1
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Peng C, Wang Q, Xu W, Wang X, Zheng Q, Liang X, Dong X, Li F, Peng L. A bifunctional endolytic alginate lyase with two different lyase catalytic domains from Vibrio sp. H204. Front Microbiol 2024; 15:1509599. [PMID: 39735187 PMCID: PMC11671496 DOI: 10.3389/fmicb.2024.1509599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by β-elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium Vibrio sp. Strain H204. The enzyme Aly35 is classified into the polysaccharide lyase 7 superfamily and contains two alginate lyase catalytic domains. The relationship and function of the two lyase domains are not well known. Thus, the full-length recombinant enzyme and its truncated proteins Aly35-CD1 (catalytic domain 1), Aly35-CD2 (catalytic domain 2 domain) were constructed. The three enzymes showed similar biochemical characteristics and exhibited temperature and pH stability. Further research showed that Aly35 and Aly35-CD2 can efficiently degrade alginate, polymannuronate (PM) and polyguluronate (PG) into a series of unsaturated oligosaccharides, while Aly35-CD1 exhibits greater PM-degrading activity than that of Aly35-CD2 but can not degraded PG efficiently. The results suggest that the domain (Trp295-His582) is critical for PG-degrading activity, the domain has (Leu53-Lys286) higher PM-degrading activity, both catalytic domains together confer increased alginate (including M-blocks and G blocks)-degrading activity. The enzyme Aly35 and its truncations Aly35-CD1 and Aly35-CD2 will be useful tools for structural analyses and for preparing bioactive oligosaccharides, especially Aly35-CD1 can be used to prepare G unit-rich oligosaccharides from alginate.
Collapse
Affiliation(s)
- Chune Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qingbin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Wei Xu
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinkun Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaohui Liang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaodan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
3
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
4
|
Baghdasaryan O, Lee-Kin J, Tan C. Architectural engineering of Cyborg Bacteria with intracellular hydrogel. Mater Today Bio 2024; 28:101226. [PMID: 39328785 PMCID: PMC11426140 DOI: 10.1016/j.mtbio.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Synthetic biology primarily uses genetic engineering to control living cells. In contrast, recent work has ushered in the architectural engineering of living cells through intracellular materials. Specifically, Cyborg Bacteria are created by incorporating synthetic PEG-based hydrogel inside cells. Cyborg Bacteria do not replicate but maintain essential cellular functions, including metabolism and protein synthesis. Thus far, Cyborg Bacteria have been engineered using one primary composition of intracellular hydrogel components. Here, we demonstrate the versatility of controlling the physical and biochemical aspects of Cyborg Bacteria using different structures of hydrogels. The intracellular cell-gel architecture is modulated using a different photoinitiator, PEG-diacrylate (PEG-DA) of different molecular weights, 4arm PEG-DA, and dsDNA-PEG. We show that the molecular weight of the PEG-DA affects the generation and metabolism of Cyborg Bacteria. In addition, we show that the hybrid dsDNA-PEG intracellular hydrogel controls protein expression levels of the Cyborg Bacteria through post-transcriptional regulation and polymerase sequestration. Our work creates a new frontier of modulating intracellular gel components to control Cyborg Bacteria function and architecture.
Collapse
Affiliation(s)
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, United States
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, United States
| |
Collapse
|
5
|
Ravichandran M, Kumar TTA, Dineshkumar R. Carbon dioxide capture, sequestration, and utilization models for carbon management and transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55895-55916. [PMID: 39256334 DOI: 10.1007/s11356-024-34861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
The elevated level of carbon dioxide in the atmosphere has become a pressing concern for environmental health due to its contribution to climate change and global warming. Simultaneously, the energy crisis is a significant issue for both developed and developing nations. In response to these challenges, carbon capture, sequestration, and utilization (CCSU) have emerged as promising solutions within the carbon-neutral bioenergy sector. Numerous technologies are available for CCSU including physical, chemical, and biological routes. The aim of this study is to explore the potential of CCSU technologies, specifically focusing on the use of microorganisms based on their well-established metabolic part. By investigating these biological pathways, we aim to develop sustainable strategies for climate management and biofuel production. One of the key novelties of this study lies in the utilization of microorganisms for CO2 fixation and conversion, offering a renewable and efficient method for addressing carbon emissions. Algae, with its high growth rate and lipid contents, exhibits CO2 fixation capabilities during photosynthesis. Similarly, methanogens have shown efficiency in converting CO2 to methane by methanogenesis, offering a viable pathway for carbon sequestration and energy production. In conclusion, our study highlights the importance of exploring biological pathways, which significantly reduce carbon emissions and move towards a more environmentally friendly future. The output of this review highlights the significant potential of CCSU models for future sustainability. Furthermore, this review has been intensified in the current agenda for reduction of CO2 at considerable extends with biofuel upgrading by the microbial-shift reaction.
