1
|
Oshiquiri LH, Pereira LMS, Maués DB, Milani ER, Silva AC, Jesus LFDMCD, Silva-Neto JA, Veras FP, de Paula RG, Silva RN. Regulatory Role of Vacuolar Calcium Transport Proteins in Growth, Calcium Signaling, and Cellulase Production in Trichoderma reesei. J Fungi (Basel) 2024; 10:853. [PMID: 39728349 DOI: 10.3390/jof10120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Recent research has revealed the calcium signaling significance in the production of cellulases in Trichoderma reesei. While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in T. reesei. This was accomplished by the construction of the four mutant strains ∆trpmc1, ∆tryvc1, ∆tryvc3, and ∆tryvc4. These mutants displayed enhanced growth when subjected to arabinose, xylitol, and xylose. Furthermore, the mutants ∆trpmc1, ∆tryvc1, and ∆tryvc4 showed a reduction in growth under conditions of 100 mM MnCl2, implying their role in manganese resistance. Our enzymatic activity assays revealed a lack of the expected augmentation in cellulolytic activity that is typically seen in the parental strain following the introduction of calcium. This was mirrored in the expression patterns of the cellulase genes. The vacuolar calcium transport genes were also found to play a role in the expression of genes involved with the biosynthesis of secondary metabolites. In summary, our research highlights the crucial role of the vacuolar calcium transporters and, therefore, of the calcium signaling in orchestrating cellulase and hemicellulase expression, sugar utilization, and stress resistance in T. reesei.
Collapse
Affiliation(s)
- Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Elizabete Rosa Milani
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Alinne Costa Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | | | - Julio Alves Silva-Neto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitoria 29047-105, ES, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| |
Collapse
|
2
|
He Y, Zhang H, Huwati Y, Shu N, Hu W, Jia X, Ding K, Liang X, Liu L, Han L, Xiao W. On-site cellulase production by Trichoderma reesei RutC-30 to enhance the enzymatic saccharification of ball-milled corn stover. Enzyme Microb Technol 2024; 181:110530. [PMID: 39442493 DOI: 10.1016/j.enzmictec.2024.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cellulases are essential for the enzymatic saccharification of lignocellulose. They play a crucial role in breaking down the structure of lignocellulose to obtain fermentable sugars. In this study, we conducted on-site cellulase production by Trichoderma reesei RutC-30 through submerged fermentation. The effects of carbon source, nitrogen source, KH2PO4, and mineral elements on cellulase production were evaluated using the hydrolyzed total sugar concentration of ball-milled corn stover as an indicator. The optimal fermentation medium conditions for cellulase production were determined through orthogonal experimental design analysis. Additionally, by optimizing culture conditions, including inoculation, pH, and bottling volume, we achieved a total sugar concentration of 92.25 g/L. After the optimization, the FPA, CMCA, protein, and total sugar concentration increased by 75.49 %, 18.43 %, 89.71 %, and 17.83 %, respectively. Furthermore, corn stover pretreated by different methods was applied to induce cellulase production. Ball-milled and steam-exploded corn stover was identified as suitable incubation carbon sources with total sugar concentration up to 94.31 g/L. Our work exploits the cellulase induced by lignocellulose and then applies it to lignocellulose, enabling the customization and providing a reference for the production of cellulase with corn stover as an inducer.
Collapse
Affiliation(s)
- Yinghui He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Hui Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Yeledana Huwati
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Na Shu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Wei Hu
- China Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiwen Jia
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Kaili Ding
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Xueyan Liang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Luoyang Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Wang J, Chen Y, Cong J, Wang W. Metformin regulates cellulase production in Trichoderma reesei via calcium signaling and mitochondrial function. Microb Cell Fact 2024; 23:314. [PMID: 39574147 PMCID: PMC11580550 DOI: 10.1186/s12934-024-02593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Trichoderma reesei is renowned for its cellulase-producing ability and is used for biofuel production from lignocellulose. In plants and fungi, cellulase production is induced by cellulose and suppressed by glucose; however, whether metformin can enhance cellulase production and mitochondrial function in T. reesei remains unclear. Metformin reduces blood glucose levels by inhibiting hepatic gluconeogenesis; therefore, it is worth investigating whether metformin transmission modulates cellulase biosynthesis in T. reesei. RESULTS Metformin increased cellulase production and the transcription of cellulase-related genes. It also enhanced the concentrations of Ca2+ in the cytosol and mitochondria and regulated the transcription levels of cellulase-related genes by modulating calcium homeostasis in T. reesei QM6a. In addition, metformin was identified as an antioxidant that can enhance cellulase activity by reducing reactive oxygen species (ROS). Our results demonstrated that metformin influences the state of mitochondria by enhancing mitochondrial activity and membrane potential to promote cellulase production. CONCLUSION Collectively, these results indicate that metformin enhances cellulase production, scavenges ROS, and protects mitochondrial activity in T. reesei.
