1
|
Ferraguti M. Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. Infect Dis (Lond) 2024; 56:685-696. [PMID: 38795138 DOI: 10.1080/23744235.2024.2357624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Research on vector-borne diseases has traditionally centred on a limited number of vertebrate hosts and their associated pathogens, often neglecting the broader array of vectors within communities. Mosquitoes, with their vast species diversity, hold a central role in disease transmission, yet their capacity to transmit specific pathogens varies considerably among species. Quantitative modelling of mosquito-borne diseases is essential for understanding transmission dynamics and requires the necessity of incorporating the identity of vector species into these models. Consequently, understanding the role of different species of mosquitoes in modelling vector-borne diseases is crucial for comprehending pathogen amplification and spill-over into humans. This comprehensive overview highlights the importance of considering mosquito identity and emphasises the essential need for targeted research efforts to gain a complete understanding of vector-pathogen specificity. METHODS Leveraging the recently published book, 'Mosquitoes of the World', I identified 19 target mosquito species in Europe, highlighting the diverse transmission patterns exhibited by different vector species and the presence of 135 medically important pathogens. RESULTS The review delves into the complexities of vector-pathogen interactions, with a focus on specialist and generalist strategies. Furthermore, I discuss the importance of using appropriate diversity indices and the challenges associated with the identification of correct indices. CONCLUSIONS Given that the diversity and relative abundance of key species within a community significantly impact disease risk, comprehending the implications of mosquito diversity in pathogen transmission at a fine scale is crucial for advancing the management and surveillance of mosquito-borne diseases.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Boerlijst SP, van der Gaast A, Adema LMW, Bouman RW, Boelee E, van Bodegom PM, Schrama M. Taking it with a grain of salt: tolerance to increasing salinization in Culex pipiens (Diptera: Culicidae) across a low-lying delta. Parasit Vectors 2024; 17:251. [PMID: 38858771 PMCID: PMC11165877 DOI: 10.1186/s13071-024-06268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Salinity, exacerbated by rising sea levels, is a critical environmental cue affecting freshwater ecosystems. Predicting ecosystem structure in response to such changes and their implications for the geographical distribution of arthropod disease vectors requires further insights into the plasticity and adaptability of lower trophic level species in freshwater systems. Our study investigated whether populations of the mosquito Culex pipiens, typically considered sensitive to salt, have adapted due to gradual exposure. METHODS Mesocosm experiments were conducted to evaluate responses in life history traits to increasing levels of salinity in three populations along a gradient perpendicular to the North Sea coast. Salt concentrations up to the brackish-marine transition zone (8 g/l chloride) were used, upon which no survival was expected. To determine how this process affects oviposition, a colonization experiment was performed by exposing the coastal population to the same concentrations. RESULTS While concentrations up to the currently described median lethal dose (LD50) (4 g/l) were surprisingly favored during egg laying, even the treatment with the highest salt concentration was incidentally colonized. Differences in development rates among populations were observed, but the influence of salinity was evident only at 4 g/l and higher, resulting in only a 1-day delay. Mortality rates were lower than expected, reaching only 20% for coastal and inland populations and 41% for the intermediate population at the highest salinity. Sex ratios remained unaffected across the tested range. CONCLUSIONS The high tolerance to salinity for all key life history parameters across populations suggests that Cx. pipiens is unlikely to shift its distribution in the foreseeable future, with potential implications for the disease risk of associated pathogens.
Collapse
Affiliation(s)
- Sam Philip Boerlijst
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands.
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands.
| | - Antje van der Gaast
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Lisa Maria Wilhelmina Adema
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Roderick Wiebe Bouman
- Hortus Botanicus Leiden, 9500, 2300 RA, Leiden, The Netherlands
- Naturalis Biodiversity Center, 9517, 2300 RA, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, 9505, 2300 RA, Leiden, Netherlands
| | - Eline Boelee
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands
| | - Peter Michiel van Bodegom
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Maarten Schrama
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
3
|
Garrigós M, Veiga J, Garrido M, Marín C, Recuero J, Rosales MJ, Morales-Yuste M, Martínez-de la Puente J. Avian Plasmodium in invasive and native mosquitoes from southern Spain. Parasit Vectors 2024; 17:40. [PMID: 38287455 PMCID: PMC10826103 DOI: 10.1186/s13071-024-06133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The emergence of diseases of public health concern is enhanced by factors associated with global change, such as the introduction of invasive species. The Asian tiger mosquito (Aedes albopictus), considered a competent vector of different viruses and parasites, has been successfully introduced into Europe in recent decades. Molecular screening of parasites in mosquitoes (i.e. molecular xenomonitoring) is essential to understand the potential role of different native and invasive mosquito species in the local circulation of vector-borne parasites affecting both humans and wildlife. METHODS The presence of avian Plasmodium parasites was molecularly tested in mosquitoes trapped in five localities with different environmental characteristics in southern Spain from May to November 2022. The species analyzed included the native Culex pipiens and Culiseta longiareolata and the invasive Ae. albopictus. RESULTS Avian Plasmodium DNA was only found in Cx. pipiens with 31 positive out of 165 mosquito pools tested. None of the Ae. albopictus or Cs. longiareolata pools were positive for avian malaria parasites. Overall, eight Plasmodium lineages were identified, including a new lineage described here. No significant differences in parasite prevalence were found between localities or sampling sessions. CONCLUSIONS Unlike the invasive Ae. albopictus, Cx. pipiens plays a key role in the transmission of avian Plasmodium in southern Spain. However, due to the recent establishment of Ae. albopictus in the area, further research on the role of this species in the local transmission of vector-borne pathogens with different reservoirs is required.