Collapse
Affiliation(s)
- Mythili Ravichandran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri Salem, 637 303, Tamil Nadu, India
| | | | - Ramar Dineshkumar
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri Salem, 637 303, Tamil Nadu, India.
- Center for Global Health Research, Saveetha Medical College and Hospital , Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
6
|
Elshobary M, Abdullah E, Abdel-Basset R, Metwally M, El-Sheekh M. Maximizing biofuel production from algal biomass: A study on biohydrogen and bioethanol production using Mg Zn ferrite nanoparticles. ALGAL RES 2024; 81:103595. [DOI: 10.1016/j.algal.2024.103595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
7
|
Pandey A. IWBDA 2022: Toward a Modular Future of Synthetic Biology Driven by Bio-Design Automation. ACS Synth Biol 2024; 13:1583-1585. [PMID: 38903006 DOI: 10.1021/acssynbio.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Affiliation(s)
- Ayush Pandey
- University of California, Merced, California 95343, United States
| |
Collapse
|
8
|
Matsumura R, Sato G, Kuruma Y. Protocol for in vitro phospholipid synthesis combining fatty acid synthesis and cell-free gene expression. STAR Protoc 2024; 5:103051. [PMID: 38700978 PMCID: PMC11078692 DOI: 10.1016/j.xpro.2024.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Phospholipids are important biomolecules for the study of lipidomics, signal transduction, biodiesel, and synthetic biology; however, it is difficult to synthesize and analyze phospholipids in a defined in vitro condition. Here, we present a protocol for in vitro production and quantification of phospholipids. We describe steps for preparing a cell-free system consisting of fatty acid synthesis and a gene expression system that synthesizes acyltransferases on liposomes. The whole reaction can be completed within a day and the products are quantified by liquid chromatography-mass spectrometry. For complete details on the use and execution of this protocol, please refer to Eto et al.1.
Collapse
Affiliation(s)
- Rumie Matsumura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho 2-15, Yokosuka 237-0061, Japan
| | - Gaku Sato
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yutetsu Kuruma
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho 2-15, Yokosuka 237-0061, Japan.
| |
Collapse
|
9
|
Maggard IJ, Deel KB, Etoll TW, Sproles RC, Lane TW, Cahoon AB. Freshwater mussels prefer a diet of stramenopiles and fungi over bacteria. Sci Rep 2024; 14:11958. [PMID: 38796489 PMCID: PMC11127930 DOI: 10.1038/s41598-024-62245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
Freshwater mussels (Mollusca: Unionidae) play a crucial role in freshwater river environments where they live in multi-species aggregations and often serve as long-lived benthic ecosystem engineers. Many of these species are imperiled and it is imperative that we understand their basic needs to aid in the reestablishment and maintenance of mussel beds in rivers. In an effort to expand our knowledge of the diet of these organisms, five species of mussel were introduced into enclosed systems in two experiments. In the first, mussels were incubated in water from the Clinch River (Virginia, USA) and in the second, water from a manmade pond at the Commonwealth of Virginia's Aquatic Wildlife Conservation Center in Marion, VA. Quantitative PCR and eDNA metabarcoding were used to determine which planktonic microbes were present before and after the introduction of mussels into each experimental system. It was found that all five species preferentially consumed microeukaryotes over bacteria. Most microeukaryotic taxa, including Stramenopiles and Chlorophytes were quickly consumed by all five mussel species. We also found that they consumed fungi but not as quickly as the microalgae, and that one species of mussel, Ortmanniana pectorosa, consumed bacteria but only after preferred food sources were depleted. Our results provide evidence that siphon feeding Unionid mussels can select preferred microbes from mixed plankton, and mussel species exhibit dietary niche differentiation.
Collapse
Affiliation(s)
| | - Kayla B Deel
- The University of Virginia's College at Wise, Wise, VA, USA
| | - Tina W Etoll
- The University of Virginia's College at Wise, Wise, VA, USA
| | | | - Tim W Lane
- The Aquatic Wildlife Conservation Center, Virginia Department of Wildlife Resources, Marion, VA, USA
| | - A Bruce Cahoon
- The University of Virginia's College at Wise, Wise, VA, USA.
