1
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
2
|
Daghero H, Pagotto R, Quiroga C, Medeiros A, Comini MA, Bollati-Fogolín M. Murine colon organoids as a novel model to study Trypanosoma cruzi infection and interactions with the intestinal epithelium. Front Cell Infect Microbiol 2023; 13:1082524. [PMID: 36968103 PMCID: PMC10033869 DOI: 10.3389/fcimb.2023.1082524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Chagas disease (CD) is a life-threatening illness caused by the parasite Trypanosoma cruzi (T. cruzi). With around seven million people infected worldwide and over 50,000 deaths per year, CD is a major public health issue in Latin America. The main route of transmission to humans is through a triatomine bug (vector-borne), but congenital and oral transmission have also been reported. The acute phase of CD presents mild symptoms but may develop into a long-lasting chronic illness, characterized by severely impaired cardiac, digestive, and neurological functions. The intestinal tissue appears to have a key role during oral transmission and chronic infection of CD. In this immune-privileged reservoir, dormant/quiescent parasites have been suggested to contribute to disease persistence, infection relapse, and treatment failure. However, the interaction between the intestinal epithelium and T. cruzi has not been examined in depth, in part, due to the lack of in vitro models that approximate to the biological and structural complexity of this tissue. Therefore, to understand the role played by the intestinal tissue during transmission and chronic infection, physiological models resembling the organ complexity are needed. Here we addressed this issue by establishing and characterizing adult stem cell-derived colonoid infection models that are clinically relevant for CD. 3D and 2D systems of murine intestinal organoids infected with T. cruzi Dm28c (a highly virulent strain associated with oral outbreaks) were analyzed at different time points by confocal microscopy. T. cruzi was able to invade and replicate in intestinal epithelial primary cells grown as intact organoids (3D) and monolayers (2D). The permissiveness to pathogen infection differed markedly between organoids and cell lines (primate and intestinal human cell lines). So far, this represents the first evidence of the potential that these cellular systems offer for the study of host-pathogen interactions and the discovery of effective anti-chagasic drugs.
Collapse
Affiliation(s)
- Hellen Daghero
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cristina Quiroga
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrea Medeiros
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Biochemistry, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Marcelo A Comini
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
3
|
da Silva-Gomes NL, Ruivo LADS, Moreira C, Meuser-Batista M, da Silva CF, Batista DDGJ, Fragoso S, de Oliveira GM, Soeiro MDNC, Moreira OC. Overexpression of TcNTPDase-1 Gene Increases Infectivity in Mice Infected with Trypanosoma cruzi. Int J Mol Sci 2022; 23:ijms232314661. [PMID: 36498985 PMCID: PMC9736689 DOI: 10.3390/ijms232314661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes located on the surface of the T. cruzi plasma membrane, which hydrolyze a wide range of tri-/-diphosphate nucleosides. In this work, we used previously developed genetically modified strains of Trypanosoma cruzi (T. cruzi), hemi-knockout (KO +/−) and overexpressing (OE) the TcNTPDase-1 gene to evaluate the parasite infectivity profile in a mouse model of acute infection (n = 6 mice per group). Our results showed significantly higher parasitemia and mortality, and lower weight in animals infected with parasites OE TcNTPDase-1, as compared to the infection with the wild type (WT) parasites. On the other hand, animals infected with (KO +/−) parasites showed no mortality during the 30-day trial and mouse weight was more similar to the non-infected (NI) animals. In addition, they had low parasitemia (45.7 times lower) when compared with parasites overexpressing TcNTPDase-1 from the hemi-knockout (OE KO +/−) group. The hearts of animals infected with the OE KO +/− and OE parasites showed significantly larger regions of cardiac inflammation than those infected with the WT parasites (p < 0.001). Only animals infected with KO +/− did not show individual electrocardiographic changes during the period of experimentation. Together, our results expand the knowledge on the role of NTPDases in T. cruzi infectivity, reenforcing the potential of this enzyme as a chemotherapy target to treat Chagas disease (CD).
Collapse
Affiliation(s)
- Natália Lins da Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | - Claudia Moreira
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, EPSJV/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | | | | | - Stênio Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos-ICC/FIOCRUZ, Curitiba 81350-010, Brazil
| | | | | | - Otacilio C. Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular-IOC/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
4
|
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022; 11:1174. [PMID: 36297231 PMCID: PMC9611177 DOI: 10.3390/pathogens11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we demonstrate that Trypanosoma cruzi epimastigotes previously grown in LIT medium supplemented with 20 mM galactose and exposed to sub-lethal concentrations of hydrogen peroxide (100 μM) showed two-fold and five-fold viability when compared to epimastigotes grown in LIT medium supplemented with two different glucose concentrations (20 mM and 1.5 mM), respectively. Similar results were obtained when exposing epimastigotes from all treatments to methylene blue 30 μM. Additionally, through differential centrifugation and the selective permeabilization of cellular membranes with digitonin, we found that phosphoglucomutase activity (a key enzyme in galactose metabolism) occurs predominantly within the cytosolic compartment. Furthermore, after partially permeabilizing epimastigotes with digitonin (0.025 mg × mg-1 of protein), intact glycosomes treated with 20 mM galactose released a higher hexose phosphate concentration to the cytosol in the form of glucose-1-phosphate, when compared to intact glycosomes treated with 20 mM glucose, which predominantly released glucose-6-phosphate. These results shine a light on T. cruzi's galactose metabolism and its interplay with mechanisms that enable resistance to oxidative stress.