Collapse
Affiliation(s)
- Jiajia Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Cong
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Shangguan J, Qiao J, Liu H, Zhu L, Han X, Shi L, Zhu J, Liu R, Ren A, Zhao M. The CBS/H 2S signalling pathway regulated by the carbon repressor CreA promotes cellulose utilization in Ganoderma lucidum. Commun Biol 2024; 7:466. [PMID: 38632386 PMCID: PMC11024145 DOI: 10.1038/s42003-024-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - He Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
6
|
Liu S, Quan L, Yang M, Wang D, Wang YZ. Regulation of cellulase production via calcium signaling in Trichoderma reesei under PEG8000 stress. Appl Microbiol Biotechnol 2024; 108:178. [PMID: 38276978 PMCID: PMC10817842 DOI: 10.1007/s00253-023-12901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 01/27/2024]
Abstract
In this study, the effect of polyethylene glycol 8000 (PEG8000) stress on cellulase biosynthesis in Trichoderma reesei CICC2626 via calcium signaling was investigated, and a plausible mechanism by which intracellular Ca2+ regulates the transcription of cellulase genes was proposed. The results indicated that the total cellulase (filter paper-hydrolyzing activity [FPase]), endoglucanase (carboxymethyl cellulase activity [CMCase]), and β-glucosidase activities of the strain were 1.3-, 1.2-, and 1.3-fold higher than those of the control (no PEG8000 addition) at a final concentration of 1.5% (w/v) PEG8000. Moreover, the transcriptional levels of cellulase genes, protein concentrations, and biomass increased. With the synergistic use of commercial cellulase and T. reesei CICC2626 cellulase to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 372.7 mg/g, and the cellulose content (22.7%, 0.32 g) was significantly lower than the initial content (62.5%, 1.88 g). Transcriptome data showed that 12 lignocellulose degradation-related genes were significantly upregulated in the presence of 1.5% PEG8000. Furthermore, the addition of Ca2+ inhibitors and deletion of crz1 (calcineurin-responsive zinc finger 1-encoding gene, which is related to the calcium signaling pathway) demonstrated that calcium signaling plays a dominant role in PEG8000-induced cellulase genes overexpression. These results revealed a link between PEG8000 induction and calcium signaling transduction in T. reesei CICC2626. Moreover, this study also provides a novel inducer for enhanced cellulase production. KEY POINTS: • Cellulase biosynthesis in Trichoderma reesei could be enhanced by PEG8000 • PEG8000 could induce a cytosolic Ca2+ burst in Trichoderma reesei • The activated calcium signaling was involved in cellulase biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lin Quan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
7
|
Li N, Qiu Z, Cai W, Shen Y, Wei D, Chen Y, Wang W. The Ras small GTPase RSR1 regulates cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:87. [PMID: 37218014 PMCID: PMC10204303 DOI: 10.1186/s13068-023-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable resource in the world and has attracted widespread attention. It can be hydrolyzed into sugars with the help of cellulases and hemicellulases that are secreted by filamentous fungi. Several studies have revealed that the Ras small GTPase superfamily regulates important cellular physiological processes, including synthesis of metabolites, sporulation, and cell growth and differentiation. However, it remains unknown how and to what extent Ras small GTPases participate in cellulase production. RESULTS In this study, we found that the putative Ras small GTPase RSR1 negatively regulated the expression of cellulases and xylanases. Deletion of rsr1 (∆rsr1) significantly increased cellulase production and decreased the expression levels of ACY1-cAMP-protein kinase A (PKA) signaling pathway genes and the concentration of intracellular cyclic adenosine monophosphate (cAMP). Loss of acy1 based on ∆rsr1 (∆rsr1∆acy1) could further increase cellulase production and the expression levels of cellulase genes, while