Collapse
Affiliation(s)
- Marta Garrigós
- Doñana Biological Station, EBD-CSIC, Seville, Spain.
- Department of Parasitology, University of Granada, Granada, Spain.
| | - Jesús Veiga
- Doñana Biological Station, EBD-CSIC, Seville, Spain
- Department of Parasitology, University of Granada, Granada, Spain
| | - Mario Garrido
- Department of Parasitology, University of Granada, Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Granada, Spain
| | - Jesús Recuero
- Veterinary and Conservation Department, Bioparc Fuengirola, Malaga, Spain
| | | | | | - Josué Martínez-de la Puente
- Doñana Biological Station, EBD-CSIC, Seville, Spain.
- Department of Parasitology, University of Granada, Granada, Spain.
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
4
|
Köchling K, Schaub GA, Werner D, Kampen H. Avian Plasmodium spp. and Haemoproteus spp. parasites in mosquitoes in Germany. Parasit Vectors 2023; 16:369. [PMID: 37853399 PMCID: PMC10585844 DOI: 10.1186/s13071-023-05965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Although haemosporidian parasites may cause considerable health and economic problems in aviaries, there is limited understanding of the vectors transmitting them. Mosquito-borne Plasmodium species are responsible for the deaths of numerous exotic (= immunologically naïve) birds in zoos every year, while native birds are adapted to the parasites and largely protected by an effective immune response. METHODS Mosquitoes were collected in bird/animal parks, wetlands and private gardens in various regions of Germany from 2020 to 2022. Females were pooled with up to 10 specimens according to taxon, location and date. Extracted DNA was screened for avian Haemosporida-specific mitochondrial rDNA using real-time polymerase chain reaction (PCR). Positive samples were amplified by a Plasmodium/Haemoproteus-specific nested PCR targeting the partial cytochrome b gene, followed by sequencing of the PCR product for species identification. Sequences were checked against GenBank and MalAvi databases. RESULTS PCR of 2633 pools with 8834 female mosquitoes signalled infection with Plasmodium in 46 pools and with Haemoproteus in one pool. Further amplification and sequencing demonstrated the occurrence of Haemoproteus majoris lineage PARUS1 (n = 1) as well as several Plasmodium species and lineages, including Plasmodium relictum SGS1 (n = 16) and GRW11 (n = 1), P. matutinum LINN1 (n = 13), P. vaughani SYAT05 (n = 10), P. circumflexum TURDUS01 (n = 3), P. cathemerium PADOM02 (n = 1) and Plasmodium sp. SYBOR02 (n = 1) and PLOPRI01 (n = 1). The infections were detected in Culex pipiens sensu lato (n = 40), Culiseta morsitans/fumipennis (n = 6) and Aedes cinereus/geminus (n = 1). CONCLUSIONS Although the overall Plasmodium minimum infection rate (5.2) appears to be low, the results demonstrated not only the ongoing circulation of Plasmodium parasites in the German mosquito population, but also the occurrence of eight distinct Plasmodium lineages, with three of them (PADOM02, SYBOR02, PLOPRI01) being detected in Germany for the first time. This study highlights the importance of conducting mosquito-borne pathogen surveillance studies simultaneously targeting vectors and vertebrate hosts, as certain species may be detected more readily in their vectors than in their vertebrate hosts, and vice versa.
Collapse
Affiliation(s)
- Katharina Köchling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany.
| | | | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
5
|
Dimitrov D, Bobeva A, Marinov MP, Ilieva M, Zehtindjiev P. First evidence for development of Plasmodium relictum (Grassi and Feletti, 1891) sporozoites in the salivary glands of Culex modestus Ficalbi, 1889. Parasitol Res 2023:10.1007/s00436-023-07853-z. [PMID: 37099049 DOI: 10.1007/s00436-023-07853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
The competence of insect vectors to transmit diseases plays a key role in host-parasite interactions and in the dynamics of avian malaria and other haemosporidian infections (Apicomplexa, Haemosporida). However, the presence of parasite DNA in the body of blood-sucking insects does not always constitute evidence for their competence as vectors. In this study, we investigate the susceptibility of wild-caught mosquitoes (Culex spp.) to complete sporogony of Plasmodium relictum (cyt b lineage SGS1) isolated from great tits (Parus major L., 1758). Adult female mosquitoes were collected with a CO2 bait trap overnight. A set of 50 mosquitoes was allowed to feed for 3 h at night on a single great tit infected with P. relictum. This trial was repeated on 6 different birds. The bloodfed mosquitoes that survived (n = 68) were dissected within 1-2 days (for ookinetes, n = 10) and 10-33 days post infection (for oocysts and sporozoites, n = 58) in order to confirm the respective parasite stages in their organs. The experiment confirmed the successful development of P. relictum (cyt b lineage SGS1) to the stage of sporozoites in Culex pipiens L., 1758 (n = 27) and in Culex modestus (n = 2). Our study provides the first evidence that C. modestus is a competent vector of P. relictum isolated from great tits, suggesting that this mosquito species could also play a role in the natural transmission of avian malaria.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria.