Collapse
Affiliation(s)
- Ángel Lobo-Rojas
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
5
|
Neuroprotective Treatments for Digestive Forms of Chagas Disease in Experimental Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9397290. [PMID: 36199427 PMCID: PMC9527410 DOI: 10.1155/2022/9397290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Chagas disease is an anthropozoonosis caused by the protozoan Trypanosoma cruzi and is characterized as a neglected disease. It is currently endemic in 21 countries on the Latin American continent, including Bolivia, Argentina, and Paraguay. Unfortunately, there are no optimally effective treatments that can reduce the damage caused in the digestive form of the disease, such as the neuronal destruction of the myenteric plexus of both the esophagus and the colon. Therefore, the objective of this systematic review was to report the possible pharmacological neuroprotective agents that were tested in murine models of the digestive form of Chagas disease. Inclusion criteria are in vivo experimental studies that used different murine models for digestive forms of Chagas disease related to pharmacological interventions with neuroprotective potential, without year and language restriction. On the other hand, the exclusion criteria were studies that did not approach murine models with the digestive form of the disease or did not use neuroprotective treatments, among others. The search in the PubMed, Web of Science, Embase, and LILACS databases was performed on September 4, 2021. In addition, a manual search was performed using the references of the included articles. The risk of bias assessment of the studies was performed based on the SYRCLE tool guidelines, and the data from the selected articles are presented in this review as a narrative description and in tables. Eight articles were included, 4 of which addressed treatment with acetylsalicylic acid, 3 with cyclophosphamide, and 1 with Lycopodium clavatum 13c. In view of the results of the studies, most of them show neuroprotective activity of the treatments, with the potential to reduce the number of damaged neurons, as well as positive changes in the structure of these cells. However, more studies are needed to understand the mechanisms triggered by each drug, as well as their safety and immunogenicity. Systematic review registration is as follows: PROSPERO database (CRD42022289746).
Collapse
|
6
|
Torres RM, Correia D, Nunes MDCP, Dutra WO, Talvani A, Sousa AS, Mendes FDSNS, Scanavacca MI, Pisani C, Moreira MDCV, de Souza DDSM, de W, Martins SM, Dias JCP. Prognosis of chronic Chagas heart disease and other pending clinical challenges. Mem Inst Oswaldo Cruz 2022; 117:e210172. [PMID: 35674528 PMCID: PMC9172891 DOI: 10.1590/0074-02760210172] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
In this chapter, the main prognostic markers of Chagas heart disease are addressed, with an emphasis on the most recent findings and questions, establishing the basis for a broad discussion of recommendations and new approaches to managing Chagas cardiopathy. The main biological and genetic markers and the contribution of the electrocardiogram, echocardiogram and cardiac magnetic resonance are presented. We also discuss the most recent therapeutic proposals for heart failure, thromboembolism and arrhythmias, as well as current experience in heart transplantation in patients suffering from severe Chagas cardiomyopathy. The clinical and epidemiological challenges introduced by acute Chagas disease due to oral contamination are discussed. In addition, we highlight the importance of ageing and comorbidities in influencing the outcome of chronic Chagas heart disease. Finally, we discuss the importance of public policies, the vital role of funding agencies, universities, the scientific community and health professionals, and the application of new technologies in finding solutions for better management of Chagas heart disease.