| |
Collapse
|
10
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
11
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
12
|
Luo Z, Wang Z, Tang Y, Sun Y, Jiang Y, Yang W, Chen G, Huang L. Complete mitochondrial genome of an oleaginous microalga Vischeria punctata (Eustigmatophyceae: Chlorobotryaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:94-99. [PMID: 38249358 PMCID: PMC10798287 DOI: 10.1080/23802359.2023.2301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Vischeria punctata, as first described by Vischer in 1945, is a member of the family Chlorobotryaceae, within the order Eustigmatales. This species is recognized for its potential as a source of biofuels and other high-value products. In the present investigation, the whole genome of V. punctata was sequenced utilizing the Illumina HiSeq 4000 platform, enabling the assembly and annotation of its complete mitochondrial genome. The resulting circular genome spans 41,528 base pairs (bp) with a guanine-cytosine (GC) content of 27.3%. This genome encompasses 36 protein-coding genes, alongside 28 transfer RNA (tRNA), and three ribosomal RNA (rRNA) genes. The evolutionary trajectory of V. punctata was further explored by constructing a phylogenetic tree derived from the mitochondrial 33 gene dataset of 16 Ochrophyta species. Comparative analysis reveals that V. punctata bears closer ties to Vischeria sp. CAUP Q202 than to Vischeria stellata strain SAG 33.83, suggesting shared evolutionary pathways and phenotypic traits. This investigation constitutes the inaugural study into the mitochondrial evolution and phylogenetic patterning of the mitogenome in V. punctata. The outcomes from this research bolster our understanding of the genetic diversity and evolutionary processes within the class Eustigmatophyceae. In particular, the mitochondrial genome of V. punctata serves as a valuable resource in elucidating these aspects.
Collapse
Affiliation(s)
- Zhouwei Luo
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yanhang Tang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuexin Sun
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yu Jiang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenjie Yang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ge Chen
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Barghout RA, Xu Z, Betala S, Mahadevan R. Advances in generative modeling methods and datasets to design novel enzymes for renewable chemicals and fuels. Curr Opin Biotechnol 2023; 84:103007. [PMID: 37931573 DOI: 10.1016/j.copbio.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Biotechnology has revolutionized the development of sustainable energy sources by harnessing biomass as a feedstock for energy production. However, challenges such as recalcitrant feedstocks and inefficient metabolic pathways hinder the large-scale integration of renewable energy systems. Enzyme engineering has emerged as a powerful tool to address these challenges by enhancing enzyme activity, specificity, and stability. Generative machine learning (ML) models have shown great promise in accelerating protein design, allowing for the generation of novel protein sequences with desired properties by navigating vast spaces. This review paper aims to summarize the state of the art in generative models for protein design and how they can be applied to bioenergy applications, including the underlying architectures and training strategies. Additionally, it highlights the importance of high-quality datasets for training and evaluating generative models, organizes available datasets for generative protein design, and discusses the potential of applying generative models to strain design for bioenergy production.
Collapse
Affiliation(s)
- Rana A Barghout
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada.
| | - Zhiqing Xu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada
| | - Siddharth Betala
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, Canada
| |
Collapse
|
14
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
15
|
Abed Altuwaijari HN, Farajzadeh MA, Afshar Mogaddam MR, Sorouraddin SM. In-situ formation of a solid adsorbent for the extraction of some metal ions from crude oil before their determination by microflow nebulizer inductively coupled plasma-mass spectrometry. Talanta 2023; 257:124378. [PMID: 36858012 DOI: 10.1016/j.talanta.2023.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
The presence of heavy metals in crude oil can create different problems on the oil processing and devices as well as pollution of the environment. Establishment of sample preparation methods for the extraction of metals from crude oil is the bottleneck of a successful determination method due to high hydrophobicity and complexity of crude oil matrix. In this study, a dispersive solid phase extraction procedure was developed for the simultaneous extraction of sixteen metal ions based on in-situ formation of an adsorbent in the sample solution. For this purpose, a suitable amount of dithiooxamide was dissolved in an organic solvent and was injected into the sample solution. By this action, dithiooxamide was re-precipitated in the sample solution and adsorbed the ions. The solid particles were separated and then the ions were eluted by a few microliters of choline chloride: 5-amino-8-hydroxyquinoline deep eutectic solvent under sonication. The presented method was validated and broad linear ranges (7.56-50000 ng g-1) were obtained for calibration curves with coefficient of determination ≥0.992. Acceptable limits of detection (0.003-2.32 ng g-1) and quantification (0.009-7.56 ng g-1) were achieved. Good precision (relative standard deviation less than or equal to 4.3% for intra and inter-day precisions) and acceptable extraction recoveries (66-91%) were also obtained. Seven crude oil samples were analyzed and ten metal ions were determined successfully. The method was compared with the methods reported in literature and it was found that the data obtained by this method were reliable and accurate.