| | - Aneliya Bobeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - Martin P Marinov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - Mihaela Ilieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - Pavel Zehtindjiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| |
Collapse
|
6
|
Boerlijst SP, Johnston ES, Ummels A, Krol L, Boelee E, van Bodegom PM, Schrama MJJ. Biting the hand that feeds: Anthropogenic drivers interactively make mosquitoes thrive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159716. [PMID: 36302419 DOI: 10.1016/j.scitotenv.2022.159716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic stressors on the environment are increasing at unprecedented rates and include urbanization, nutrient pollution, water management, altered land use and climate change. Their effects on disease vectors are poorly understood. A series of full factorial experiments investigated how key human induced abiotic pressures, and interactions between these, affect population parameters of the cosmopolitan disease vector, Culex pipiens s.l. Selected pressures include eutrophication, salinity, mean temperature, and temperature fluctuation. Data were collected for each individual pressure and for potential interactions between eutrophication, salinization and temperature. All experiments assessed survival, time to pupation, time to emergence, sex-ratio and ovipositioning behavior. The results show that stressors affect vector survival, may speed up development and alter female to male ratio, although large differences between stressors exist to quite different extents. While positive effects of increasing levels of eutrophication on survival were consistent, negative effects of salinity on survival were only apparent at higher temperatures, thus indicating a strong interaction effect between salinization and temperature. Temperature had no independent effect on larval survival. Overall, increasing eutrophication and temperatures, and the fluctuations thereof, lowered development rate, time to pupation and time to emergence while increasing levels of salinity increased development time. Higher levels of eutrophication positively impacted egg-laying behavior; the reverse was found for salinity while no effects of temperature on egg-laying behavior were observed. Results suggest large and positive impacts of anthropogenically induced habitat alterations on mosquito population dynamics. Many of these effects are exacerbated by increasing temperatures and fluctuations therein. In a world where eutrophication and salinization are increasingly abundant, mosquitoes are likely important benefactors. Ultimately, this study illustrates the importance of including multiple and combined stressors in predictive models as well as in prevention and mitigation strategies, particularly because they resonate with possible, but yet underdeveloped action plans.
Collapse
Affiliation(s)
- S P Boerlijst
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands.
| | - E S Johnston
- University of Utrecht, Department Population Health Sciences, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - A Ummels
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - L Krol
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - E Boelee
- Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - P M van Bodegom
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - M J J Schrama
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| |
Collapse
|
7
|
Ferraguti M, Martínez-de la Puente J, Figuerola J. Ecological Effects on the Dynamics of West Nile Virus and Avian Plasmodium: The Importance of Mosquito Communities and Landscape. Viruses 2021; 13:v13071208. [PMID: 34201673 PMCID: PMC8310121 DOI: 10.3390/v13071208] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023] Open
Abstract
Humans and wildlife are at risk from certain vector-borne diseases such as malaria, dengue, and West Nile and yellow fevers. Factors linked to global change, including habitat alteration, land-use intensification, the spread of alien species, and climate change, are operating on a global scale and affect both the incidence and distribution of many vector-borne diseases. Hence, understanding the drivers that regulate the transmission of pathogens in the wild is of great importance for ecological, evolutionary, health, and economic reasons. In this literature review, we discuss the ecological factors potentially affecting the transmission of two mosquito-borne pathogens circulating naturally between birds and mosquitoes, namely, West Nile virus (WNV) and the avian malaria parasites of the genus Plasmodium. Traditionally, the study of pathogen transmission has focused only on vectors or hosts and the interactions between them, while the role of landscape has largely been ignored. However, from an ecological point of view, it is essential not only to study the interaction between each of these organisms but also to understand the environmental scenarios in which these processes take place. We describe here some of the similarities and differences in the transmission of these two pathogens and how research into both systems may facilitate a greater understanding of the dynamics of vector-borne pathogens in the wild.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, E-18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Correspondence: (M.F.); (J.M.-d.l.P.)
| | - Jordi Figuerola
- Doñana Biological Station (EBD-CSIC), E-41092 Seville, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
8
|
Roth AM, Keiser CN, Williams JB, Gee JM. Prevalence and intensity of avian malaria in a quail hybrid zone. Ecol Evol 2021; 11:8123-8135. [PMID: 34188875 PMCID: PMC8216944 DOI: 10.1002/ece3.7645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/12/2023] Open
Abstract
Hybrid zones have been described as natural laboratories by researchers who study speciation and the various mechanisms that may affect gene flow. The evolutionary consequences of hybridization depend not only on reproductive compatibility between sympatric species, but also on factors like vulnerability to each other's predators and parasites. We examined infection patterns of the blood parasite Haemoproteus lophortyx, a causative agent of avian malaria, at a site in the contact zone between California quail (Callipepla californica) and Gambel's quail (C. gambelii). Controlling for the potential influence of sex and year, we tested whether species identity predicted infection status and intensity. We found that infection prevalence was lower in California and hybrid quail compared with Gambel's quail. However, infected California and hybrid quail had higher infection intensities than Gambel's quail. California and hybrid quail exhibited no significant differences in prevalence or intensity of infection. These findings suggest that infection by H. lophortyx has the potential to influence species barrier dynamics in this system; however, more work is necessary to determine the exact evolutionary consequences of this blood parasite on hybridization.