Collapse
Affiliation(s)
| | - Dalmo Correia
- Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | | | - Walderez O Dutra
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - André Talvani
- Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Andréa Silvestre Sousa
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | | | | | - Cristiano Pisani
- Universidade de São Paulo, Instituto do Coração, São Paulo, SP, Brasil
| | | | | | - Wilson de
- Universidade de Pernambuco, Recife, PE, Brasil
| | | | | |
Collapse
|
7
|
Rodrigues WF, Miguel CB, Marques LC, da Costa TA, de Abreu MCM, Oliveira CJF, Lazo-Chica JE. Predicting Blood Parasite Load and Influence of Expression of iNOS on the Effect Size of Clinical Laboratory Parameters in Acute Trypanosoma cruzi Infection With Different Inoculum Concentrations in C57BL/6 Mice. Front Immunol 2022; 13:850037. [PMID: 35371021 PMCID: PMC8974915 DOI: 10.3389/fimmu.2022.850037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 01/14/2023] Open
Abstract
In Chagas disease, the initial responses of phagocyte-mediated innate immunity are strongly associated with the control of Trypanosoma cruzi and are mediated by various signaling pathways, including the inducible nitric oxide synthetase (iNOS) pathway. The clinical and laboratory manifestations of Chagas disease depend on the parasite–host relationship, i.e., the responsive capacity of the host immune system and the immunogenicity of the parasite. Here, we evaluated effect sizes in clinical and laboratory parameters mediated by acute infection with different concentrations of T. cruzi inoculum in mice immunosuppressed via iNOS pathway inactivation. Infection was induced in C57BL/6 wild-type and iNOS-/- mice with the “Y” strain of T. cruzi at three inoculum concentrations (3 × 102, 3 × 103, and 3 × 104). Parasitemia and mortality in both mouse strains were monitored. Immunohistochemistry was performed to quantify amastigotes in cardiac tissues and cardiac musculature cells. Biochemical parameters, such as blood urea nitrogen, sodium, albumin, and globulin concentrations, among others, were measured, and cytokine concentrations were also measured. Effect sizes were determined by the eta squared formula. Compared with that in wild-type animals, mice with an absence of iNOS expression demonstrated a greater parasite load, with earlier infection and a delayed parasitemia peak. Inoculum concentration was positively related to death in the immunosuppressed subgroup. Nineteen parameters (hematological, biochemical, cytokine-related, and histopathological) in the immunocompetent subgroup and four in the immunosuppressed subgroup were associated with parasitemia. Parasitemia, biochemical parameters, and hematological parameters were found to be predictors in the knockout group. The impact of effect sizes on the markers evaluated based on T. cruzi inoculum concentration was notably high in the immunocompetent group (Cohen’s d = 88.50%; p <.001). These findings contribute to the understanding of physiopathogenic mechanisms underlying T. cruzi infection and also indicate the influence of the concentration of T. cruzi during infection and the immunosuppression through the iNOS pathway in clinical laboratory heterogeneity reported in acute Chagas disease.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
- *Correspondence: Wellington Francisco Rodrigues,
| | - Camila Botelho Miguel
- Biosciences Unit, Centro Universitário de Mineiros, Mineiros, Brazil
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Thiago Alvares da Costa
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Carlo José Freire Oliveira
- Postgraduate Course in Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
- Postgraduate Course in Tropical Medicine and Infectology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Javier Emilio Lazo-Chica
- Cell Biology Laboratory, Institute of Biological and Natural Sciences of the Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
8
|
The Colombian Strain of Trypanosoma cruzi Induces a Proinflammatory Profile, Neuronal Death, and Collagen Deposition in the Intestine of C57BL/6 Mice Both during the Acute and Early Chronic Phase. Mediators Inflamm 2022; 2022:7641357. [PMID: 35069009 PMCID: PMC8769873 DOI: 10.1155/2022/7641357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the histopathological changes caused by infection with the Colombian strain of Trypanosoma cruzi (T. cruzi) in the acute and chronic experimental phases. C57Bl/6 mice were infected with 1000 trypomastigote forms of the Colombian strain of T. cruzi. After 30 days (acute phase) and 90 days (early chronic phase) of infection, the animals were euthanized, and the colon was collected and divided into two parts: proximal and distal. The distal portion was used for histopathological analysis, whereas the proximal portion was used for quantification of pro- and anti-inflammatory cytokines. In addition, the weight of the animals and parasitemia were assessed. The infection induced gradual weight loss in the animals. In addition, the infection induced an increase in interferon gamma (IFNγ) and tumor necrosis factor-alpha (TNF-α) in the intestine in the acute phase, in which this increase continued until the early chronic phase. The same was observed in relation to the presence of intestinal inflammatory infiltrates. In relation to interleukin (IL)-10, there was an increase only in the early chronic phase. The Colombian strain infection was also able to induce neuronal loss in the myenteric plexus and deposition of the collagen fibers during the acute phase. The Colombian strain of T. cruzi is capable of causing histopathological changes in the intestine of infected mice, especially in inducing neuronal destructions. Thus, this strain can also be used to study the intestinal form of Chagas disease in experimental models.
Collapse
|
9
|
Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, Medina-Mur R, Díaz-Nassif G, Valderrama-Achury MD, Medina HM. Molecular and Clinical Aspects of Chronic Manifestations in Chagas Disease: A State-of-the-Art Review. Pathogens 2021; 10:pathogens10111493. [PMID: 34832648 PMCID: PMC8619182 DOI: 10.3390/pathogens10111493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic manifestations of Chagas disease present as disabling and life-threatening conditions affecting mainly the cardiovascular and gastrointestinal systems. Although meaningful research has outlined the different molecular mechanisms underlying Trypanosoma cruzi’s infection and the host-parasite interactions that follow, prompt diagnosis and treatment remain a challenge, particularly in developing countries and also in those where the disease is considered non-endemic. This review intends to present an up-to-date review of the parasite’s life cycle, genetic diversity, virulence factors, and infective mechanisms, as well as the epidemiology, clinical presentation, diagnosis, and treatment options of the main chronic complications of Chagas disease.