overexpression of acy1 based on ∆rsr1 (∆rsr1-OEacy1) significantly reduced cellulase production and transcriptional levels of cellulase genes. In addition, our results revealed that RSR1 negatively controlled cellulase production via the ACY1-cAMP-PKA pathway. Transcriptome analysis revealed significantly increased expression of three G-protein coupled receptors (GPCRs; tre62462, tre58767, and tre53238) and approximately two-fold higher expression of ACE3 and XYR1, which transcriptionally activated cellulases with the loss of rsr1. ∆rsr1∆ tre62462 exhibited a decrease in cellulase activity compared to ∆rsr1, while that of ∆rsr1∆tre58767 and ∆rsr1∆tre53238 showed a remarkable improvement compared to ∆rsr1. These findings revealed that GPCRs on the membrane may sense extracellular signals and transmit them to rsr1 and then to ACY1-cAMP-PKA, thereby negatively controlling the expression of the cellulase activators ACE3 and XYR1. These data indicate the crucial role of Ras small GTPases in regulating cellulase gene expression. CONCLUSIONS Here, we demonstrate that some GPCRs and Ras small GTPases play key roles in the regulation of cellulase genes in Trichoderma reesei. Understanding the roles of these components in the regulation of cellulase gene transcription and the signaling processes in T. reesei can lay the groundwork for understanding and transforming other filamentous fungi.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Zhouyuan Qiu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wanchuan Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
- Jiangsu Yiming Biological Technology Co., Ltd., Suqian, 223699, Jiangsu, China.
| |
Collapse
|
8
|
Li N, Li J, Chen Y, Shen Y, Wei D, Wang W. Mechanism of Zn 2+ regulation of cellulase production in Trichoderma reesei Rut-C30. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:73. [PMID: 37118821 PMCID: PMC10148476 DOI: 10.1186/s13068-023-02323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Trichoderma reesei Rut-C30 is a hypercellulolytic mutant strain that degrades abundant sources of lignocellulosic plant biomass, yielding renewable biofuels. Although Zn2+ is an activator of enzymes in almost all organisms, its effects on cellulase activity in T. reesei have yet to be reported. RESULTS Although high concentrations of Zn2+ severely suppressed the extension of T. reesei mycelia, the application of 1-4 mM Zn2+ enhanced cellulase and xylanase production in the high-yielding cellulase-producing Rut-C30 strain of T. reesei. Expression of the major cellulase, xylanase, and two essential transcription activator genes (xyr1 and ace3) increased in response to Zn2+ stimulation. Transcriptome analysis revealed that the mRNA levels of plc-e encoding phospholipase C, which is involved in the calcium signaling pathway, were enhanced by Zn2+ application. The disruption of plc-e abolished the cellulase-positive influence of Zn2+ in the early phase of induction, indicating that plc-e is involved in Zn2+-induced cellulase production. Furthermore, treatment with LaCl3 (a plasma membrane Ca2+ channel blocker) and deletion of crz1 (calcineurin-responsive zinc finger transcription factor 1) indicated that calcium signaling is partially involved in this process. Moreover, we identified the zinc-responsive transcription factor zafA, the transcriptional levels of which declined in response to Zn2+ stress. Deletion of zafA indicates that this factor plays a prominent role in mediating the Zn2+-induced excessive production of cellulase. CONCLUSIONS For the first time, we have demonstrated that Zn2+ is toxic to T. reesei, although promotes a marked increase in cellulase production. This positive influence of Zn2+ is facilitated by the plc-e gene and zafA transcription factor. These findings provide insights into the role of Zn2+ in T. reesei and the mechanisms underlying signal transduction in cellulase synthesis.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Jing Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 311, Shanghai, 200237, China.