Collapse
Affiliation(s)
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
16
|
Wang K, Chu J, Hu Z, Qin S, Cui Y. Using bait microalga as an oral delivery vehicle of antimicrobial peptide for controlling Vibrio infection in mussels. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108713. [PMID: 36990258 DOI: 10.1016/j.fsi.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In shellfish aquaculture, antibiotics are commonly used to address Vibrio infections. However, antibiotic abuse has increased the risk of environment pollution, which has also raised food safety concerns. Antimicrobial peptides (AMPs) are considered safe and sustainable alternatives to antibiotics. Hence, in this study, we aimed to develop a transgenic Tetraselmis subcordiformis line harboring AMP-PisL9K22WK for reducing the use of antibiotics in mussel aquaculture. Toward this, pisL9K22WK was assembled into nuclear expression vectors of T. subcordiformis. Post particle bombardment, several stable transgenic lines were selected after 6 months of herbicide resistance culture. Subsequently, Vibrio-infected mussels (Mytilus sp.) were orally fed transgenic T. subcordiformis to test the efficacy of this drug delivery system. The results showed that the transgenic line as an oral antimicrobial agent significantly improved the resistance of mussels to Vibrio. The growth rate of the mussels fed transgenic T. subcordiformis was considerably higher than that of mussels fed wild-type algae (10.35% versus 2.44%). In addition, the possibility of using the lyophilized powder of the transgenic line as drug delivery system was also evaluated; however, compared to that observed after feeding with live cells, the lyophilized powder did not improve the low growth rate caused by Vibrio infection, suggesting that fresh microalgae are more beneficial for the delivery of the PisL9K22WK to mussels than the lyophilized powder. In summary, this is a promising step toward the development of safe and environment-friendly antimicrobial baits.
Collapse
Affiliation(s)
- Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinling Chu
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong Province, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong Province, China; School of Pharmacy (School of Enology), Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
17
|
Fuchs D, Bauer A, Bogner A. "That was not the discussion we wanted to have": Engagement of civil society organizations with synthetic biology. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2023:9636625231164940. [PMID: 37092655 DOI: 10.1177/09636625231164940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Responsible Research and Innovation calls for comprehensive public and stakeholder involvement. Its specific requirements, however, have raised criticism concerning the limitation of engagement opportunities for actors like Civil Society Organizations that do not share mainstream perspectives on technological innovations. Our article investigates the engagement of critical Civil Society Organizations in public debates and dialogues on synthetic biology and asks how they contribute to opening up respective debates. Based on three case studies, we show how Civil Society Organizations engage in and frame the debate on synthetic biology in different organizational formats. We find that Civil Society Organizations have explicitly challenged visions of a sustainable future by airing concerns about its risks and adverse impacts and engage in ontological debates about synthetic biology. Yet, we argue that different engagement formats are needed to ensure a diverse public debate on synthetic biology.
Collapse
Affiliation(s)
- Daniela Fuchs
- Institute of Technology Assessment, Austria; Centre of Social Innovation, Austria
| | | | | |
Collapse
|
18
|
Bayraktar M, Pamik M, Sokukcu M, Yuksel O. A SWOT-AHP analysis on biodiesel as an alternative future marine fuel. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2023; 25:1-16. [PMID: 37359168 PMCID: PMC10015539 DOI: 10.1007/s10098-023-02501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Alternative fuels especially those produced in a green way are essential for meeting supplying the world's growing energy needs. Biodiesel is becoming more prominent to meet international maritime organization regulations, minimize reliance on fossil fuels, and lessen the rising harmful emissions in the maritime sector. Four different generations have been investigated in the production stage in which a wide range of fuel types have existed including biodiesel, bioethanol, and renewable diesel. To investigate all facets of biodiesel usage as a marine fuel, the SWOT-AHP method is utilized in this paper in which 16 maritime experts with an average of 10.5 years of experience participated. SWOT factors and sub-factors have been developed in light of the literature review focused on biomass and alternative fuels. The AHP method is utilized for data acquisition from specified factors and sub-factors according to their superiority to each other. The analysis demonstrates the main factors 'PW and sub-factors' IPW values, and CR values to calculate the local and global rank of factors. Results highlighted that "Opportunity" has the highest prominence among the main factors; however, "Threats" remain at the lowest level. Moreover, "Tax privilege on green and alternative fuels supported by the authorities" (O4) is the one with the highest weight compared to the other sub-factors. Noteworthy energy consumption will be fulfilled in the maritime industry in addition to the development of new-generation biodiesel and other alternative fuels. This paper will be a quite valuable resource for experts, academics, and industry stakeholders to lessen the ambiguity around biodiesel. Graphical abstract
Collapse
Affiliation(s)
- Murat Bayraktar
- Maritime Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Murat Pamik
- Maritime Faculty, Dokuz Eylül University, Izmir, Turkey
| | | | - Onur Yuksel
- Maritime Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
19
|
Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Globally, nations are trying to address environmental issues such as global warming and climate change, along with the burden of declining fossil fuel reserves. Furthermore, countries aim to reach zero carbon emissions within the existing and rising global energy crisis. Therefore, bio-based alternative sustainable feedstocks are being explored for producing bioenergy. One such renewable energy resource is microalgae; these are photosynthetic microorganisms that grow on non-arable land, in extreme climatic conditions, and have the ability to thrive even in sea and wastewater. Microalgae have high photosynthetic efficiencies and biomass productivity compared to other terrestrial plants. Whole microalgae biomass or their extracted metabolites can be converted to various biofuels such as bioethanol, biodiesel, biocrude oil, pyrolytic bio-oil, biomethane, biohydrogen, and bio jet fuel. However, several challenges still exist before faster and broader commercial application of microalgae as a sustainable bioenergy feedstock for biofuel production. Selection of appropriate microalgal strains, development of biomass pre-concentrating techniques, and utilization of wet microalgal biomass for biofuel production, coupled with an integrated biorefinery approach for producing value-added products, could improve the environmental sustainability and economic viability of microalgal biofuel. This article will review the current status of research on microalgal biofuels and their future perspective.