Collapse
Affiliation(s)
- Germán J. Medina-Rincón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Correspondence: ; Tel.: +57-310-817-2369
| | - Sebastián Gallo-Bernal
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Paula A. Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - María Juliana Rodríguez
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Ramón Medina-Mur
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Gustavo Díaz-Nassif
- Division of Gastroenterology and Liver Diseases, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 111221, Colombia;
| | | | - Héctor M. Medina
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| |
Collapse
|
10
|
Nielebock MAP, de Freitas Campos Miranda L, Americano do Brasil PEA, de Jesus S Pereira TO, da Silva AF, Hasslocher-Moreno AM, Sangenis LHC, Saraiva RM. Blood culture positivity rate for Trypanosoma cruzi in patients with chronic Chagas disease differs among different clinical forms. Trans R Soc Trop Med Hyg 2021; 115:720-725. [PMID: 33150435 DOI: 10.1093/trstmh/traa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The purpose of this research was to compare the clinical and epidemiological characteristics of patients with chronic Chagas disease with and without positive blood cultures for Trypanosoma cruzi. METHODS This was a retrospective longitudinal study that included 139 patients with chronic Chagas disease who underwent blood culture for T. cruzi. Blood cultures were performed using Novy-MacNeal-Nicolle medium enriched with Schneider's medium. Multivariate Cox proportional hazards regression analysis adjusting for age and sex was performed to identify if positive blood culture for T. cruzi was associated with all-cause mortality. RESULTS The blood culture positivity rate was 30.9%. Most patients were born in the Northeast and Southeast regions of Brazil. Patients with positive blood cultures were older (52±13 vs 45±13 y; p=0.0009) and more frequently women (72.1% vs. 53.1%; p=0.03) than patients with negative blood cultures. The frequency of patients with cardiac or cardiodigestive forms was higher among patients with positive vs negative blood cultures (74.4% vs 54.1%; p=0.02). A total of 28 patients died during a mean follow-up time of 6.6±4.1 y. A positive blood culture was associated with all-cause mortality (hazard ratio 2.26 [95% confidence interval 1.02 to 5.01], p=0.045). CONCLUSIONS We found a higher proportion of patients with Chagas heart disease among patients with T. cruzi-positive blood cultures. A positive blood culture was associated with an increased risk of all-cause mortality. Therefore T. cruzi persistence may influence Chagas disease pathogenesis and prognosis.
Collapse
Affiliation(s)
- Marco Antonio Prates Nielebock
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil 4365, Rio de Janeiro, Brazil 21040-900
| | - Luciana de Freitas Campos Miranda
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil 4365, Rio de Janeiro, Brazil 21040-900
| | | | | | - Aline Fagundes da Silva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil 4365, Rio de Janeiro, Brazil 21040-900
| | | | - Luiz Henrique Conde Sangenis
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil 4365, Rio de Janeiro, Brazil 21040-900
| | - Roberto Magalhães Saraiva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil 4365, Rio de Janeiro, Brazil 21040-900
| |
Collapse
|
11
|
do Carmo Neto JR, Vinicius da Silva M, Braga YLL, Florencio da Costa AW, Fonseca SG, Nagib PRA, Nunes Celes MR, Oliveira MAP, Machado JR. Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi. PLoS One 2021; 16:e0246692. [PMID: 33561140 PMCID: PMC7872263 DOI: 10.1371/journal.pone.0246692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Arthur Wilson Florencio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Patricia Resende Alô Nagib
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Milton Adriano Pelli Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
12
|
Passos FC, Gois MB, Sousa AD, de Marinho AIL, Corvo L, Soto M, Barral-Netto M, Barral A, Baccan GC. Investigating associations between intestinal alterations and parasite load according to Bifidobacterium spp. and Lactobacillus spp. abundance in the gut microbiota of hamsters infected by Leishmania infantum. Mem Inst Oswaldo Cruz 2020; 115:e200377. [PMID: 33263602 PMCID: PMC7703327 DOI: 10.1590/0074-02760200377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a tropical neglected disease with high associated rates of mortality. Several studies have highlighted the importance of the intestinal tract (IT) and gut microbiota (GM) in the host immunological defense. Data in the literature on parasite life cycle and host immune defense against VL are scarce regarding the effects of infection on the IT and GM. OBJECTIVES This study aimed to investigate changes observed in the colon of Leishmania infantum-infected hamsters, including alterations in the enteric nervous system (ENS) and GM (specifically, levels of bifidobacteria and lactobacilli). METHODS Male hamsters were inoculated with L. infantum and euthanised at four or eight months post-infection. Intestines were processed for histological analysis and GM analysis. Quantitative polymerase chain reaction (qPCR) was performed to quantify each group of bacteria: Bifidobacterium spp. (Bf) and Lactobacillus spp (LacB). FINDINGS Infected hamsters showed histoarchitectural loss in the colon wall, with increased thickness in the submucosa and the mucosa layer, as well as greater numbers of intraepithelial lymphocytes. Forms suggestive of amastigotes were seen inside mononuclear cells. L. infantum infection induced changes in ENS, as evidenced by increases in the area of colonic enteric ganglia. Despite the absence of changes in the levels of Bf and LacB during the course of infection, the relative abundance of these bacteria was associated with parasite load and histological alterations. MAIN CONCLUSIONS Our results indicate that L. infantum infection leads to important changes in the colon and suggest that bacteria in the GM play a protective role.