| |
Collapse
|
9
|
Chen Y, Wang M, Wang W, Zeng Y, Fan X, Tu M, Ma Y, Wei D. Metabolic Engineering for the Comprehensive Utilization of N, N-Dimethylformamide-Containing Wastewater. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13574-13582. [PMID: 36223298 DOI: 10.1021/acs.jafc.2c05240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N, N-dimethylformamide is frequently present in industrial wastewater and is environmentally detrimental. The current study aims to assess the utilization and biodegradation of N, N-dimethylformamide-containing wastewater to lessen the associated environmental load. Results show that addition of wastewater containing N, N-dimethylformamide to Trichoderma reesei fermentation media enhances cellulase production and facilitates cellulose hydrolysis. However, N, N-dimethylformamide is a cellulase enhancer that is not degraded during cellulase production in T. reesei fermentation and is retained in the N, N-dimethylformamide-enhanced cellulase solution. Indeed, the cellulosic sugar solution generated via lignocellulose hydrolysis with N, N-dimethylformamide-enhanced cellulase retains N, N-dimethylformamide. We further identified three core enzyme modules─N, N-dimethylformamidase, dimethylamine dehydrogenase, and methylamine dehydrogenase enzyme─which were inserted into Escherichia coli to develop metabolically engineered strains. These strains degraded N, N-dimethylformamide and produced succinate using N, N-dimethylformamide-enhanced cellulosic sugar as the substrate. The platform described here can be applied to effectively convert waste into valuable bioproducts.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Jiangsu YIMING Biological Technology CO., LTD, 22 Wenzhou Road, Shuyang County, Suqian City, Jiangsu 223699, China
| | - Yi Zeng
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingjia Fan
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maobing Tu
- Department of Chemical and environmental Engineering, University of Cincinnati, 2901 Woodside Dr, Cincinnati, Ohio 45221, United States
| | - Yushu Ma
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Appl Environ Microbiol 2022; 88:e0096022. [PMID: 36121214 PMCID: PMC9552604 DOI: 10.1128/aem.00960-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in exoenzyme production can be enhanced by environmental stresses such as graphene oxide (GO) stress, but the link between the two events is still unclear. In this work, the effect of GO as an environmental stress factor on exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) biosynthesis was investigated in Bacillus subtilis Z2, and a plausible mechanism by which cytosolic Ca2+ regulates lignocellulolytic enzyme production in B. subtilis Z2 subjected to GO stress was proposed. The filter paper-hydrolyzing (FPase [representing total cellulase]), carboxymethylcellulase (CMCase [representing endoglucanase]), and β-glucosidase activities and extracellular protein concentration of the wild-type strain under 10 μg/mL GO stress were 1.37-, 1.64-, 1.24-, and 1.16-fold those of the control (without GO stress), respectively. Correspondingly, the transcription levels of lignocellulolytic enzyme genes, cytosolic Ca2+ level, and biomass concentration of B. subtilis were all increased. With lignocellulolytic enzyme from B. subtilis used to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 265.53 mg/g, and the removal rates of cellulose, hemicellulose, and lignin were 52.4%, 30.1%, and 7.5%, respectively. Furthermore, transcriptome data revealed that intracellular Ca2+ homeostasis played a key role in regulating the levels of gene transcription related to the synthesis of lignocellulolytic enzymes and exoenzymes. Finally, the use of Ca2+ inhibitors (LaCl3 and EDTA) and deletion of spcF (a calmodulin-like protein gene) further demonstrated that the overexpression of those genes was regulated via calcium signaling in B. subtilis subjected to GO stress. IMPORTANCE To effectively convert lignocellulose into fermentable sugars, high lignocellulolytic enzyme loading is needed. Graphene oxide (GO) has been shown to promote exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) production in some microorganisms; however, the regulatory mechanism of the biosynthesis of lignocellulolytic enzymes under GO stress remains unclear. In this work, the lignocellulolytic enzyme production of B. subtilis under GO stress was investigated, and the potential mechanism by which B. subtilis enhanced lignocellulolytic enzyme production through the calcium signaling pathway under GO stress was proposed. This work revealed the role of calcium signaling in the production of enzymes under external environmental stress and provided a direction to facilitate lignocellulolytic enzyme production by B. subtilis.