Collapse
|
20
|
Ota S, Yoshimura K, Kosugi C, Kawano S. Taxonomic and physiological studies of Parachlorella kimitsuensis sp. nov. (Trebouxiophyceae), which shows high ammonium tolerance. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
21
|
Deng K, Wang X, Ing N, Opgenorth P, de Raad M, Kim J, Simmons BA, Adams PD, Singh AK, Lee TS, Northen TR. Rapid quantification of alcohol production in microorganisms based on nanostructure-initiator mass spectrometry (NIMS). Anal Biochem 2023; 662:114997. [PMID: 36435200 DOI: 10.1016/j.ab.2022.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
We described a mass spectrometry-based assay to rapidly quantify the production of primary alcohols directly from cell cultures. This novel assay used the combination of TEMPO-based oxidation chemistry and oxime ligation, followed by product analysis based on Nanostructure-Initiator Mass Spectrometry. This assay enables quantitative monitor both C5 to C18 alcohols as well as glucose and gluconate in the growth medium to support strain characterization and optimization. We find that this assay yields similar results to gas chromatography for isoprenol production but required much less acquisition time per sample. We applied this assay to gain new insights into P. Putida's utilization of alcohols and find that this strain largely could not grow on heptanol and octanol.
Collapse
Affiliation(s)
- Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Sandia National Laboratories, Livermore, CA, 94551, USA.
| | - Xi Wang
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nicole Ing
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Paul Opgenorth
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus de Raad
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinho Kim
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; University of California, Berkeley, CA, 94720, USA
| | - Anup K Singh
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
22
|
Bhatia L, Jha H, Sarkar T, Sarangi PK. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032318. [PMID: 36767685 PMCID: PMC9916134 DOI: 10.3390/ijerph20032318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
There is world-wide generation of food waste daily in significant amounts, leading to depletion of natural resources and deteriorating air quality. One-third of global food produced is wasted laterally with the food value chain. Carbon footprint is an efficient way of communicating the issues related to climate change and the necessity of changing behavior. Valorization or utilization of food wastes helps in resolving issues related to environment pollution. Reduction in the carbon footprint throughout the chain of food supply makes the whole process eco-friendly. Prevailing food waste disposal systems focus on their economic and environmental viability and are putting efforts into using food waste as a resource input to agriculture. Effective and advanced waste management systems are adopted to deal with massive waste production so as to fill the gap between the production and management of waste disposal. Food waste biorefineries are a sustainable, eco-friendly, and cost-effective approach for the production of platform chemicals, biofuels, and other bio-based materials. These materials not only provide sustainable resources for producing various chemicals and materials but have the potential to reduce this huge environmental burden significantly. In this regard, technological advancement has occurred in past few years that has proven suitable for tackling this problem.
Collapse
Affiliation(s)
- Latika Bhatia
- Department of Microbiology & Bioinformatics, Atal Bihari Vajpayee University, Bilaspur 495001, India
| | - Harit Jha
- Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India
| | - Tanushree Sarkar
- Department of Biotechnology, Guru Ghasidas University, Bilaspur 495009, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, India
- Correspondence:
| |
Collapse
|
23
|
Ono H, Saito H. Sensing intracellular signatures with synthetic mRNAs. RNA Biol 2023; 20:588-602. [PMID: 37582192 PMCID: PMC10431736 DOI: 10.1080/15476286.2023.2244791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
The bottom-up assembly of biological components in synthetic biology has contributed to a better understanding of natural phenomena and the development of new technologies for practical applications. Over the past few decades, basic RNA research has unveiled the regulatory roles of RNAs underlying gene regulatory networks; while advances in RNA biology, in turn, have highlighted the potential of a wide variety of RNA elements as building blocks to construct artificial systems. In particular, synthetic mRNA-based translational regulators, which respond to signals in cells and regulate the production of encoded output proteins, are gaining attention with the recent rise of mRNA therapeutics. In this Review, we discuss recent progress in RNA synthetic biology, mainly focusing on emerging technologies for sensing intracellular protein and RNA molecules and controlling translation.
