhibit several kinds of memory: quantification of memory in biological and random transcriptional networks. iScience 2021; 24:102131. [PMID: 33748699 PMCID: PMC7970124 DOI: 10.1016/j.isci.2021.102131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Gene regulatory networks (GRNs) process important information in developmental biology and biomedicine. A key knowledge gap concerns how their responses change over time. Hypothesizing long-term changes of dynamics induced by transient prior events, we created a computational framework for defining and identifying diverse types of memory in candidate GRNs. We show that GRNs from a wide range of model systems are predicted to possess several types of memory, including Pavlovian conditioning. Associative memory offers an alternative strategy for the biomedical use of powerful drugs with undesirable side effects, and a novel approach to understanding the variability and time-dependent changes of drug action. We find evidence of natural selection favoring GRN memory. Vertebrate GRNs overall exhibit more memory than invertebrate GRNs, and memory is most prevalent in differentiated metazoan cell networks compared with undifferentiated cells. Timed stimuli are a powerful alternative for biomedical control of complex in vivo dynamics without genomic editing or transgenes. Gene regulatory networks' dynamics are modified by transient stimuli GRNs have several different types of memory, including associative conditioning Evolution favored GRN memory, and differentiated cells have the most memory capacity Training GRNs offers a novel biomedical strategy not dependent on genetic rewiring
Collapse
|
14
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
15
|
Konate M, Wilkinson MJ, Taylor J, Scott ES, Berger B, Rodriguez Lopez CM. Greenhouse Spatial Effects Detected in the Barley ( Hordeum vulgare L.) Epigenome Underlie Stochasticity of DNA Methylation. FRONTIERS IN PLANT SCIENCE 2020; 11:553907. [PMID: 33013971 PMCID: PMC7511590 DOI: 10.3389/fpls.2020.553907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/24/2020] [Indexed: 05/10/2023]
Abstract
Environmental cues are known to alter the methylation profile of genomic DNA, and thereby change the expression of some genes. A proportion of such modifications may become adaptive by adjusting expression of stress response genes but others have been shown to be highly stochastic, even under controlled conditions. The influence of environmental flux on plants adds an additional layer of complexity that has potential to confound attempts to interpret interactions between environment, methylome, and plant form. We therefore adopt a positional and longitudinal approach to study progressive changes to barley DNA methylation patterns in response to salt exposure during development under greenhouse conditions. Methylation-sensitive amplified polymorphism (MSAP) and phenotypic analyses of nine diverse barley varieties were grown in a randomized plot design, under two salt treatments (0 and 75 mM NaCl). Combining environmental, phenotypic and epigenetic data analyses, we show that at least part of the epigenetic variability, previously described as stochastic, is linked to environmental micro-variations during plant growth. Additionally, we show that differences in methylation increase with time of exposure to micro-variations in environment. We propose that subsequent epigenetic studies take into account microclimate-induced epigenetic variability.
Collapse
Affiliation(s)
- Moumouni Konate
- Institut de l'Environnement et de Recherche Agricole (INERA), DRREA-Ouest, Bobo Dioulasso, Burkina Faso
| | - Michael J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth, United Kingdom
- *Correspondence: Carlos Marcelino Rodriguez Lopez, ; Michael J. Wilkinson,
| | - Julian Taylor
- Biometry Hub, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Eileen S. Scott
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Carlos Marcelino Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- *Correspondence: Carlos Marcelino Rodriguez Lopez, ; Michael J. Wilkinson,
| |
Collapse
|
16
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
17
|
Emmons-Bell M, Durant F, Tung A, Pietak A, Miller K, Kane A, Martyniuk CJ, Davidian D, Morokuma J, Levin M. Regenerative Adaptation to Electrochemical Perturbation in Planaria: A Molecular Analysis of Physiological Plasticity. iScience 2019; 22:147-165. [PMID: 31765995 PMCID: PMC6881696 DOI: 10.1016/j.isci.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Anatomical homeostasis results from dynamic interactions between gene expression, physiology, and the external environment. Owing to its complexity, this cellular and organism-level phenotypic plasticity is still poorly understood. We establish planarian regeneration as a model for acquired tolerance to environments that alter endogenous physiology. Exposure to barium chloride (BaCl2) results in a rapid degeneration of anterior tissue in Dugesia japonica. Remarkably, continued exposure to fresh solution of BaCl2 results in regeneration of heads that are insensitive to BaCl2. RNA-seq revealed transcriptional changes in BaCl2-adapted heads that suggests a model of adaptation to excitotoxicity. Loss-of-function experiments confirmed several predictions: blockage of chloride and calcium channels allowed heads to survive initial BaCl2 exposure, inducing adaptation without prior exposure, whereas blockade of TRPM channels reversed adaptation. Such highly adaptive plasticity may represent an attractive target for biomedical strategies in a wide range of applications beyond its immediate relevance to excitotoxicity preconditioning. Exposure to BaCl2 causes the heads of Dugesia japonica to degenerate Prolonged exposure to BaCl2 results in regeneration of a BaCl2-insensitive head Ion channel expression is altered in the head to compensate for excitotoxic stress TRPMa is upregulated in BaCl2-treated animals; blocking TRPM prevents adaptation
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Alexis Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Kelsie Miller
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Anna Kane
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Devon Davidian
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
18
|
Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Phys Life Rev 2019; 33:88-108. [PMID: 31320316 DOI: 10.1016/j.plrev.2019.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular biology such as gene editing [1], bioelectric recording and manipulation [2] and live cell microscopy using fluorescent reporters [3], [4] - especially with the advent of light-controlled protein activation through optogenetics [5] - have provided the tools to measure and manipulate molecular signaling pathways with unprecedented spatiotemporal precision. This has produced ever increasing detail about the molecular mechanisms underlying development and regeneration in biological organisms. However, an overarching concept - that can predict the emergence of form and the robust maintenance of complex anatomy - is largely missing in the field. Classic (i.e., dynamic systems and analytical mechanics) approaches such as least action principles are difficult to use when characterizing open, far-from equilibrium systems that predominate in Biology. Similar issues arise in neuroscience when trying to understand neuronal dynamics from first principles. In this (neurobiology) setting, a variational free energy principle has emerged based upon a formulation of self-organization in terms of (active) Bayesian inference. The free energy principle has recently been applied to biological self-organization beyond the neurosciences [6], [7]. For biological processes that underwrite development or regeneration, the Bayesian inference framework treats cells as information processing agents, where the driving force behind morphogenesis is the maximization of a cell's model evidence. This is realized by the appropriate expression of receptors and other signals that correspond to the cell's internal (i.e., generative) model of what type of receptors and other signals it should express. The emerging field of the free energy principle in pattern formation provides an essential quantitative formalism for understanding cellular decision-making in the context of embryogenesis, regeneration, and cancer suppression. In this paper, we derive the mathematics behind Bayesian inference - as understood in this framework - and use simulations to show that the formalism can reproduce experimental, top-down manipulations of complex morphogenesis. First, we illustrate this 'first principle' approach to morphogenesis through simulated alterations of anterior-posterior axial polarity (i.e., the induction of two heads or two tails) as in planarian regeneration. Then, we consider aberrant signaling and functional behavior of a single cell within a cellular ensemble - as a first step in carcinogenesis as false 'beliefs' about what a cell should 'sense' and 'do'. We further show that simple modifications of the inference process can cause - and rescue - mis-patterning of developmental and regenerative events without changing the implicit generative model of a cell as specified, for example, by its DNA. This formalism offers a new road map for understanding developmental change in evolution and for designing new interventions in regenerative medicine settings.
Collapse
|
19
|
|
20
|
Osmanovic D, Kessler DA, Rabin Y, Soen Y. Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole. Biol Direct 2018; 13:24. [PMID: 30621755 PMCID: PMC6889200 DOI: 10.1186/s13062-018-0224-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts. Results To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent (“detox”). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host’s offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria). Conclusions These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system. Reviewers This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman. Electronic supplementary material The online version of this article (10.1186/s13062-018-0224-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dino Osmanovic
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Yitzhak Rabin
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.,NYU-ECNU Institute of Physics at NYU, Shanghai, 200062, China
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel. .,Department of Physics, Massachusetts Institute of Technology (MIT), MA, 02139, Cambridge, USA.
| |
Collapse
|
21
|
Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Elgart M, Soen Y. Microbiome-Germline Interactions and Their Transgenerational Implications. Bioessays 2017; 40:e1700018. [DOI: 10.1002/bies.201700018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/30/2017] [Indexed: 01/16/2023]
Affiliation(s)
| | - Yoav Soen
- Biomolecular Sciences; Rehovot Israel
| |
Collapse
|
23
|
Was the Watchmaker Blind? Or Was She One-Eyed? BIOLOGY 2017; 6:biology6040047. [PMID: 29261138 PMCID: PMC5745452 DOI: 10.3390/biology6040047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
The question whether evolution is blind is usually presented as a choice between no goals at all ('the blind watchmaker') and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments either way do not address the question whether there are short-term goals within rather than external to organisms. Organisms and their interacting populations have evolved mechanisms by which they can harness blind stochasticity and so generate rapid functional responses to environmental challenges. They can achieve this by re-organising their genomes and/or their regulatory networks. Epigenetic as well as DNA changes are involved. Evolution may have no foresight, but it is at least partially directed by organisms themselves and by the populations of which they form part. Similar arguments support partial direction in the evolution of behavior.
Collapse
|
24
|
Ford BJ. Cellular intelligence: Microphenomenology and the realities of being. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:273-287. [PMID: 28847611 DOI: 10.1016/j.pbiomolbio.2017.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
Abstract
Traditions of Eastern thought conceptualised life in a holistic sense, emphasising the processes of maintaining health and conquering sickness as manifestations of an essentially spiritual principle that was of overriding importance in the conduct of living. Western science, which drove the overriding and partial eclipse of Eastern traditions, became founded on a reductionist quest for ultimate realities which, in the modern scientific world, has embraced the notion that every living process can be successfully modelled by a digital computer system. It is argued here that the essential processes of cognition, response and decision-making inherent in living cells transcend conventional modelling, and microscopic studies of organisms like the shell-building amoebae and the rhodophyte alga Antithamnion reveal a level of cellular intelligence that is unrecognized by science and is not amenable to computer analysis.