Collapse
|
11
|
Li N, Zeng Y, Chen Y, Shen Y, Wang W. Induction of cellulase production by Sr 2+ in Trichoderma reesei via calcium signaling transduction. BIORESOUR BIOPROCESS 2022; 9:96. [PMID: 38647894 PMCID: PMC10992071 DOI: 10.1186/s40643-022-00587-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Trichoderma reesei RUT-C30 is a well-known high-yielding cellulase-producing fungal strain that converts lignocellulose into cellulosic sugar for resource regeneration. Calcium is a ubiquitous secondary messenger that regulates growth and cellulase production in T. reesei. We serendipitously found that adding Sr2+ to the medium significantly increased cellulase activity in the T. reesei RUT-C30 strain and upregulated the expression of cellulase-related genes. Further studies showed that Sr2+ supplementation increased the cytosolic calcium concentration and activated the calcium-responsive signal transduction pathway of Ca2+-calcineurin-responsive zinc finger transcription factor 1 (CRZ1). Using the plasma membrane Ca2+ channel blocker, LaCl3, we demonstrated that Sr2+ induces cellulase production via the calcium signaling pathway. Supplementation with the corresponding concentrations of Sr2+ also inhibited colony growth. Sr2+ supplementation led to an increase in intracellular reactive oxygen species (ROS) and upregulated the transcriptional levels of intracellular superoxide dismutase (sod1) and catalase (cat1). We further demonstrated that ROS content was detrimental to cellulase production, which was alleviated by the ROS scavenger N-acetyl cysteine (NAC). This study demonstrated for the first time that Sr2+ supplementation stimulates cellulase production and upregulates cellulase genes via the calcium signaling transduction pathway. Sr2+ leads to an increase in intracellular ROS, which is detrimental to cellulase production and can be alleviated by the ROS scavenger NAC. Our results provide insights into the mechanistic study of cellulase synthesis and the discovery of novel inducers of cellulase.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zeng
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Yu NN, Ketya W, Choi EH, Park G. Plasma Promotes Fungal Cellulase Production by Regulating the Levels of Intracellular NO and Ca 2. Int J Mol Sci 2022; 23:6668. [PMID: 35743111 PMCID: PMC9223429 DOI: 10.3390/ijms23126668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
13
|
Reppke MJ, Gerstner R, Windeisen-Holzhauser E, Richter K, Benz JP. Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi. Fungal Biol Biotechnol 2022; 9:10. [PMID: 35606847 PMCID: PMC9128199 DOI: 10.1186/s40694-022-00141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca2+, Mg2+, K+, as well as a complete replacement of Fe2+, Mn2+, Zn2+ by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications.
Collapse
Affiliation(s)
- Manfred J Reppke
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Rebecca Gerstner
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Elisabeth Windeisen-Holzhauser
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - Klaus Richter
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - J Philipp Benz
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany.
| |
Collapse
|
14
|
Yan S, Xu Y, Yu XW. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. BIORESOUR BIOPROCESS 2021; 8:107. [PMID: 38650205 PMCID: PMC10991602 DOI: 10.1186/s40643-021-00461-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
15
|
Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Appl Environ Microbiol 2021; 87:e0059321. [PMID: 34047636 DOI: 10.1128/aem.00593-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCE T. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.
Collapse
|
16
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
17
|
Pang AP, Wang H, Zhang F, Hu X, Wu FG, Zhou Z, Wang W, Lu Z, Lin F. High-dose rapamycin exerts a temporary impact on T. reesei RUT-C30 through gene trFKBP12. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:77. [PMID: 33771193 PMCID: PMC8004424 DOI: 10.1186/s13068-021-01926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Knowledge with respect to regulatory systems for cellulase production is prerequisite for exploitation of such regulatory networks to increase cellulase production, improve fermentation efficiency and reduce the relevant production cost. The target of rapamycin (TOR) signaling pathway is considered as a central signaling hub coordinating eukaryotic cell growth and metabolism with environmental inputs. However, how and to what extent the TOR signaling pathway and rapamycin are involved in cellulase production remain elusive. RESULT At the early fermentation stage, high-dose rapamycin (100 μM) caused a temporary inhibition effect on cellulase production, cell growth and sporulation of Trichoderma reesei RUT-C30 independently of the carbon sources, and specifically caused a tentative morphology defect in RUT-C30 grown on cellulose. On the contrary, the lipid content of T. reesei RUT-C30 was not affected by rapamycin. Accordingly, the transcriptional levels of genes involved in the cellulase production were downregulated notably with the addition of rapamycin. Although the mRNA levels of the putative rapamycin receptor trFKBP12 was upregulated significantly by rapamycin, gene trTOR (the downstream effector of the rapamycin-FKBP12 complex) and genes associated with the TOR signaling pathways were not changed markedly. With the deletion of gene trFKBP12, there is no impact of rapamycin on cellulase production, indicating that trFKBP12 mediates the observed temporary inhibition effect of rapamycin. CONCLUSION Our study shows for the first time that only high-concentration rapamycin induced a transient impact on T. reesei RUT-C30 at its early cultivation stage, demonstrating T. reesei RUT-C30 is highly resistant to rapamycin, probably due to that trTOR and its related signaling pathways were not that sensitive to rapamycin. This temporary influence of rapamycin was facilitated by gene trFKBP12. These findings add to our knowledge on the roles of rapamycin and the TOR signaling pathways play in T. reesei.