Collapse
Affiliation(s)
- Hiroki Ono
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Sakyo-Ku, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Sakyo-Ku, Japan
| |
Collapse
|
24
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
25
|
Saravanan A, Deivayanai VC, Senthil Kumar P, Rangasamy G, Varjani S. CO 2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. BIORESOURCE TECHNOLOGY 2022; 363:127982. [PMID: 36126842 DOI: 10.1016/j.biortech.2022.127982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
CO2 sequestration carried by biological methodologies shows enhanced potential and has the advantage that biomass produced from the captured CO2 can be used for different applications. Bio-mitigation of carbons through a micro-algal system addresses a promising and feasible option. This review mostly focused on the role of algae, particular mechanisms, bioreactors in algae cultivation, and genetically modified algae in CO2 fixation and energy generation systems. A combination of CO2 bio-mitigation and biofuel production might deliver an extremely promising alternative to current CO2 mitigation systems. Bio mitigation in which the excess carbon is captured and bio fixation which the carbon is captured by algae or autotrophs and used for producing biofuel. This review revealed that steps for biofuel production from algae include factors affecting, harvesting techniques, oil extraction and transesterification. This review helps environmentalists and researchers to assess the effect of algae-based biorefinery on the green environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| |
Collapse
|
26
|
Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022; 14:1325-1340. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.
Collapse
|
27
|
An Overview of the production and prospect of polyhydroxyalkanote (PHA)-based biofuels: Opportunities and limitations. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022; 15:1946-1965. [PMID: 35338590 PMCID: PMC9249334 DOI: 10.1111/1751-7915.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high‐throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.
Collapse
Affiliation(s)
- Samuel J King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ante Jerkovic
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
30
|
Madhavan M, Mustafa S. Systems biology–the transformative approach to integrate sciences across disciplines. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Life science is the study of living organisms, including bacteria, plants, and animals. Given the importance of biology, chemistry, and bioinformatics, we anticipate that this chapter may contribute to a better understanding of the interdisciplinary connections in life science. Research in applied biological sciences has changed the paradigm of basic and applied research. Biology is the study of life and living organisms, whereas science is a dynamic subject that as a result of constant research, new fields are constantly emerging. Some fields come and go, whereas others develop into new, well-recognized entities. Chemistry is the study of composition of matter and its properties, how the substances merge or separate and also how substances interact with energy. Advances in biology and chemistry provide another means to understand the biological system using many interdisciplinary approaches. Bioinformatics is a multidisciplinary or rather transdisciplinary field that encourages the use of computer tools and methodologies for qualitative and quantitative analysis. There are many instances where two fields, biology and chemistry have intersection. In this chapter, we explain how current knowledge in biology, chemistry, and bioinformatics, as well as its various interdisciplinary domains are merged into life sciences and its applications in biological research.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry , Government College for Women , Thiruvananthapuram , Kerala , India
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics , King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA) , Riyadh , Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Banu JR, Varjani S, Sharma P, Pandey A, Kumar S, Kim SH. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. J Biotechnol 2021; 345:1-16. [PMID: 34954289 DOI: 10.1016/j.jbiotec.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Microalgae have a number of intriguing characteristics that make them a viable raw material aimed at usage in a variety of applications when refined using a bio-refining process. They offer unique capabilities that allow them to be used in biotechnology-related applications. As a result, this review explores how to increase the extent to which microalgae may be integrated with various additional biorefinery uses in order to improve their maintainability. In this study, the use of microalgae as potential animal feed, manure, medicinal, cosmeceutical, ecological, and other biotechnological uses is examined in its entirety. It also includes information on the boundaries, openings, and improvements of microalgae and the possibilities of increasing the range of microalgae through techno-economic analysis. According to the findings of this review, financing supported research and shifting the focus of microalgal investigations from biofuels production to biorefinery co-products can help guarantee that they remain a viable resource. Furthermore, innovation collaboration is unavoidable if one wishes to avoid the high cost of microalgae biomass handling. This review is expected to be useful in identifying the possible role of microalgae in biorefinery applications in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080 Chelyabinsk, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Ashok Pandey
- Centre for Innovation and TranslationalResearch, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
32
|
McBride CD, Del Vecchio D. Predicting Composition of Genetic Circuits with Resource Competition: Demand and Sensitivity. ACS Synth Biol 2021; 10:3330-3342. [PMID: 34780149 DOI: 10.1021/acssynbio.1c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design of genetic circuits typically relies on characterization of constituent modules in isolation to predict the behavior of modules' composition. However, it has been shown that the behavior of a genetic module changes when other modules are in the cell due to competition for shared resources. In order to engineer multimodule circuits that behave as intended, it is thus necessary to predict changes in the behavior of a genetic module when other modules load cellular resources. Here, we introduce two characteristics of circuit modules: the demand for cellular resources and the sensitivity to resource loading. When both are known for every genetic module in a circuit library, they can be used to predict any module's behavior upon addition of any other module to the cell. We develop an experimental approach to measure both characteristics for any circuit module using a resource sensor module. Using the measured resource demand and sensitivity for each module in a library, the outputs of the modules can be accurately predicted when they are inserted in the cell in arbitrary combinations. These resource competition characteristics may be used to inform the design of genetic circuits that perform as predicted despite resource competition.