Collapse
Affiliation(s)
- Fabine Correia Passos
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências da Saúde, Santo Antônio de Jesus, BA, Brasil
| | - Adenilma Duranes Sousa
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Ananda Isis Lima de Marinho
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Laura Corvo
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Soto
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Barral-Netto
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Aldina Barral
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Gyselle Chrystina Baccan
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| |
Collapse
|
13
|
Ricci MF, Béla SR, Moraes MM, Bahia MT, Mazzeti AL, Oliveira ACS, Andrade LO, Radí R, Piacenza L, Arantes RME. Neuronal Parasitism, Early Myenteric Neurons Depopulation and Continuous Axonal Networking Damage as Underlying Mechanisms of the Experimental Intestinal Chagas' Disease. Front Cell Infect Microbiol 2020; 10:583899. [PMID: 33178632 PMCID: PMC7597600 DOI: 10.3389/fcimb.2020.583899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
There is a growing consensus that the balance between the persistence of infection and the host immune response is crucial for chronification of Chagas heart disease. Extrapolation for chagasic megacolon is hampered because research in humans and animal models that reproduce intestinal pathology is lacking. The parasite-host relationship and its consequence to the disease are not well-known. Our model describes the temporal changes in the mice intestine wall throughout the infection, parasitism, and the development of megacolon. It also presents the consequence of the infection of primary myenteric neurons in culture with Trypanosoma cruzi (T. cruzi). Oxidative neuronal damage, involving reactive nitrogen species induced by parasite infection and cytokine production, results in the denervation of the myenteric ganglia in the acute phase. The long-term inflammation induced by the parasite's DNA causes intramuscular axonal damage, smooth muscle hypertrophy, and inconsistent innervation, affecting contractility. Acute phase neuronal loss may be irreversible. However, the dynamics of the damages revealed herein indicate that neuroprotection interventions in acute and chronic phases may help to eradicate the parasite and control the inflammatory-induced increase of the intestinal wall thickness and axonal loss. Our model is a powerful approach to integrate the acute and chronic events triggered by T. cruzi, leading to megacolon.
Collapse
Affiliation(s)
- Mayra Fernanda Ricci
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Samantha Ribeiro Béla
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Michele Macedo Moraes
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Terezinha Bahia
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Lia Mazzeti
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | - Rafael Radí
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | - Lucía Piacenza
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
14
|
Velásquez-Ortiz N, Ramírez JD. Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Res Vet Sci 2020; 132:448-461. [PMID: 32781335 DOI: 10.1016/j.rvsc.2020.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease transmitted by the protozoan Trypanosoma cruzi that lately has been highlighted because several outbreaks attributed to oral transmission of the parasite have occurred. These outbreaks are characterized by high mortality rates and massive infections that cannot be related to other types of transmission such as the vectorial route. Oral transmission of Chagas disease has been reported in Brazil, Colombia, Venezuela, Bolivia, Ecuador, Argentina and French Guiana, most of them are massive oral outbreaks caused by the ingestion of beverages and food contaminated with triatomine feces or parasites' reservoirs secretions and considered since 2012 as a foodborne disease. In this review, we present the current status and all available data regarding oral transmission of Chagas disease, highlighting its relevance as a veterinary and medical foodborne zoonosis.
Collapse
Affiliation(s)
- Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
15
|
Ayala EV, Rodrigues da Cunha G, Azevedo MA, Calderon M, Jimenez J, Venuto AP, Gazzinelli R, Lavalle RJY, Riva AGV, Hincapie R, Finn MG, Marques AF. C57BL/6 α-1,3-Galactosyltransferase Knockout Mouse as an Animal Model for Experimental Chagas Disease. ACS Infect Dis 2020; 6:1807-1815. [PMID: 32374586 DOI: 10.1021/acsinfecdis.0c00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading animal model of experimental Chagas disease, the mouse, plays a significant role in studies for vaccine development, diagnosis, and human therapies. Humans, along with Old World primates, alone among mammals, cannot make the terminal carbohydrate linkage of the α-Gal trisaccharide. It has been established that the anti-α-Gal immune response is likely to be a critical factor for protection against Trypanosoma cruzi (T. cruzi) infection in humans. However, the mice customarily employed for the study of T. cruzi infection naturally express the α-Gal epitope and therefore do not produce anti-α-Gal antibodies. Here, we used the C57BL/6 α-1,3-galactosyltransferase knockout (α-GalT-KO) mouse, which does not express the α-Gal epitope as a model for experimental Chagas disease. We found the anti-α-Gal IgG antibody response to an increase in α-GalT-KO mice infected with Arequipa and Colombiana strains of T. cruzi, leading to fewer parasite nests, lower parasitemia, and an increase of INF-γ, TNF-α, and IL-12 cytokines in the heart of α-GalT-KO mice compared with α-GalT-WT mice on days 60 and 120 postinfection. We therefore agree that the C57BL/6 α-GalT-KO mouse represents a useful model for initial testing of therapeutic and immunological approaches against different strains of T. cruzi.