Collapse
Affiliation(s)
- Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Chen Y, Fan X, Zhao X, Shen Y, Xu X, Wei L, Wang W, Wei D. cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:62. [PMID: 33685506 PMCID: PMC7941909 DOI: 10.1186/s13068-021-01914-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is one of the best producers of cellulase and has been widely studied for the production of cellulosic ethanol and bio-based products. We previously reported that Mn2+ and N,N-dimethylformamide (DMF) can stimulate cellulase overexpression via Ca2+ bursts and calcium signalling in T. reesei under cellulase-inducing conditions. To further understand the regulatory networks involved in cellulase overexpression in T. reesei, we characterised the Mn2+/DMF-induced calcium signalling pathway involved in the stimulation of cellulase overexpression. RESULTS We found that Mn2+/DMF stimulation significantly increased the intracellular levels of cAMP in an adenylate cyclase (ACY1)-dependent manner. Deletion of acy1 confirmed that cAMP is crucial for the Mn2+/DMF-stimulated cellulase overexpression in T. reesei. We further revealed that cAMP elevation induces a cytosolic Ca2+ burst, thereby initiating the Ca2+ signal transduction pathway in T. reesei, and that cAMP signalling causes the Ca2+ signalling pathway to regulate cellulase production in T. reesei. Furthermore, using a phospholipase C encoding gene plc-e deletion strain, we showed that the plc-e gene is vital for cellulase overexpression in response to stimulation by both Mn2+ and DMF, and that cAMP induces a Ca2+ burst through PLC-E. CONCLUSIONS The findings of this study reveal the presence of a signal transduction pathway in which Mn2+/DMF stimulation produces cAMP. Increase in the levels of cAMP activates the calcium signalling pathway via phospholipase C to regulate cellulase overexpression under cellulase-inducing conditions. These findings provide insights into the molecular mechanism of the cAMP-PLC-calcium signalling pathway underlying cellulase expression in T. reesei and highlight the potential applications of signal transduction in the regulation of gene expression in fungi.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xingjia Fan
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaling Shen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Xiangyang Xu
- Zaozhuang Jie Nuo Enzyme Co. Ltd., Shandong, China
| | - Liujing Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road , P.O.B. 311, Shanghai, 200237, China
| |
Collapse
|
19
|
Shi Y, Wang Z, Wang Y. Optimizing the amount of pig manure in the vermicomposting of spent mushroom ( Lentinula) substrate. PeerJ 2020; 8:e10584. [PMID: 33384904 PMCID: PMC7751411 DOI: 10.7717/peerj.10584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The mushroom industry produces a large amount of spent mushroom substrate (SMS), which requires a large geographical footprint and causes pollution. METHODS We sought to optimize the C:N ratio of the initial feedstock used in vermicomposting of SMS by adding pig manure additions. We applied five treatments to the initial feedstock (S0, S1, S2, S3, and S4) with different C:N ratio of approximately 35, 30, 25, 20, and 15, respectively. RESULTS Our results showed that lignin and cellulose in SMS were degraded after 56 days vermicomposting, especially in S2 (77.05% and 45.29%, respectively) and S3 (65.05% and 48.37%, respectively) treatments. We observed the degradation of the fibrous structure in SMS using pig manure treatments after vermicomposting by microscope and scanning electron microscope. Cellulase and polyphenol oxidase (PPO) were enhanced in pig manure treatments during vermicomposting, especially in the S2 and S3 treatments. The biomass of earthworms in the S2 treatments was at its highest level among all treatments at 28 to 56 days. The high level of PPO activity in the S2 treatment may protect cellulase and earthworms against the aromatic toxicity that is a byproduct of lignin degradation, particularly at 28 to 56 days of vermicomposting. Conclusively, it indicated that the C/N ratio of 25 in the S2 treatment was the optimal for SMS vermicomposting with the addition of pig manure. Our results provide a positive application for the recycling of both SMS and pig manure.