Collapse
Affiliation(s)
| | - Carl N. Keiser
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Judson B. Williams
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
- Present address:
Department of SurgeryDuke UniversityRaleighNCUSA
| | - Jennifer M. Gee
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
- Present address:
James San Jacinto Mountains ReserveUniversity of California – RiversideUniversity of California Natural Reserve SystemIdyllwildCAUSA
| |
Collapse
|
9
|
Ghaemitalab V, Mirshamsi O, Valkiūnas G, Aliabadian M. Prevalence and Genetic Diversity of Avian Haemosporidian Parasites in Southern Iran. Pathogens 2021; 10:645. [PMID: 34071073 PMCID: PMC8224752 DOI: 10.3390/pathogens10060645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Avian haemosporidians are widespread and diverse and are classified in the genera Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. These species are known to cause haemosporidiosis and decreased fitness of their hosts. Despite the high diversity of habitats and animal species in Iran, only few studies have addressed avian haemosporidians in this geographic area. This study was performed in the south and southeast of Iran during the bird breeding seasons in 2017 and 2018, with the aim to partly fill in this gap. Blood samples of 237 passerine birds belonging to 41 species and 20 families were collected. Parasite infections were identified using a nested PCR protocol targeting a 479-base-pair fragment of the mitochondrial cytochrome b (cytb) gene of Haemoproteus, Plasmodium and Leucocytozoon species. The overall prevalence of haemosporidian parasites was 51.1%, and 55 different lineages were identified, of which 15 cytb lineages were new globally. The lineages of Haemoproteus predominated (63.6% of all detected lineages), followed by Leucocytozoon and Plasmodium. Nineteen new host records of haemosporidian cytb lineages were identified, and the majority of them were found in resident bird species, indicating local transmission. Thirteen co-infections (9.8% of infected individuals) of Haemoproteus and Leucocytozoon parasites in seven host species were observed. This study shows the presence of active local transmission of parasites to resident bird species in the southeast of Iran and contributes to the knowledge on haemosporidian parasite biodiversity in this poorly studied region of the world.
Collapse
Affiliation(s)
- Vajiheh Ghaemitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (V.G.); (O.M.)
| | - Omid Mirshamsi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (V.G.); (O.M.)
- Research Department of Zoological Innovations (RDZI), Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | | | - Mansour Aliabadian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (V.G.); (O.M.)
- Research Department of Zoological Innovations (RDZI), Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
10
|
Guimarães LDO, Simões RF, Chagas CRF, de Menezes RMT, Silva FS, Monteiro EF, Holcman MM, Bajay MM, Pinter A, de Camargo-Neves VLF, Kirchgatter K. Assessing Diversity, Plasmodium Infection and Blood Meal Sources in Mosquitoes (Diptera: Culicidae) from a Brazilian Zoological Park with Avian Malaria Transmission. INSECTS 2021; 12:215. [PMID: 33802320 PMCID: PMC7999885 DOI: 10.3390/insects12030215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Avian malaria parasites are widespread parasites transmitted by Culicidae insects belonging to different genera. Even though several studies have been conducted recently, there is still a lack of information about potential vectors of Plasmodium parasites, especially in Neotropical regions. Former studies with free-living and captive animals in São Paulo Zoo showed the presence of several Plasmodium and Haemoproteus species. In 2015, a pilot study was conducted at the zoo to collect mosquitoes in order to find out (i) which species of Culicidae are present in the study area, (ii) what are their blood meal sources, and (iii) to which Plasmodium species might they be potential vectors. Mosquitoes were morphologically and molecularly identified. Blood meal source and haemosporidian DNA were identified using molecular protocols. A total of 25 Culicidae species were identified, and 6 of them were positive for Plasmodium/Haemoproteus DNA. Ten mosquito species had their source of blood meal identified, which were mainly birds, including some species that were positive for haemosporidian parasites in the former study mentioned. This study allowed us to expand the list of potential vectors of avian malaria parasites and to improve our knowledge of the evolutionary and ecological relationships between the highly diverse communities of birds, parasites, and vectors present at São Paulo Zoo.
Collapse
Affiliation(s)
- Lilian de Oliveira Guimarães
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
| | - Roseli França Simões
- Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo SP 05403-000, Brazil; (R.F.S.); (E.F.M.)
| | - Carolina Romeiro Fernandes Chagas
- Nature Research Centre, 08412 Vilnius, Lithuania;
- Applied Research Department, Zoological Park Foundation, São Paulo SP 04301-905, Brazil
| | - Regiane Maria Tironi de Menezes
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
| | - Fabiana Santos Silva
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
- Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo SP 05403-000, Brazil; (R.F.S.); (E.F.M.)
| | - Eliana Ferreira Monteiro
- Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo SP 05403-000, Brazil; (R.F.S.); (E.F.M.)
| | - Marcia Moreira Holcman
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
| | | | - Adriano Pinter
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
| | - Vera Lucia Fonseca de Camargo-Neves
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
| | - Karin Kirchgatter
- Superintendence for Endemic Disease Control, SUCEN, São Paulo SP 01027-000, Brazil; (L.d.O.G.); (R.M.T.d.M.); (F.S.S.); (M.M.H.); (A.P.); (V.L.F.d.C.-N.)
- Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo SP 05403-000, Brazil; (R.F.S.); (E.F.M.)
| |
Collapse
|
11
|
Mosquito-borne parasites in the Great Plains: searching for vectors of nematodes and avian malaria parasites. Acta Trop 2021; 213:105735. [PMID: 33159896 DOI: 10.1016/j.actatropica.2020.105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022]
Abstract
Vector-borne diseases in the United States have recently increased as a result of the changing nature of vectors, hosts, reservoirs, parasite/pathogens, and the ecological and environmental conditions. While most focus has been on mosquito-borne pathogens affecting humans, little is known regarding parasites of companion animal, livestock and wildlife and their potential mosquito hosts in the United States. This study assessed the prevalence of mature infections of Dirofilaria immitis and avian malaria parasites (Haemosporida) within urban mosquito (Diptera, Culicidae) communities in Oklahoma. 2,620 pools consisting of 12,686 mosquitoes from 13 species collected over two summers were tested for the presence of filarioid and haemosporidian DNA. Dirofilaria immitis-infected mosquitoes were detected only in Aedes albopictus (MIR=0.18-0.22) and Culex pipiens complex (MIR=0.12) collected in cities in central and southern Oklahoma. Two other filarioid nematode species with 91-92% similarity with Onchocerca spp. and Mansonella spp. were also detected. Haemosporidian DNA was detected in 13 mosquito pools (0.9% of pools tested) from seven mosquito species out of 13 species tested. Plasmodium DNA in four species (Cx. coronator, Cx. pipiens complex, Cx. tarsalis, and Psorophora columbiae) had high homology with published sequences of avian Plasmodium species while DNA in four other species (Cx. nigripalpus, Ps. columbiae, Anopheles quadrimaculatus, and An. punctipennis) were closely related to Plasmodium species from deer. One pool of Cx. tarsalis was positive with a 100% sequence identity of Haemoproteus sacharovi. This study provides a baseline concerning the diversity of parasites in different mosquito species present in the southern Great Plains. These studies provide important information for understanding the factors of transmission involving the mosquito community, potential hosts, and different mosquito-borne parasites in this important region involved in livestock management and wildlife conservation.
Collapse
|
12
|
González MA, Prosser SW, Hernández-Triana LM, Alarcón-Elbal PM, Goiri F, López S, Ruiz-Arrondo I, Hebert PDN, García-Pérez AL. Avian Feeding Preferences of Culex pipiens and Culiseta spp. Along an Urban-to-Wild Gradient in Northern Spain. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.568835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Mosquito identification and haemosporidian parasites detection in the enclosure of the African penguins ( Spheniscus demersus) at the SANBI zoological garden. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:98-105. [PMID: 32983863 PMCID: PMC7493043 DOI: 10.1016/j.ijppaw.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/22/2022]
Abstract
The National Zoological Gardens (NZG) is a facility of the South African National Biodiversity Institute (SANBI) and the largest zoo in southern Africa. Among the 9000 captive animals kept by the NZG, is the endangered African penguin (Spheniscus demersus). There have been several post-mortem reports on deaths of penguins in the NZG due to haemosporidian infections, however, the haemosporidian lineages involved and possible insect vector are unknown. Haemosporidians are apicomplexan parasites that infect vertebrates through blood-sucking dipteran insects. Therefore, the current study aimed to identify mosquitoes that are potential vectors found within the African penguin enclosure as well as to detect the haemosporidian parasites from these insects using nested-PCR and real-time PCR (qPCR) analyses. Mosquito samples were collected using an overnight UV-light trap setup for 3 months. From the 65 pooled samples representing 325 mosquitoes, morphological and molecular analysis showed that Culex pipiens (52.31%) was the dominant species followed by Cx. t heileri (30.77%) and Cx. quinquefasciatus (16.92%). Nested-PCR detected parasite DNA of Leucocytozoon sp. and Plasmodium sp. The Cx. pipiens had the highest minimum infection rate (MIR) of 5.88% by nested-PCR and 9.41% by qPCR whilst Cx. quinquefasciatus had MIR of 3.64% in both assays and no haemosporidian parasites were detected from Cx. t heileri. One Cx. pipiens sample had a co-infection of both Plasmodium sp. and Leucocytozoon sp. detected by nested-PCR. These findings suggest that effective control measures for blood-sucking dipteran insects is required at the NZG and more studies should be conducted to determine the actual prevalence of these haemosporidian parasites among other bird species within NZG.