Collapse
Affiliation(s)
- Edward Valencia Ayala
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
| | - Gisele Rodrigues da Cunha
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maira Araujo Azevedo
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maritza Calderon
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Juan Jimenez
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Ana Paula Venuto
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Ricardo Gazzinelli
- Instituto de Pesquisa Rene Rachou, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
- Plataforma de Medicina Translacional, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Raúl Jesus Ynocente Lavalle
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Angela Giovana Vidal Riva
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Robert Hincapie
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Alexandre F. Marques
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| |
Collapse
|
16
|
Breyner NM, Hecht M, Nitz N, Rose E, Carvalho JL. In vitro models for investigation of the host-parasite interface - possible applications in acute Chagas disease. Acta Trop 2020; 202:105262. [PMID: 31706861 DOI: 10.1016/j.actatropica.2019.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, is the main parasitic disease in the Western Hemisphere, with an increasing number of cases, especially in non-endemic regions. The disease is characterized by cardiomegaly and mega viscera, nevertheless, the clinical outcome is hard to predict, underscoring the need for further research into the pathophysiology of CD. Even though most basic and translational research involving CD is performed using in vivo models, in vitro models arise as an ethical, rapidly evolving, and physiologically relevant alternative for CD research. In the present review, we discuss the past and recent in vitro models available to study the host-parasite interface in cardiac and intestinal CD, critically analyzing the possibilities and limitations of state-of-the-art alternatives for the CD host-parasite investigation.
Collapse
Affiliation(s)
- Natália Martins Breyner
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Ester Rose
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Faculty of Medicine, University of Brasília, Brasília, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Distrito Federal, Brazil.
| |
Collapse
|
17
|
NO x-, IL-1β-, TNF-α-, and IL-6-Inhibiting Effects and Trypanocidal Activity of Banana ( Musa acuminata) Bracts and Flowers: UPLC-HRESI-MS Detection of Phenylpropanoid Sucrose Esters. Molecules 2019; 24:molecules24244564. [PMID: 31847066 PMCID: PMC6943641 DOI: 10.3390/molecules24244564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.
Collapse
|
18
|
Clayton S, Cauble E, Kumar A, Patil N, Ledford D, Kolliputi N, Lopes-Virella MF, Castell D, Richter J. Plasma levels of TNF-α, IL-6, IFN-γ, IL-12, IL-17, IL-22, and IL-23 in achalasia, eosinophilic esophagitis (EoE), and gastroesophageal reflux disease (GERD). BMC Gastroenterol 2019; 19:28. [PMID: 30744559 PMCID: PMC6371504 DOI: 10.1186/s12876-019-0937-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
An elevation of serum inflammatory biomarkers in achalasia patients compared with controls recently was demonstrated. It has not been determined whether the elevation of inflammatory cytokines is unique to achalasia or occurs with other diseases involving the esophagus. The primary aim of our study was to compare the differences in plasma immunological profiles (TNF- α receptor, IL-6, IFN-γ, IL-12, IL-17, IL-22, and IL-23) of patients with achalasia, eosinophilic esophagitis (EoE), and gastroesophageal reflux disease (GERD). A secondary aim of this study was to classify these same plasma cytokine profiles in the three achalasia subtypes. METHODS Plasma from 53 patients with achalasia, 22 with EoE, and 20 with GERD (symptoms plus esophagitis or + reflux study) were analyzed. EXCLUSION CRITERIA malignancy, autoimmune condition, immunodeficiency disorder, and treatment with steroids/immune modulating drugs. Cytokine levels were assayed via multiplex enzyme-linked immunosorbent assay (ELISA). RESULTS Our key finding revealed significant elevations in IL- 6 (p = 0.0158) in achalasia patients compared with EoE patients. Overall, plasma inflammatory biomarker patterns were not different in the three subtypes of achalasia. CONCLUSION There were no differences between the cytokine levels of any of the measured biomarkers between the achalasia and GERD groups suggesting that luminal stasis does increase biomarker levels for any of the cytokines examined in our study. While these results are an early first step towards clarifying some aspects of the pathogenesis of achalasia, they bring about many more questions that require further investigation and expansion. Further investigation with a larger cohort and a broader panel of biomarkers is needed.