Collapse
Affiliation(s)
- Cameron D. McBride
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, United States
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
33
|
Yang HP, Wenzel M, Hauser DA, Nelson JM, Xu X, Eliáš M, Li FW. Monodopsis and Vischeria Genomes Shed New Light on the Biology of Eustigmatophyte Algae. Genome Biol Evol 2021; 13:6402010. [PMID: 34665222 PMCID: PMC8570151 DOI: 10.1093/gbe/evab233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 11/12/2022] Open
Abstract
Members of eustigmatophyte algae, especially Nannochloropsis and Microchloropsis, have been tapped for biofuel production owing to their exceptionally high lipid content. Although extensive genomic, transcriptomic, and synthetic biology toolkits have been made available for Nannochloropsis and Microchloropsis, very little is known about other eustigmatophytes. Here we present three near-chromosomal and gapless genome assemblies of Monodopsis strains C73 and C141 (60 Mb) and Vischeria strain C74 (106 Mb), which are the sister groups to Nannochloropsis and Microchloropsis in the order Eustigmatales. These genomes contain unusually high percentages of simple repeats, ranging from 12% to 21% of the total assembly size. Unlike Nannochloropsis and Microchloropsis, long interspersed nuclear element repeats are abundant in Monodopsis and Vischeria and might constitute the centromeric regions. We found that both mevalonate and nonmevalonate pathways for terpenoid biosynthesis are present in Monodopsis and Vischeria, which is different from Nannochloropsis and Microchloropsis that have only the latter. Our analysis further revealed extensive spliced leader trans-splicing in Monodopsis and Vischeria at 36-61% of genes. Altogether, the high-quality genomes of Monodopsis and Vischeria not only serve as the much-needed outgroups to advance Nannochloropsis and Microchloropsis research, but also shed new light on the biology and evolution of eustigmatophyte algae.
Collapse
Affiliation(s)
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | - Xia Xu
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, USA.,Plant Biology Section, Cornell University, USA
| |
Collapse
|
34
|
Wang Z, Hao L, Ren Z, Lin CSK, Li Y. Metabolic profiling identified phosphatidylcholin as potential biomarker in boosting lipid accumulation in multiple microalgae. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Gupta D, Sharma G, Saraswat P, Ranjan R. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 2021; 63:1138-1154. [PMID: 34420149 DOI: 10.1007/s12033-021-00386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Gauri Sharma
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
37
|
Design and Evaluation of Synthetic RNA-Based Incoherent Feed-Forward Loop Circuits. Biomolecules 2021; 11:biom11081182. [PMID: 34439849 PMCID: PMC8391864 DOI: 10.3390/biom11081182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way junction (3WJ) repressor, have been utilized to construct RNA-based synthetic gene circuits in living cells. In this work, we utilized these regulators to construct type 1 incoherent feed-forward loop (IFFL) circuits in vivo and explored their dynamic behaviors. A combination of a STAR and 3WJ repressor was used to construct an RNA-only IFFL circuit. However, due to the fast kinetics of RNA–RNA interactions, there was no significant timescale difference between the direct activation and the indirect inhibition, that no pulse was observed in the experiments. These findings were confirmed with mechanistic modeling and simulation results for a wider range of conditions. To increase delay in the inhibition pathway, we introduced a protein synthesis process to the circuit and designed an RNA–protein hybrid IFFL circuit using THS and TetR protein. Simulation results indicated that pulse generation could be achieved with this RNA–protein hybrid model, and this was further verified with experimental realization in E. coli. Our findings demonstrate that while RNA-based regulators excel in speed as compared to protein-based regulators, the fast reaction kinetics of RNA-based regulators could also undermine the functionality of a circuit (e.g., lack of significant timescale difference). The agreement between experiments and simulations suggests that the mechanistic modeling can help debug issues and validate the hypothesis in designing a new circuit. Moreover, the applicability of the kinetic parameters extracted from the RNA-only circuit to the RNA–protein hybrid circuit also indicates the modularity of RNA-based regulators when used in a different context. We anticipate the findings of this work to guide the future design of gene circuits that rely heavily on the dynamics of RNA-based regulators, in terms of both modeling and experimental realization.
Collapse
|
38
|
Zhang F, Fu Z, Tang L, Zhang Z, Han F, Yu W. Biochemical Characterization of a Novel Exo-Type PL7 Alginate Lyase VsAly7D from Marine Vibrio sp. QY108. Int J Mol Sci 2021; 22:8402. [PMID: 34445107 PMCID: PMC8395142 DOI: 10.3390/ijms22168402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-β-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.