Collapse
Affiliation(s)
- Yajing Shi
- School of Biological and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning, China
| | - Zhenyu Wang
- School of Biological and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning, China
| | - Yurong Wang
- School of Biological and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi, Liaoning, China
| |
Collapse
|
20
|
Okal EJ, Aslam MM, Karanja JK, Nyimbo WJ. Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb Pathog 2020; 147:104410. [PMID: 32707312 DOI: 10.1016/j.micpath.2020.104410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
White-rot basidiomycetic fungi have gained a lot of scientific attention in recent years owing to their ability to produce cellulase enzymes that are of great importance in numerous industrial applications. This has seen a rise in number of studies seeking to comprehend both physical and molecular mechanisms that regulate the production of cellulase enzymes in these fungi. Cellulase has several applications in production of food and beverages, biofuel, biological detergents, pharmaceuticals, and deinking in paper and pulp industry. Enhanced understanding of genetic mechanisms that regulate cellulase production would have utility for optimal cellulase production in white-rot basidiomycetes using biotechnology approaches. Carbon catabolite repression and various transcriptional factors such as XlnR, Cre, Clr, Ace, and gna1 control expression of genes encoding cellobiohydrolase (CBH), endoglucanase (EGL) and β-glucosidase (BGL). In this review, we have consolidated and summarised some of recent findings on genetic regulation of cellulase with an aim of highlighting the general regulatory mechanisms that underlie cellulase expressions in white-rot fungi. This review further outlines some of important transcription factors that regulate cellulase genes, and key research gaps that may need to be addressed by future research.
Collapse
Affiliation(s)
- Eyalira J Okal
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Joseph K Karanja
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Witness J Nyimbo
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
21
|
Chen Y, Wu C, Fan X, Zhao X, Zhao X, Shen T, Wei D, Wang W. Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:62. [PMID: 32266008 PMCID: PMC7110754 DOI: 10.1186/s13068-020-01701-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is a major workhorse employed to produce cellulase, which hydrolyzes lignocellulosic biomass for the production of cellulosic ethanol and bio-based products. However, the economic efficiency of biorefineries is still low. RESULTS In this study, the truncation of cellulase activator ACE3 was identified and characterized in T. reesei classical mutant NG14 and its direct descendants for the first time. We demonstrated that the truncated ACE3 is the crucial cause of cellulase hyper-production in T. reesei NG14 branch. Replacing the native ACE3 with truncated ACE3 in other T. reesei strains remarkably improves cellulase production. By truncating ACE3, we engineered a T. reesei mutant, PC-3-7-A723, capable of producing more cellulase than other strains. In a 30-L fermenter, fed-batch fermentation with PC-3-7-A723 drastically increased the maximum cellulase titer (FPase) to 102.63 IU/mL at 240 h, which constitutes a 20-30% improvement to that of the parental strain PC-3-7. CONCLUSIONS This work characterized the function of truncated ACE3 and demonstrated that analysis of classical mutants allows rational engineering of mutant strains with improved cellulase production necessary to process lignocellulosic biomass. Our rational engineering strategy might be useful for enhancing the production of other bio-based products.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Chuan Wu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Xingjia Fan
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Tao Shen
- Sunson Industry Group Co, Ltd,, Beijing, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
22
|
Liu P, Zhang G, Chen Y, Zhao J, Wang W, Wei D. Enhanced cellulase production by decreasing intercellular pH through H +-ATPase gene deletion in Trichoderma reesei RUT-C30. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:195. [PMID: 31417630 PMCID: PMC6691542 DOI: 10.1186/s13068-019-1536-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/03/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cellulolytic enzymes produced by Trichoderma reesei are widely used for the industrial production of biofuels and chemicals from lignocellulose. We speculated that intracellular pH during the fermentation process can affect cellulase induction. RESULTS In this study, two H+-ATPase genes, tre76238 and tre78757, were first identified in T. reesei. Deletion of tre76238 and tre78757 in T. reesei RUT-C30 confirmed that tre76238 has a major function in maintaining intracellular pH, whereas tre78757 has a minor function. The tre76238 deletion strain Δ76238 displayed a high level of cellulase production using cellulase-repressive glucose as a sole carbon source, along with intracellular acid accumulation and growth retardation. Our results indicated that intracellular acid accumulation in Δ76238 stimulated a significant increase in the cytosolic Ca2+ levels. Ca2+ channels were shown to be necessary for cellulase production using glucose as the carbon source in Δ76238. Delayed Δ76238 growth could be reversed by optimizing the medium's nitrogen sources to produce ammonia for intracellular acid neutralization in the early phase. This may be useful for scale-up of cellulase production using glucose as the carbon source. CONCLUSIONS This study provides a new perspective for significant alterations in the cellulase expression pattern of T. reesei Δ76238, indicating a new mechanism for cellulase regulation under conditions of low intracellular pH.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Guoxiu Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|