Collapse
Affiliation(s)
- Steven Clayton
- Wake Forest Baptist Medical Center, Winston-Salem, NC USA
| | - Elliot Cauble
- University of South Florida, Division of Gastroenterology, Florida, USA
| | - Ambuj Kumar
- University of South Florida, Division of Gastroenterology, Florida, USA
| | - Nirav Patil
- Greenville Health System, Greenville, SC USA
| | - Dennis Ledford
- University of South Florida, Division of Allergy Immunology, Florida, USA
| | | | | | - Donald Castell
- Medical University of South Carolina, Division of Gastroenterology, Charleston, SC USA
| | - Joel Richter
- University of South Florida, Division of Gastroenterology, Florida, USA
| |
Collapse
|
19
|
Gonzalez Rivas E, Ximenez C, Nieves-Ramirez ME, Moran Silva P, Partida-Rodríguez O, Hernandez EH, Rojas Velázquez L, Serrano Vázquez A, Magaña Nuñez U. Entamoeba histolytica Calreticulin Induces the Expression of Cytokines in Peripheral Blood Mononuclear Cells Isolated From Patients With Amebic Liver Abscess. Front Cell Infect Microbiol 2018; 8:358. [PMID: 30406037 PMCID: PMC6202884 DOI: 10.3389/fcimb.2018.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
Calreticulin (CRT) is a highly conserved protein in the endoplasmic reticulum that plays important roles in the regulation of key cellular functions. Little is known about the participation of E. histolytica CRT (EhCRT) in the processes of pathogenicity or in the modulation of the host immune response. The aim of this study was to evaluate the role of CRT in the proliferation and the cytokine profile in peripheral blood mononuclear cells (PBMCs) from patients with amebic liver abscess (ALA) during the acute phase (AP-ALA) of the disease compared to patients during the resolution phase (R-ALA). The PBMCs from each participant were cocultured with EhCRT and tested by the colorimetric method to evaluate their proliferation index (PI). The supernatants were subjected to an enzyme-linked immunosorbent assay (ELISA) to evaluate the concentration of cytokines. The mean values of all groups were compared using the independent t-test. When the PIs of individuals without diagnosis of liver abscess (NEG) were compared, there were no statistically significant differences in the proliferation of PBMCs between patients with AP-ALA and R-ALA when stimulated with EhCRT or concanavalin A (ConA). However, the levels of interleukins [IL-6, IL-10, granulocyte colony stimulating factor (GCSF), and transforming growth factor β1 (TGFβ1)] were higher in patients with AP-ALA, whereas in patients with R-ALA, higher levels of interferon gamma (IFNγ) were detected. These results suggest that EhCRT acts as a mitogen very similar to the activity of ConA. In addition, EhCRT is an excellent immunogen for the specific activation of PBMCs, inducing the differential expression of ILs depending on the outcome of disease, determining the type of immune response: a Th2 cytokine profile during the acute phase and a Th1 profile during the resolution phase.
Collapse
Affiliation(s)
- Enrique Gonzalez Rivas
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Cecilia Ximenez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Miriam Enriqueta Nieves-Ramirez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Patricia Moran Silva
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Oswaldo Partida-Rodríguez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Eric Hernandez Hernandez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Liliana Rojas Velázquez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Angelica Serrano Vázquez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Ulises Magaña Nuñez
- Laboratorio de Inmunología, Unidad de Investigación de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
20
|
Santos AGAD, Lima LLD, Mota CA, Gois MB, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira de Melo GDA. Insights of Leishmania (Viannia) braziliensis infection in golden hamster (Mesocricetus auratus) intestine. Biomed Pharmacother 2018; 106:1624-1632. [PMID: 30119238 DOI: 10.1016/j.biopha.2018.07.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
AIM The present study compared and evaluated morphological and quantitative alterations in the ileum of hamsters infected by two L. (V.) braziliensis strains isolated from patients with different lesion aspects and treatment responses. MAIN METHODS Hamsters were infected in the left hindpaw with a suspension of promastigotes (2 × 107/100 μl) of two different strains of L. (V.) braziliensis. After 90 or 120 days, the animals were euthanized. Samples of the ileum and mesenteric lymph node were collected for histological examination and quantitative polymerase chain reaction. KEY FINDINGS All infected animals developed similar profile of paw lesions. In peripheral blood there was an increase in the number of mononuclear cells which contributed to elevated global leukocytes count. Increases in the width and height of villi and width and depth of crypts were observed. The thickness of the muscular layers, submucosa, and intestinal wall also increased. Histopathological alterations were observed, including inflammatory infiltrate in crypts and a large number of immune cells in the lamina propria, submucosa, and muscular layer. Immune cells were found inside myenteric ganglia, with an increase in the number of intraepithelial lymphocytes. Leishmania DNA was detected in the ileum and mesenteric lymph node at both times of infection. The presence of amastigotes in the ileum was revealed by immunohistochemistry. SIGNIFICANCE The infection with different strains of L. (V.) braziliensis causes morphological and quantitative alterations in the ileum of hamsters and the parasite can migrate to the mesenteric lymph node and intestine.