Collapse
|
14
|
Gutiérrez-López R, Bourret V, Loiseau C. Is Host Selection by Mosquitoes Driving Vector Specificity of Parasites? A Review on the Avian Malaria Model. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas - A review. INFECTION GENETICS AND EVOLUTION 2020; 81:104244. [PMID: 32087345 DOI: 10.1016/j.meegid.2020.104244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Avian Plasmodium is of special interest to health care scientists and veterinarians due to the potency of causing avian malaria in non-adapted birds and their evolutionary phylogenetic relationship with human malaria species. This article aimed to provide a comprehensive list of the common avian Plasmodium parasites in the birds and mosquitoes, to specify the common Plasmodium species and lineages in the selected regions of West of Asia, East of Europe, and North of Africa/Middle East, and to determine the contribution of generalist and host-specific Plasmodium species and lineages. The final list of published infected birds includes 146 species, among which Passer domesticus was the most prevalent in the studied areas. The species of Acrocephalus arundinaceus and Sylvia atricapilla were reported as common infected hosts in the examined regions of three continents. The highest numbers of common species of infected birds between continent pairs were from Asia and Europe, and no common record was found from Europe and Africa. The species of Milvus migrans and Upupa epops were recorded as common species from Asia and Africa. The lineage of GRW11 and species of P. relictum were the most prevalent parasites among all the infection records in birds. The most prevalent genus of vectors of avian malaria belonged to Culex and species of Cx. pipiens. The lineage SGS1 with the highest number of occurrence has been found in various vectors comprising Cx. pipiens, Cx. modestus, Cx. theileri, Cx. sasai, Cx. perexiguus, Lutzia vorax, and Culicoides alazanicus. A total of 31 Plasmodium species and 59 Plasmodium lineages were recorded from these regions. SGS1, GRW04, and GRW11, and P. relictum and P. vaughani are specified as common generalist avian malaria parasites from these three geographic areas. The presence of avian Plasmodium parasites in distant geographic areas and various hosts may be explained by the movement of the infected birds through the migration routes. Although most recorded lineages were from Asia, investigating the distribution of lineages in some of the countries has not been done. Thus, the most important outcome of this review is the determination of the distribution pattern of parasite and vector species that shed light on gaps requiring further studies on the monitoring of avian Plasmodium and common vectors extension. This task could be achieved through scientific field and laboratory networking, performing active surveillance and designing regional/continental control programs of birds' malaria and other zoonotic diseases.
Collapse
|
16
|
Abstract
Factors such as the particular combination of parasite-mosquito species, their co-evolutionary history and the host's parasite load greatly affect parasite transmission. However, the importance of these factors in the epidemiology of mosquito-borne parasites, such as avian malaria parasites, is largely unknown. Here, we assessed the competence of two mosquito species [Culex pipiens and Aedes (Ochlerotatus) caspius], for the transmission of four avian Plasmodium lineages (Plasmodium relictum SGS1 and GRW11 and Plasmodium cathemerium-related lineages COLL1 and PADOM01) naturally infecting wild house sparrows. We assessed the effects of parasite identity and parasite load on Plasmodium transmission risk through its effects on the transmission rate and mosquito survival. We found that Cx. pipiens was able to transmit the four Plasmodium lineages, while Ae. caspius was unable to transmit any of them. However, Cx. pipiens mosquitoes fed on birds infected by P. relictum showed a lower survival and transmission rate than those fed on birds infected by parasites related to P. cathemerium. Non-significant associations were found with the host-parasite load. Our results confirm the existence of inter- and intra-specific differences in the ability of Plasmodium lineages to develop in mosquito species and their effects on the survival of mosquitoes that result in important differences in the transmission risk of the different avian malaria parasite lineages studied.
Collapse
|
17
|
Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Yan J, Soriguer R, Figuerola J. Experimental reduction of host Plasmodium infection load affects mosquito survival. Sci Rep 2019; 9:8782. [PMID: 31217438 PMCID: PMC6584735 DOI: 10.1038/s41598-019-45143-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium transmission success depends upon the trade-off between the use of host resources to favour parasite reproduction and the negative effects on host health, which can be mediated by infection intensity. Despite its potential influence on parasite dynamics, the effects of infection intensity on both, birds and vectors, and on Plasmodium transmission success are still poorly understood. Here, we experimentally reduced the Plasmodium load in naturally infected wild house sparrows with the antimalarial primaquine to assess the effects of intensity of infection in the vertebrate hosts on Plasmodium transmission to and by mosquitoes. We monitored the survival of Culex pipiens mosquitoes throughout the development of the parasite and the infection status of the mosquitoes by analysing the head-thorax and saliva at 13 days post-exposure to birds. The proportion of mosquitoes infected by Plasmodium and the presence of Plasmodium in saliva were not associated with the medication treatment of birds. However, the experimental treatment affected vector survival with mosquitoes fed on medicated birds showing a higher survival rate than those fed on control individuals. These results provide strong experimental evidence of the impact of parasite load of vertebrate hosts on the survival probability of malaria vectors.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Laura Gangoso
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park, 904 1098 XH, Amsterdam, The Netherlands
| | - Jiayue Yan
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,Illinois Natural History Survey, University of Illinois, 1816 S Oak St., Champaign 61820, Illinois, USA
| | - Ramón Soriguer
- Department of Ethology & Biodiversity Conservation, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Sevilla, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| |
Collapse
|
18
|
Heym EC, Kampen H, Krone O, Schäfer M, Werner D. Molecular detection of vector-borne pathogens from mosquitoes collected in two zoological gardens in Germany. Parasitol Res 2019; 118:2097-2105. [PMID: 31154526 PMCID: PMC6611737 DOI: 10.1007/s00436-019-06327-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/04/2022]
Abstract
In Germany, knowledge of disease agents transmitted by arthropods in zoological gardens is scarce. In the framework of ecological studies, mosquitoes were therefore collected in German zoological gardens and examined for mosquito-borne pathogen DNA and RNA. In total, 3840 mosquitoes were screened for filarial nematodes and three groups of viruses (orthobunyaviruses, flaviviruses, alphaviruses) while 405 mosquitoes were tested for avian malaria parasites. In addition to the filarial nematode species Dirofilaria repens (n = 1) and Setaria tundra (n = 8), Sindbis virus (n = 1) and the haemosporidian genera Haemoproteus (n = 8), Leucocytozoon (n = 10) and Plasmodium (n = 1) were demonstrated. Identified pathogens have the potential to cause disease in zoo and wild animals, but some of them also in humans. Positive mosquitoes were collected most often in July, indicating the highest infection risk during this month. Most of the pathogens were found in mosquito specimens of the Culex pipiens complex, suggesting that its members possibly act as the most important vectors in the surveyed zoos, although the mere demonstration of pathogen DNA/RNA in a homogenised complete mosquito is not finally indicative for a vector role. Outcomes of the study are not only significant for arthropod management in zoological gardens, but also for the general understanding of the occurrence and spread of mosquito-borne disease agents.