Collapse
Affiliation(s)
- Brian J Ford
- Gonville & Caius College, Trinity Street, Cambridge University, CB2 1TA, United Kingdom.
| |
Collapse
|
25
|
Abstract
Since the last major theoretical integration in evolutionary biology—the modern synthesis (MS) of the 1940s—the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the ‘-omics’ revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology.
Collapse
Affiliation(s)
- Gerd B Müller
- Department of Theoretical Biology, University of Vienna, Vienna, Austria.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
26
|
Abstract
The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
27
|
Schreier HI, Soen Y, Brenner N. Exploratory adaptation in large random networks. Nat Commun 2017; 8:14826. [PMID: 28429717 PMCID: PMC5413947 DOI: 10.1038/ncomms14826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
The capacity of cells and organisms to respond to challenging conditions in a repeatable manner is limited by a finite repertoire of pre-evolved adaptive responses. Beyond this capacity, cells can use exploratory dynamics to cope with a much broader array of conditions. However, the process of adaptation by exploratory dynamics within the lifetime of a cell is not well understood. Here we demonstrate the feasibility of exploratory adaptation in a high-dimensional network model of gene regulation. Exploration is initiated by failure to comply with a constraint and is implemented by random sampling of network configurations. It ceases if and when the network reaches a stable state satisfying the constraint. We find that successful convergence (adaptation) in high dimensions requires outgoing network hubs and is enhanced by their auto-regulation. The ability of these empirically validated features of gene regulatory networks to support exploratory adaptation without fine-tuning, makes it plausible for biological implementation. Recent works suggest that cellular networks may respond to novel challenges on the time-scale of cellular lifetimes through large-scale perturbation of gene expression and convergence to a new state. Here, the authors demonstrate the theoretical feasibility of exploratory adaptation in cellular networks by showing that convergence to new states depends on known features of these networks.
Collapse
Affiliation(s)
- Hallel I Schreier
- Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Interdisciplinary Program for Applied Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Brenner
- Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
28
|
Livshits A, Shani-Zerbib L, Maroudas-Sacks Y, Braun E, Keren K. Structural Inheritance of the Actin Cytoskeletal Organization Determines the Body Axis in Regenerating Hydra. Cell Rep 2017; 18:1410-1421. [DOI: 10.1016/j.celrep.2017.01.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
|
29
|
Consuegra S, Rodríguez López CM. Epigenetic-induced alterations in sex-ratios in response to climate change: An epigenetic trap? Bioessays 2016; 38:950-8. [PMID: 27548838 DOI: 10.1002/bies.201600058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We hypothesize that under the predicted scenario of climate change epigenetically mediated environmental sex determination could become an epigenetic trap. Epigenetically regulated environmental sex determination is a mechanism by which species can modulate their breeding strategies to accommodate environmental change. Growing evidence suggests that epigenetic mechanisms may play a key role in phenotypic plasticity and in the rapid adaptation of species to environmental change, through the capacity of organisms to maintain a non-genetic plastic memory of the environmental and ecological conditions experienced by their parents. However, inherited epigenetic variation could also be maladaptive, becoming an epigenetic trap. This is because environmental sex determination can alter sex ratios by increasing the survival of one of the sexes at the expense of negative fitness consequences for the other, which could lead not only to the collapse of natural populations, but also have an impact in farmed animal and plant species.
Collapse
Affiliation(s)
- Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK.
| | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, School of Agriculture, University of Adelaide, Glen Osmond, South Australia, Australia.
| |
Collapse
|
30
|
Adu-Gyamfi R, Wetten A, Marcelino Rodríguez López C. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.). PLoS One 2016; 11:e0158857. [PMID: 27403857 PMCID: PMC4942035 DOI: 10.1371/journal.pone.0158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. KEY MESSAGE Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.
Collapse
Affiliation(s)
- Raphael Adu-Gyamfi
- Faculty of Agriculture, University for Development Studies, P.O. Box TL 1882, Tamale, Ghana
| | - Andy Wetten
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berks, RG6 6AS, United Kingdom
| | - Carlos Marcelino Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
31
|
Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly's germ line. Nat Commun 2016; 7:11280. [PMID: 27080728 PMCID: PMC4835552 DOI: 10.1038/ncomms11280] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. The gut microbiota can play various roles in the host's physiology, but is not known to influence the germ line. Here, Elgart et al. show that certain extracellular gut bacteria can affect oogenesis and embryo development in the fruit fly.
Collapse
Affiliation(s)
- Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Stern
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orit Salton
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gnainsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Heifetz
- Department of Entomology, The Hebrew University, Rehovot 76100, Israel
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|