Collapse
Affiliation(s)
- Fengchao Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zhelun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| |
Collapse
|
39
|
Moškon M, Komac R, Zimic N, Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
41
|
Zanchetta E, Damergi E, Patel B, Borgmeyer T, Pick H, Pulgarin A, Ludwig C. Algal cellulose, production and potential use in plastics: Challenges and opportunities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Wang K, Gao Z, Wang Y, Meng C, Li J, Qin S, Cui Y. The chloroplast genetic engineering of a unicellular green alga Chlorella vulgaris with two foreign peptides co-expression. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5662-5671. [PMID: 38505493 PMCID: PMC10946473 DOI: 10.1002/ange.202006941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
44
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. Angew Chem Int Ed Engl 2021; 60:5602-5611. [PMID: 32909663 PMCID: PMC7983915 DOI: 10.1002/anie.202006941] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/11/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
45
|
Amalfitano E, Karlikow M, Norouzi M, Jaenes K, Cicek S, Masum F, Sadat Mousavi P, Guo Y, Tang L, Sydor A, Ma D, Pearson JD, Trcka D, Pinette M, Ambagala A, Babiuk S, Pickering B, Wrana J, Bremner R, Mazzulli T, Sinton D, Brumell JH, Green AA, Pardee K. A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat Commun 2021; 12:724. [PMID: 33526784 PMCID: PMC7851131 DOI: 10.1038/s41467-020-20639-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2. Getting synthetic biology circuit-based sensors into field applications is still a challenge. Here the authors combine a circuit sensor with a glucose meter for small analyte and nucleic acid detection.
Collapse
Affiliation(s)
- Evan Amalfitano
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Margot Karlikow
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seray Cicek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fahim Masum
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Yuxiu Guo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Laura Tang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Andrew Sydor
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Daniel Trcka
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada
| | - Mathieu Pinette
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada
| | - Bradley Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, R3E 3M4, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, R3E 0J9, MB, Canada.,Iowa State University, College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Ames, IA, 50011, USA
| | - Jeff Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, M5G 1X5, ON, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5T 3A9, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Sinai Health System/University Health Network, Toronto, M5G 1X5, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada
| | - John H Brumell
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, ON, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, M5G 1X8, ON, Canada
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, AZ, 85287, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, ON, Canada.
| |
Collapse
|
46
|
Vasilev RA, Chernikovich VY, Evteeva MA, Sakharov DA, Patrushev MV. Synthetic Biology: Current State and Applications. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Vijayakumar S, Rahman PK, Angione C. A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria. iScience 2020; 23:101818. [PMID: 33354660 PMCID: PMC7744713 DOI: 10.1016/j.isci.2020.101818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 01/20/2023] Open
Abstract
Machine learning has recently emerged as a promising tool for inferring multi-omic relationships in biological systems. At the same time, genome-scale metabolic models (GSMMs) can be integrated with such multi-omic data to refine phenotypic predictions. In this work, we use a multi-omic machine learning pipeline to analyze a GSMM of Synechococcus sp. PCC 7002, a cyanobacterium with large potential to produce renewable biofuels. We use regularized flux balance analysis to observe flux response between conditions across photosynthesis and energy metabolism. We then incorporate principal-component analysis, k-means clustering, and LASSO regularization to reduce dimensionality and extract key cross-omic features. Our results suggest that combining metabolic modeling with machine learning elucidates mechanisms used by cyanobacteria to cope with fluctuations in light intensity and salinity that cannot be detected using transcriptomics alone. Furthermore, GSMMs introduce critical mechanistic details that improve the performance of omic-based machine learning methods.
Collapse
Affiliation(s)
- Supreeta Vijayakumar
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
| | - Pattanathu K.S.M. Rahman
- Centre for Enzyme Innovation, Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, UK
- Tara Biologics, Woking, Surrey GU21 6BP, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK
| |
Collapse
|
48
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
49
|
Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 2020; 11:1208-1220. [PMID: 33124500 PMCID: PMC8291842 DOI: 10.1080/21655979.2020.1837458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are Gram-negative photoautotrophic prokaryotes and have shown great importance to the Earth’s ecology. Based on their capability in oxygenic photosynthesis and genetic merits, they can be engineered as microbial chassis for direct conversion of carbon dioxide to value-added biofuels and chemicals. In the last decades, attempts have given to the application of synthetic biology tools and approaches in the development of cyanobacterial cell factories. Despite the successful proof-of-principle studies, large-scale application is still a technical challenge due to low yields of bioproducts. Therefore, recent efforts are underway to characterize and develop genetic regulatory parts and strategies for the synthetic biology applications in cyanobacteria. In this review, we present the recent advancements and application in cyanobacterial synthetic biology toolboxes. We also discuss the limitations and future perspectives for using such novel tools in cyanobacterial biotechnology.
Collapse
Affiliation(s)
- Fen Wang
- Department of Surgery, College of Medicine, University of Florida , Gainesville, FL, USA
| | - Yuanyuan Gao
- Jining Academy of Agricultural Science , Jining, Shandong, China
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida , Gainesville, FL, USA
| |
Collapse
|
50
|
Deprá MC, Severo IA, dos Santos AM, Zepka LQ, Jacob-Lopes E. Environmental impacts on commercial microalgae-based products: Sustainability metrics and indicators. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|