Collapse
Affiliation(s)
- Eva C Heym
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374, Muencheberg, Germany.
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374, Muencheberg, Germany
| |
Collapse
|
19
|
Gangoso L, Gutiérrez-López R, Martínez-de la Puente J, Figuerola J. Louse flies of Eleonora's falcons that also feed on their prey are evolutionary dead-end hosts for blood parasites. Mol Ecol 2019; 28:1812-1825. [PMID: 30710395 PMCID: PMC6850589 DOI: 10.1111/mec.15020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.
Collapse
Affiliation(s)
- Laura Gangoso
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.,Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
20
|
Gutiérrez-López R, Martínez-de la Puente J, Gangoso L, Soriguer R, Figuerola J. Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences. Parasit Vectors 2019; 12:87. [PMID: 30867014 PMCID: PMC6416876 DOI: 10.1186/s13071-019-3342-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The transmission of mosquito-borne pathogens is strongly influenced by the contact rates between mosquitoes and susceptible hosts. The biting rates of mosquitoes depend on different factors including the mosquito species and host-related traits (i.e. odour, heat and behaviour). However, host characteristics potentially affecting intraspecific differences in the biting rate of mosquitoes are poorly known. Here, we assessed the impact of three host-related traits on the biting rate of two mosquito species with different feeding preferences: the ornithophilic Culex pipiens and the mammophilic Ochlerotatus (Aedes) caspius. Seventy-two jackdaws Corvus monedula and 101 house sparrows Passer domesticus were individually exposed to mosquito bites to test the effect of host sex, body mass and infection status by the avian malaria parasite Plasmodium on biting rates. RESULTS Ochlerotatus caspius showed significantly higher biting rates than Cx. pipiens on jackdaws, but non-significant differences were found on house sparrows. In addition, more Oc. caspius fed on female than on male jackdaws, while no differences were found for Cx. pipiens. The biting rate of mosquitoes on house sparrows increased through the year. The bird infection status and body mass of both avian hosts were not related to the biting rate of both mosquito species. CONCLUSIONS Host sex was the only host-related trait potentially affecting the biting rate of mosquitoes, although its effect may differ between mosquito and host species.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio 26, 41092 Seville, Spain
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio 26, 41092 Seville, Spain
- CIBER de Epidemiología y Salud Publica, Seville, Spain
| | - Laura Gangoso
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio 26, 41092 Seville, Spain
- Present Address: Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ramón Soriguer
- Department of Ethology & Biodiversity Conservation, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio 26, 41092 Seville, Spain
- CIBER de Epidemiología y Salud Publica, Seville, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio 26, 41092 Seville, Spain
- CIBER de Epidemiología y Salud Publica, Seville, Spain
| |
Collapse
|
21
|
Ferraguti M, Martínez-de la Puente J, Bensch S, Roiz D, Ruiz S, Viana DS, Soriguer RC, Figuerola J. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. J Anim Ecol 2018; 87:727-740. [PMID: 29495129 DOI: 10.1111/1365-2656.12805] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild.
Collapse
Affiliation(s)
- Martina Ferraguti
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - David Roiz
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Santigo Ruiz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Diputación de Huelva, Área de Medio Ambiente, Servicio de Control de Mosquitos, Huelva, Spain
| | - Duarte S Viana
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Ramón C Soriguer
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Departamento de Etología y Conservación de la Biodiversidad, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Yan J, Broggi J, Martínez-de la Puente J, Gutiérrez-López R, Gangoso L, Soriguer R, Figuerola J. Does bird metabolic rate influence mosquito feeding preference? Parasit Vectors 2018; 11:110. [PMID: 29471885 PMCID: PMC5824498 DOI: 10.1186/s13071-018-2708-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Host selection by mosquitoes plays a central role in the transmission of vector-borne infectious diseases. Although interspecific variation in mosquito attraction has often been reported, the mechanisms underlying intraspecific differences in hosts' attractiveness to mosquitoes are still poorly known. Metabolic rate is related to several physiological parameters used as location cues by mosquitoes, and so potentially affect host-vector contact rates. Therefore, individual hosts with higher metabolic rates should be more attractive to host-seeking mosquitoes. Here, we experimentally investigated the role of bird metabolic rate in the feeding preferences of Culex pipiens (Linnaeus), a widespread mosquito vector of many pathogens affecting human and wildlife health. RESULTS Passer domesticus (Linnaeus) pairs containing one bird treated with 2,4-dinitrophenol (DNP) and the other injected with phosphate-buffered saline solution (PBS) (i.e. control) were simultaneously exposed overnight to mosquitoes. The treatment did not affect the proportion of mosquitoes biting on each individual. However, mosquito feeding preference was negatively associated with bird resting metabolic rate but positively with bird body mass. These two variables explained up to 62.76% of the variations in mosquito feeding preference. CONCLUSIONS The relationships between mosquito feeding preferences and individual host characteristics could be explained by enhanced anti-mosquito behaviour associated with higher metabolic rates. The potential role of cues emitted by hosts is also discussed. Thus, individuals with high metabolism may actively avoid being bitten by mosquitoes, despite releasing more attractant cues. Since metabolic rates can be related to individual differences in personality and life history traits, differences in mosquitoes' feeding preferences may be related to intraspecific differences in exposure to vector-borne pathogens.