Collapse
Affiliation(s)
| | - Lainy Leiny de Lima
- Universidade Estadual de Maringá, Colombo Avenue, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Camila Alves Mota
- Universidade Estadual de Maringá, Colombo Avenue, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Viriato Lobo Street, 44571-020, Santo Antônio de Jesus, Bahia, Brazil
| | | | | | | | | |
Collapse
|
21
|
McCall LI, Tripathi A, Vargas F, Knight R, Dorrestein PC, Siqueira-Neto JL. Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome. PLoS Negl Trop Dis 2018. [PMID: 29529084 PMCID: PMC5864088 DOI: 10.1371/journal.pntd.0006344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trypanosoma cruzi parasites are the causative agents of Chagas disease. These parasites infect cardiac and gastrointestinal tissues, leading to local inflammation and tissue damage. Digestive Chagas disease is associated with perturbations in food absorption, intestinal traffic and defecation. However, the impact of T. cruzi infection on the gut microbiota and metabolome have yet to be characterized. In this study, we applied mass spectrometry-based metabolomics and 16S rRNA sequencing to profile infection-associated alterations in fecal bacterial composition and fecal metabolome through the acute-stage and into the chronic stage of infection, in a murine model of Chagas disease. We observed joint microbial and chemical perturbations associated with T. cruzi infection. These included alterations in conjugated linoleic acid (CLA) derivatives and in specific members of families Ruminococcaceae and Lachnospiraceae, as well as alterations in secondary bile acids and members of order Clostridiales. These results highlight the importance of multi-‘omics’ and poly-microbial studies in understanding parasitic diseases in general, and Chagas disease in particular. Host-parasite interactions are usually studied as a binary system, without considering the role of the host microbiota. This work integrates microbiome research into the study of gastrointestinal Chagas disease. We show that T. cruzi infection perturbs the fecal microbiome and metabolome, indicating functional changes affecting the gastrointestinal lumen. Our results support further investigation into the role of the microbiota-parasite interaction in gastrointestinal Chagas disease pathogenesis.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America.,Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America.,Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California, United States of America
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America.,Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California, United States of America
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
22
|
Oda JY, Belém MO, Carlos TM, Gouveia R, Luchetti BFC, Moreira NM, Massocatto CL, Araújo SM, Sant Ana DMG, Buttow NC, Pinge-Filho P, Araújo EJA. Myenteric neuroprotective role of aspirin in acute and chronic experimental infections with Trypanosoma cruzi. Neurogastroenterol Motil 2017; 29:1-13. [PMID: 28524628 DOI: 10.1111/nmo.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Experimental and clinical studies have shown that myenteric neuron cell death during infection with Trypanosoma cruzi mainly occurs in the esophagus and colon, resulting in megaesophagus and megacolon, respectively. Evidence suggests that the cyclooxygenase enzyme (COX) is involved in the T. cruzi invasion process. The use of low-dose aspirin (ASA), a COX-1/COX-2 inhibitor, has been shown to reduce infection with T. cruzi. Therefore, in this study, we evaluated the effects of treatment with low-dose ASA on myenteric colonic neurons during murine infection with T. cruzi. METHODS Swiss mice were assigned into groups treated with either phosphate-buffered saline or low doses of ASA during the acute phase (20 mg/kg ASA) and chronic phase (50 mg/kg ASA) of infection with the Y strain of T. cruzi. Seventy-five days after infection, colon samples were collected to quantify inflammatory foci in histological sections and also general (myosin-V+ ), nitrergic, and VIPergic myenteric neurons in whole mounts. Gastrointestinal transit time was also measured. KEY RESULTS Aspirin treatment during the acute phase of infection reduced parasitemia (P<.05). Aspirin treatment during the acute or chronic phase of the infection reduced the intensity of inflammatory foci in the colon, protected myenteric neurons from cell death and plastic changes, and recovered the gastrointestinal transit of mice infected with T. cruzi (P<.05). CONCLUSION & INFERENCES Early and delayed treatment with low-dose ASA can reduce the morphofunctional damage of colonic myenteric neurons caused by murine T. cruzi infection.
Collapse
Affiliation(s)
- J Y Oda
- Department of Medicine, Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil.,Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - M O Belém
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - T M Carlos
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - R Gouveia
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - B F C Luchetti
- Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - N M Moreira
- Center for Education, Letters and Health, State University of Western Paraná, Foz do Iguaçu, Paraná, Brazil
| | - C L Massocatto
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - S M Araújo
- Department of Basic Health Science, State University of Maringá, Maringá, Paraná, Brazil
| | - D M G Sant Ana
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - N C Buttow
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - P Pinge-Filho
- Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - E J A Araújo
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
23
|
Rolón M, Serrano DR, Lalatsa A, de Pablo E, Torrado JJ, Ballesteros MP, Healy AM, Vega C, Coronel C, Bolás-Fernández F, Dea-Ayuela MA. Engineering Oral and Parenteral Amorphous Amphotericin B Formulations against Experimental Trypanosoma cruzi Infections. Mol Pharm 2017; 14:1095-1106. [DOI: 10.1021/acs.molpharmaceut.6b01034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de
Agosto y O’Leary, 1255 Asunción, Paraguay
| | - Dolores R. Serrano
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI),
School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, U.K
| | - Esther de Pablo
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juan Jose Torrado
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI),
School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain
| | - Maria Paloma Ballesteros
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI),
School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de
Agosto y O’Leary, 1255 Asunción, Paraguay
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de
Agosto y O’Leary, 1255 Asunción, Paraguay
| | - Francisco Bolás-Fernández
- Departamento de Parasitología,
Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón
y Cajal s/n, 28040 Madrid, Spain
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia,
Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Edificio Seminario s/n, 46113 Moncada, Valencia, Spain
| |
Collapse
|
24
|
Souza DDSMD, Araujo MT, dos Santos PRSG, Furtado JCB, Figueiredo MTS, Povoa RMS. Anatomopathological Aspects of Acute Chagas Myocarditis by Oral Transmission. Arq Bras Cardiol 2016; 107:77-80. [PMID: 27533369 PMCID: PMC4976960 DOI: 10.5935/abc.20160110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | - Rui M S Povoa
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|