Collapse
Affiliation(s)
- Jiayue Yan
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain.
| | - Juli Broggi
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBER ESP), Seville, Spain
| | - Rafael Gutiérrez-López
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| | - Laura Gangoso
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| | - Ramón Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBER ESP), Seville, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBER ESP), Seville, Spain
| |
Collapse
|
23
|
Campioni L, Martínez-de la Puente J, Figuerola J, Granadeiro JP, Silva MC, Catry P. Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: evidence from molecular analyses and review of the literature. Parasitol Res 2017; 117:323-329. [DOI: 10.1007/s00436-017-5676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022]
|
24
|
Illera JC, López G, García-Padilla L, Moreno Á. Factors governing the prevalence and richness of avian haemosporidian communities within and between temperate mountains. PLoS One 2017; 12:e0184587. [PMID: 28880919 PMCID: PMC5589241 DOI: 10.1371/journal.pone.0184587] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 01/04/2023] Open
Abstract
Mountains are well-suited systems to disentangle the factors driving distribution of parasites due to their heterogeneity of climatic and habitat conditions. However, the information about the relative importance of environmental factors governing the distribution of avian haemosporidians on temperate mountains is very limited. The main goal of the present study is to identify the factors determining prevalence and richness in avian haemosporidians (Plasmodium, Haemoproteus and Leucocytozoon) at the community level along elevational gradients on two mountain ranges located around the northern and southern limits of the Iberian Peninsula (Spain). We used samples from 68 avian species and 1,460 breeding individuals caught over widespread woodland and open habitats. Our findings confirmed the importance of climatic variables explaining prevalence and richness on Iberian mountains. However, landscape variables and other factors named host richness and migration behaviour explained more variation than climatic ones. Plasmodium genus preferred open and warm habitats. Water sources were also important for the southern but not for the northern mountain. Haemoproteus and Leucocytozoon showed affinities for woodland areas. Climatic conditions for Haemoproteus and Leucocytozoon were dependent on the mountain range suggesting some adaptation of avian haemosporidian and their invertebrate vectors to the climatic particularities of both mountain massifs. In contrast to Plasmodium and Haemoproteus genera, Leucocytozoon prevalence and richness values were significantly higher in the southern mountain range. Overall, our findings at the community level has enriched the relative weight and effect direction of environmental factors governing the distribution and prevalence of the avian haemosporidian community. Also, our results provide a caution message about the precision of predictive models on parasite distributions based on climatic variables, since such predictions could overestimate the effect of climate change scenarios on the transmission of the haemosporidians.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Research Unit of Biodiversity, Oviedo University, Mieres, Asturias, Spain
- * E-mail: ,
| | | | | | - Ángel Moreno
- Vice Council Environm, Serv. Environm. Impact, Las Palmas Gran Canaria, Canary Islands, Spain
| |
Collapse
|
25
|
Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer RC, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J 2016; 15:589. [PMID: 27931226 PMCID: PMC5146868 DOI: 10.1186/s12936-016-1643-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/01/2016] [Indexed: 12/05/2022] Open
Abstract
Background The wide spread mosquito Culex pipiens pipiens have two forms molestus and pipiens which frequently hybridize. The two forms have behavioural and physiological differences affecting habitat requirements and host selection, which may affect the transmission dynamic of Cx. p. pipiens-borne diseases. Methods During 2013, blood engorged Cx. p. pipiens mosquitoes were captured in urban, rural and natural areas from Southern Spain. In 120 mosquitoes, we identified the blood meal origin at vertebrate species/genus level and the mosquito form. The presence and molecular lineage identity of avian malaria parasites in the head-thorax of each mosquito was also analysed. Results Mosquitoes of the form pipiens were more frequently found in natural than in urban areas. The proportion of Cx. pipiens form molestus and hybrids of the two forms did not differ between habitat categories. Any significant difference in the proportion of blood meals on birds between forms was found. Birds were the most common feeding source for the two forms and their hybrids. Among mammals, dogs and humans were the most common hosts. Two Plasmodium and one Haemoproteus lineages were found in mosquitoes, with non-significant differences between forms. Conclusion This study supports a differential distribution of Cx. p. pipiens form pipiens between urban and natural areas. Probably due to the similar feeding sources of both mosquito forms and their hybrids here, all of them may frequently interact with avian malaria parasites playing a role in the transmission of Plasmodium.
Collapse
Affiliation(s)
- Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Avda Américo Vespucio s/n, 41092, Seville, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Martina Ferraguti
- Estación Biológica de Doñana (EBD-CSIC), Avda Américo Vespucio s/n, 41092, Seville, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos, Diputación de Huelva, Huelva, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Roiz
- Estación Biológica de Doñana (EBD-CSIC), Avda Américo Vespucio s/n, 41092, Seville, Spain.,Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control, IRD (Institut de Recherche pour le Développement), Montpellier, France
| | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Avda Américo Vespucio s/n, 41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Avda Américo Vespucio s/n, 41092, Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|